1
|
Chen Y, Deng H, Zhang N. Autophagy-targeting modulation to promote peripheral nerve regeneration. Neural Regen Res 2025; 20:1864-1882. [PMID: 39254547 PMCID: PMC11691477 DOI: 10.4103/nrr.nrr-d-23-01948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/22/2024] [Accepted: 03/29/2024] [Indexed: 09/11/2024] Open
Abstract
Nerve regeneration following traumatic peripheral nerve injuries and neuropathies is a complex process modulated by diverse factors and intricate molecular mechanisms. Past studies have focused on factors that stimulate axonal outgrowth and myelin regeneration. However, recent studies have highlighted the pivotal role of autophagy in peripheral nerve regeneration, particularly in the context of traumatic injuries. Consequently, autophagy-targeting modulation has emerged as a promising therapeutic approach to enhancing peripheral nerve regeneration. Our current understanding suggests that activating autophagy facilitates the rapid clearance of damaged axons and myelin sheaths, thereby enhancing neuronal survival and mitigating injury-induced oxidative stress and inflammation. These actions collectively contribute to creating a favorable microenvironment for structural and functional nerve regeneration. A range of autophagy-inducing drugs and interventions have demonstrated beneficial effects in alleviating peripheral neuropathy and promoting nerve regeneration in preclinical models of traumatic peripheral nerve injuries. This review delves into the regulation of autophagy in cell types involved in peripheral nerve regeneration, summarizing the potential drugs and interventions that can be harnessed to promote this process. We hope that our review will offer novel insights and perspectives on the exploitation of autophagy pathways in the treatment of peripheral nerve injuries and neuropathies.
Collapse
Affiliation(s)
- Yan Chen
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Key Laboratory of Birth Defects and Women and Children’s Diseases, Ministry of Education, Sichuan University, Chengdu, Sichuan Province, China
- Laboratory of Reproductive Endocrinology and Reproductive Regulation, Sichuan University, Chengdu, Sichuan Province, China
| | - Hongxia Deng
- Key Laboratory of Birth Defects and Women and Children’s Diseases, Ministry of Education, Sichuan University, Chengdu, Sichuan Province, China
- Laboratory of Reproductive Endocrinology and Reproductive Regulation, Sichuan University, Chengdu, Sichuan Province, China
| | - Nannan Zhang
- Key Laboratory of Birth Defects and Women and Children’s Diseases, Ministry of Education, Sichuan University, Chengdu, Sichuan Province, China
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
2
|
Radanovic M, Singulani MP, De Paula VDJR, Talib LL, Forlenza OV. An Overview of the Effects of Lithium on Alzheimer's Disease: A Historical Perspective. Pharmaceuticals (Basel) 2025; 18:532. [PMID: 40283967 PMCID: PMC12030194 DOI: 10.3390/ph18040532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/27/2025] [Accepted: 04/02/2025] [Indexed: 04/29/2025] Open
Abstract
Lithium was introduced into psychiatric practice in the late nineteenth century and has since become a standard treatment for severe psychiatric disorders, particularly those characterized by psychotic agitation. It remains the most effective agent for managing acute mania and preventing relapses in bipolar disorder. Despite potential adverse effects, lithium's use should be carefully considered relative to other treatment options, as these alternatives may present distinct safety and tolerability profiles. The World Health Organization classifies lithium salts as 'essential' medications for inclusion in global healthcare systems. Over the past two decades, the growing recognition of lithium's efficacy-extending beyond mood stabilization to include reducing suicide risk and inducing neuroprotection-has led to its incorporation into clinical practice guidelines. Current research, particularly from translational models, suggests that lithium's pleiotropic effects benefit not only mental and brain health but also other organs and systems. This supports its potential as a therapeutic candidate for neurological conditions, particularly those associated with neurodegenerative processes. This article will discuss the historical background, discovery, and early experimentation of lithium in psychiatry. We will also review its mechanisms of action and discuss its potential in the treatment and prevention of neurodegenerative disorders, focusing on Alzheimer's disease.
Collapse
Affiliation(s)
- Marcia Radanovic
- Laboratory of Neuroscience (LIM-27), Department and Institute of Psychiatry, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo 05403-010, SP, Brazil; (M.R.); (M.P.S.); (V.d.J.R.D.P.); (L.L.T.)
- Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo 05403-010, SP, Brazil
| | - Monique Patricio Singulani
- Laboratory of Neuroscience (LIM-27), Department and Institute of Psychiatry, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo 05403-010, SP, Brazil; (M.R.); (M.P.S.); (V.d.J.R.D.P.); (L.L.T.)
- Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo 05403-010, SP, Brazil
- Centro de Neurociências Translacionais (CNT), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo 05403-010, SP, Brazil
| | - Vanessa de Jesus R. De Paula
- Laboratory of Neuroscience (LIM-27), Department and Institute of Psychiatry, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo 05403-010, SP, Brazil; (M.R.); (M.P.S.); (V.d.J.R.D.P.); (L.L.T.)
- Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo 05403-010, SP, Brazil
| | - Leda Leme Talib
- Laboratory of Neuroscience (LIM-27), Department and Institute of Psychiatry, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo 05403-010, SP, Brazil; (M.R.); (M.P.S.); (V.d.J.R.D.P.); (L.L.T.)
- Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo 05403-010, SP, Brazil
| | - Orestes Vicente Forlenza
- Laboratory of Neuroscience (LIM-27), Department and Institute of Psychiatry, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo 05403-010, SP, Brazil; (M.R.); (M.P.S.); (V.d.J.R.D.P.); (L.L.T.)
- Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo 05403-010, SP, Brazil
- Centro de Neurociências Translacionais (CNT), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo 05403-010, SP, Brazil
| |
Collapse
|
3
|
Al-Kuraishy HM, Sulaiman GM, Mohammed HA, Al-Gareeb AI, Albuhadily AK, Ali AA, Abu-Alghayth MH. Beyond amyloid plaque, targeting α-synuclein in Alzheimer disease: The battle continues. Ageing Res Rev 2025; 105:102684. [PMID: 39914501 DOI: 10.1016/j.arr.2025.102684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/03/2025] [Accepted: 02/03/2025] [Indexed: 02/09/2025]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative brain disease and represents the most frequent type of dementia characterized by cognitive impairment and amnesia. AD neuropathology is connected to the development of synaptic dysfunction and loss of synaptic homeostasis due to an imbalance in the production and clearance of β-amyloid (Aβ) and intracellular neurofibrillary tangles (NFTs). However, AD neuropathology is complex and may relate to the deposition of other misfolded proteins, such as alpha-synuclein (α-Syn). Of note, α-Syn, which is involved in the pathogenesis of Parkinson disease (PD) and Lewy body (LB) dementia, is also implicated in AD neuropathology. However, the potential role of α-Syn in AD neuropathology is elusive. Therefore, this review aims to discuss the pathological role of α-Syn in AD and how targeting α-Syn aggregates may be effective in treating AD.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad 14022, Iraq
| | - Ghassan M Sulaiman
- Department of Applied Sciences, University of Technology, Baghdad 10066, Iraq.
| | - Hamdoon A Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia
| | - Ali I Al-Gareeb
- Department of Clinical pharmacology and Medicine, College of Medicine, Jabir ibn Hayyan Medical University, Kufa, Najaf 54001, Iraq
| | - Ali K Albuhadily
- Department of Clinical pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad 14022, Iraq
| | - Amer Al Ali
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, 255, Al Nakhil, Bisha 67714, Saudi Arabia
| | - Mohammed H Abu-Alghayth
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, 255, Al Nakhil, Bisha 67714, Saudi Arabia
| |
Collapse
|
4
|
Fernandes SM, Mayer J, Nilsson P, Shimozawa M. How close is autophagy-targeting therapy for Alzheimer's disease to clinical use? A summary of autophagy modulators in clinical studies. Front Cell Dev Biol 2025; 12:1520949. [PMID: 39845082 PMCID: PMC11750832 DOI: 10.3389/fcell.2024.1520949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/16/2024] [Indexed: 01/24/2025] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder clinically characterized by progressive decline of memory and cognitive functions, and it is the leading cause of dementia accounting for 60%-80% of dementia patients. A pathological hallmark of AD is the accumulation of aberrant protein/peptide aggregates such as extracellular amyloid plaques containing amyloid-beta peptides and intracellular neurofibrillary tangles composed of hyperphosphorylated tau. These aggregates result from the failure of the proteostasis network, which encompasses protein synthesis, folding, and degradation processes. Autophagy is an intracellular self-digesting system responsible for the degradation of protein aggregates and damaged organelles. Impaired autophagy is observed in most neurodegenerative disorders, indicating the link between autophagy dysfunction and these diseases. A massive accumulation of autophagic vacuoles in neurons in Alzheimer's brains evidences autophagy impairment in AD. Modulating autophagy has been proposed as a therapeutic strategy for AD because of its potential to clear aggregated proteins. However, autophagy modulation therapy for AD is not yet clinically available. This mini-review aims to summarize clinical studies testing potential autophagy modulators for AD and to evaluate their proximity to clinical use. We accessed clinicaltrials.gov provided by the United States National Institutes of Health to identify completed and ongoing clinical trials. Additionally, we discuss the limitations and challenges of these therapies.
Collapse
Affiliation(s)
| | | | | | - Makoto Shimozawa
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
5
|
Zaidalkilani AT, Al‐kuraishy HM, Fahad EH, Al‐Gareeb AI, Elewa YHA, Zahran MH, Alexiou A, Papadakis M, AL‐Farga A, Batiha GE. Autophagy modulators in type 2 diabetes: A new perspective. J Diabetes 2024; 16:e70010. [PMID: 39676616 PMCID: PMC11647182 DOI: 10.1111/1753-0407.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 05/31/2024] [Accepted: 08/27/2024] [Indexed: 12/17/2024] Open
Abstract
Type 2 diabetes (T2D) is a chronic metabolic disorder caused by defective insulin signaling, insulin resistance, and impairment of insulin secretion. Autophagy is a conserved lysosomal-dependent catabolic cellular pathway involved in the pathogenesis of T2D and its complications. Basal autophagy regulates pancreatic β-cell function by enhancing insulin release and peripheral insulin sensitivity. Therefore, defective autophagy is associated with impairment of pancreatic β-cell function and the development of insulin rersistance (IR). However, over-activated autophagy increases apoptosis of pancreatic β-cells leading to pancreatic β-cell dysfunction. Hence, autophagy plays a double-edged sword role in T2D. Therefore, the use of autophagy modulators including inhibitors and activators may affect the pathogenesis of T2D. Hence, this review aims to clarify the potential role of autophagy inhibitors and activators in T2D.
Collapse
Affiliation(s)
- Ayah Talal Zaidalkilani
- Department of Nutrition, Faculty of Pharmacy and Medical SciencesUniversity of PetraAmmanJordan
| | - Hayder M. Al‐kuraishy
- Department of Clinical Pharmacology and MedicineCollege of Medicine, Al‐Mustansiriyah UniversityBaghdadIraq
| | - Esraa H. Fahad
- Department of Pharmacology and ToxicologyCollege of Pharmacy, Mustansiriyah UniversityBaghdadIraq
| | - Ali I. Al‐Gareeb
- Department of Clinical Pharmacology and MedicineCollege of Medicine, Al‐Mustansiriyah UniversityBaghdadIraq
| | - Yaser Hosny Ali Elewa
- Department of Histology and Cytology, Faculty of Veterinary MedicineZagazig UniversityZagazigEgypt
- Faculty of Veterinary MedicineHokkaido UniversitySapporoJapan
| | | | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh UniversityMohaliPunjabIndia
- Department of Research & DevelopmentFunogenAthensGreece
- Department of Research & DevelopmentAFNP MedWienAustria
- Department of Science and EngineeringNovel Global Community Educational FoundationHebershamNew South WalesAustralia
| | - Marios Papadakis
- Department of Surgery IIUniversity Hospital Witten‐HerdeckeWuppertalGermany
| | - Ammar AL‐Farga
- Department of BiochemistryCollege of Science University of JeddahJeddahSaudi Arabia
| | - Gaber El‐Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary MedicineDamanhur UniversityDamanhurAlBeheiraEgypt
| |
Collapse
|
6
|
Hawkes C, Dale RC, Scher S, Cornish JL, Perez DL, Santoro JD, Fernandes S, Kozlowska K. Bridging the Divide: An Integrated Neurobio-Psycho-Social Approach to Treating Antibody Negative Inflammatory Encephalitis in a School-Aged Child. Harv Rev Psychiatry 2024; 32:101-116. [PMID: 38728570 DOI: 10.1097/hrp.0000000000000395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Affiliation(s)
- Clare Hawkes
- From Kids Neuroscience Centre (Dr. Dale), The Children's Hospital at Westmead (Drs. Dale, Hawkes, and Kozlowska), Westmead, AUS; Faculty of Medicine and Health, The Children's Hospital at Westmead Clinical School (Drs. Dale and Kozlowska), and Brain and Mind Centre (Dr. Dale), University of Sydney, Sydney, AUS; Harvard Medical School (Drs. Scher, Perez, and Fernandes); McLean Hospital, Belmont, MA (Drs. Scher and Fernandes); Specialty in Psychiatry, University of Sydney School of Medicine, Sydney, AUS (Drs. Scher and Kozlowska); School of Psychological Sciences and Centre for Emotional Health, Macquarie University (Dr. Cornish); Department of Neurology and Department of Psychiatry, Massachusetts General Hospital, Boston, MA (Dr. Perez); Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA (Dr. Santoro); Department of Neurology, Keck School of Medicine of the University of Southern California (Dr. Santoro); The Brain Dynamics Centre, The Westmead Institute for Medical Research, Westmead, AUS (Dr. Kozlowska)
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Latagliata EC, Orsini C, Cabib S, Biagioni F, Fornai F, Puglisi-Allegra S. Prefrontal Dopamine in Flexible Adaptation to Environmental Changes: A Game for Two Players. Biomedicines 2023; 11:3189. [PMID: 38137410 PMCID: PMC10740496 DOI: 10.3390/biomedicines11123189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Deficits in cognitive flexibility have been characterized in affective, anxiety, and neurodegenerative disorders. This paper reviews data, mainly from studies on animal models, that support the existence of a cortical-striatal brain circuit modulated by dopamine (DA), playing a major role in cognitive/behavioral flexibility. Moreover, we reviewed clinical findings supporting misfunctioning of this circuit in Parkinson's disease that could be responsible for some important non-motoric symptoms. The reviewed findings point to a role of catecholaminergic transmission in the medial prefrontal cortex (mpFC) in modulating DA's availability in the nucleus accumbens (NAc), as well as a role of NAc DA in modulating the motivational value of natural and conditioned stimuli. The review section is accompanied by a preliminary experiment aimed at testing weather the extinction of a simple Pavlovian association fosters increased DA transmission in the mpFC and inhibition of DA transmission in the NAc.
Collapse
Affiliation(s)
| | - Cristina Orsini
- I.R.C.C.S. Fondazione Santa Lucia, 00143 Rome, Italy; (C.O.); (S.C.)
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy
| | - Simona Cabib
- I.R.C.C.S. Fondazione Santa Lucia, 00143 Rome, Italy; (C.O.); (S.C.)
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy
| | - Francesca Biagioni
- I.R.C.C.S. Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.B.); (F.F.)
| | - Francesco Fornai
- I.R.C.C.S. Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.B.); (F.F.)
- Department of Translational Research and New Technologies on Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | | |
Collapse
|
8
|
Chen J, Chen G, Xu X, Chen L, Zhang J, Liu F. Bibliometric analysis and visualized study of research on autophagy in ischemic stroke. Front Pharmacol 2023; 14:1232114. [PMID: 37731738 PMCID: PMC10507179 DOI: 10.3389/fphar.2023.1232114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/25/2023] [Indexed: 09/22/2023] Open
Abstract
Aims: To summarize and clarify the current research status and indicate possible future directions in the field of autophagy in ischemic stroke, we performed a comprehensive and multidimensional bibliometric analysis of the literature in this field published from 2011 to 2022. Methods: We retrieved articles on the field of autophagy in ischemic stroke published between 2011 and 2022 from Web of Science Core Collection (WOSCC). VOSviewer (version 1.6.19) and CiteSpace (version 6.2.R2 Basic) were used to identify the leading topics as well as generate visual maps of Countries/regions, organizations, authors, journals, and keyword networks in the related field. Results: A total of 568 publications were contained in this research. The journal with the most publications were Front Pharmacol, Mol Neurobiol, and Neuroscience. China was the most productive country with respect to co-authorship, with the Capital Med Univ being the organization with the most. co-authorships. In terms of authorship analysis, eight of the top 10 most contributive authors were from China. The co-occurring author keywords can be divided into three main clusters, including "protective effect of autophagy in ischemic stroke," "autophagy-targeted therapy for ischemic stroke," and "mitochondrial function in cerebral ischemia-reperfusion injury". Conclusion: This bibliometric analysis helps us reveal the current research hotspots in the research field of autophagy in ischemic stroke and guide future research directions. Subsequent trends in this special field are likely to identify and develop novel autophagy-targeted therapy strategies to effectively prevent and treat ischemic stroke.
Collapse
Affiliation(s)
- Jiefang Chen
- Department of Neurology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Gaijie Chen
- Health Management Center, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaojing Xu
- Department of Respiratory and Critical Care Medicine, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Long Chen
- Department of Operating Room, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiewen Zhang
- Department of Neurology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Feng Liu
- Department of Nephrology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|