1
|
Abu Mhanna HY, Omar AF, Radzi YM, Oglat AA, Akhdar HF, Al Ewaidat H, Almahmoud A, Bani Yaseen AB, Al Badarneh L, Alhamad O, Alhamad L. Systematic review of functional magnetic resonance imaging (fMRI) applications in the preoperative planning and treatment assessment of brain tumors. Heliyon 2025; 11:e42464. [PMID: 40007791 PMCID: PMC11850128 DOI: 10.1016/j.heliyon.2025.e42464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 02/04/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
The utilization of functional magnetic resonance imaging (fMRI) is critical in the preoperative planning phase of brain tumor surgery because it allows for a delicate balance between maximizing tumor resection and maintaining brain function. A decade of fMRI development was examined in this study, with a particular emphasis on its use in diagnosing and assessing the efficacy of brain cancer treatments. We examined the foundational principles, practical implementations, and verification of fMRI via direct brain stimulation, with particular emphasis on its capacity to detect cerebral regions affected by tumors that are eloquent in nature. Recently, fMRI has undergone significant progress, allowing for its integration into clinical workflows to facilitate precise mapping of brain functions. This extensive analysis encompasses the scrutiny of resting-state fMRI (Rs-fMRI) as a method of capturing functional connectivity, thereby providing significant insights into the management of patients with brain tumors. Methodological advancements, clinical applicability, and future orientations of fMRI are highlighted in this review, which emphasizes the substantial influence of the technique on neurosurgical planning and patient outcomes.
Collapse
Affiliation(s)
| | - Ahmad Fairuz Omar
- School of Physics, Universiti Sains Malaysia, USM, 11800, Penang, Malaysia
| | - Yasmin Md Radzi
- School of Physics, Universiti Sains Malaysia, USM, 11800, Penang, Malaysia
| | - Ammar A. Oglat
- Department of Medical Imaging, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, 13133, Jordan
| | - Hanan Fawaz Akhdar
- Physics Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 13318, Saudi Arabia
| | - Haytham Al Ewaidat
- Department of Allied Medical Sciences-Radiologic Technology, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Abdallah Almahmoud
- Department of Allied Medical Sciences-Radiologic Technology, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Abdel-Baset Bani Yaseen
- Department of Medical Imaging, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, 13133, Jordan
| | - Laith Al Badarneh
- School of Physics, Universiti Sains Malaysia, USM, 11800, Penang, Malaysia
| | - Omar Alhamad
- Imagining Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, 112412, United Arab Emirates
| | - Laith Alhamad
- Imagining Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, 112412, United Arab Emirates
| |
Collapse
|
2
|
Gavaret M, Iftimovici A, Pruvost-Robieux E. EEG: Current relevance and promising quantitative analyses. Rev Neurol (Paris) 2023; 179:352-360. [PMID: 36907708 DOI: 10.1016/j.neurol.2022.12.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 03/12/2023]
Abstract
Electroencephalography (EEG) remains an essential tool, characterized by an excellent temporal resolution and offering a real window on cerebral functions. Surface EEG signals are mainly generated by the postsynaptic activities of synchronously activated neural assemblies. EEG is also a low-cost tool, easy to use at bed-side, allowing to record brain electrical activities with a low number or up to 256 surface electrodes. For clinical purpose, EEG remains a critical investigation for epilepsies, sleep disorders, disorders of consciousness. Its temporal resolution and practicability also make EEG a necessary tool for cognitive neurosciences and brain-computer interfaces. EEG visual analysis is essential in clinical practice and the subject of recent progresses. Several EEG-based quantitative analyses may complete the visual analysis, such as event-related potentials, source localizations, brain connectivity and microstates analyses. Some developments in surface EEG electrodes appear also, potentially promising for long term continuous EEGs. We overview in this article some recent progresses in visual EEG analysis and promising quantitative analyses.
Collapse
Affiliation(s)
- M Gavaret
- Université Paris Cité, INSERM UMR 1266, IPNP (Institute of Psychiatry and Neuroscience of Paris), France; Service de Neurophysiologie Clinique et Epileptologie, GHU Paris Psychiatrie et Neurosciences, Paris, France; FHU NeuroVasc, Paris, France.
| | - A Iftimovici
- Université Paris Cité, INSERM UMR 1266, IPNP (Institute of Psychiatry and Neuroscience of Paris), France; NeuroSpin, Atomic Energy Commission, Gif-sur-Yvette, France; Pôle PEPIT, GHU Paris Psychiatrie et Neurosciences, Paris, France
| | - E Pruvost-Robieux
- Université Paris Cité, INSERM UMR 1266, IPNP (Institute of Psychiatry and Neuroscience of Paris), France; Service de Neurophysiologie Clinique et Epileptologie, GHU Paris Psychiatrie et Neurosciences, Paris, France; FHU NeuroVasc, Paris, France
| |
Collapse
|
3
|
Demoulin G, Pruvost-Robieux E, Marchi A, Ramdani C, Badier JM, Bartolomei F, Gavaret M. Impact of skull-to-brain conductivity ratio for high resolution EEG source localization. Biomed Phys Eng Express 2021; 7. [PMID: 34298528 DOI: 10.1088/2057-1976/ac177f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/23/2021] [Indexed: 11/12/2022]
Abstract
Objective. To measure the impact of skull-to-brain conductivity ratios on interictal spikes source localizations, using high resolution EEG (HR EEG). In previous studies, two ratios were mainly employed: 1/80 and 1/40. Consequences of the employed ratios on source localization results are poorly studied.Methods. Twenty patients with drug-resistant epilepsy were studied using HR EEG (sixty-four scalp electrodes). For each patient, three-layers realistic head models based on individual MRI were elaborated using boundary element model. For each interictal spike, source localization was performed six times, using six skull-to-brain conductivity ratios (1/80, 1/50, 1/40, 1/30, 1/20 and 1/10), exploring all the spectrum of values reported in the literature. We then measured distances between the different sources obtained and between the sources and the anterior commissure (in order to estimate sources depth).Results. We measured a mean distance of 5.3 mm (sd: 3 mm) between the sources obtained with 1/40 versus 1/80 ratio. This distance increased when the discrepancy between the two evaluated ratios increased. We measured a mean distance of 14.2 mm (sd: 4.9 mm) between sources obtained with 1/10 ratio versus 1/80 ratio. Sources localized using 1/40 ratio were 4.3 mm closer to the anterior commissure than sources localized using 1/80 ratio.Significance. Skull-to-brain conductivity ratio is an often-neglected parameter in source localization studies. The different ratios mainly used in the litterature (1/80 and 1/40) lead to significant differences in source localizations. These variations mainly occur in source depth. A more accurate estimation of skull-to-brain conductivity is needed to increase source localization accuracy.Abbreviations. ECD: equivalent current dipole; EIT: electric impedance tomography, HR EEG: High resolution Electroencephalography, IIS: Inter ictal spikes, MEG: Magnetoencephalography, MRI: Magnetic resonance imaging, mS/m: milli-Siemens/m, S/m: Siemens/m, SD: Standard deviation.
Collapse
Affiliation(s)
- Grégoire Demoulin
- Neurophysiology Department, GHU Paris Psychiatrie et Neurosciences, Sainte Anne Hospital, 1 rue Cabanis, F-75014 Paris, France.,Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM UMR 1266, F-75014 Paris, France
| | - Estelle Pruvost-Robieux
- Neurophysiology Department, GHU Paris Psychiatrie et Neurosciences, Sainte Anne Hospital, 1 rue Cabanis, F-75014 Paris, France.,Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM UMR 1266, F-75014 Paris, France.,Université de Paris, F-75006 Paris, France
| | - Angela Marchi
- Neurophysiology Department, GHU Paris Psychiatrie et Neurosciences, Sainte Anne Hospital, 1 rue Cabanis, F-75014 Paris, France.,Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM UMR 1266, F-75014 Paris, France
| | - Céline Ramdani
- Institut de Recherche Biomédicale des Armées (IRBA), 91223 Brétigny-sur-Orge, France
| | - Jean-Michel Badier
- Aix Marseille Université, France.,INSERM, INS, Inst Neurosci Syst, Marseille, France.,APHM, Timone Hospital, Epileptology Department, Marseille, France
| | - Fabrice Bartolomei
- Aix Marseille Université, France.,INSERM, INS, Inst Neurosci Syst, Marseille, France.,APHM, Timone Hospital, Epileptology Department, Marseille, France
| | - Martine Gavaret
- Neurophysiology Department, GHU Paris Psychiatrie et Neurosciences, Sainte Anne Hospital, 1 rue Cabanis, F-75014 Paris, France.,Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM UMR 1266, F-75014 Paris, France.,Université de Paris, F-75006 Paris, France
| |
Collapse
|
4
|
Sun F, Zhang G, Yu T, Zhang X, Wang X, Yan X, Qiao L, Ma K, Zhang X. Functional characteristics of the human primary somatosensory cortex: An electrostimulation study. Epilepsy Behav 2021; 118:107920. [PMID: 33770611 DOI: 10.1016/j.yebeh.2021.107920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 10/21/2022]
Abstract
The common knowledge of the functional organization of the human primary somatosensory cortex (S1) had been primarily established by Penfield who electrically stimulated the exposed surface [referred as Brodmann area (BA)1] of S1 under neurosurgical conditions. Nevertheless, the functional information regarding the deep surface (BA 2 and 3) of S1 is poorly understood. We retrospectively analyzed all the clinical manifestations induced by extra-operative cortical electrical stimulation (ES) in 33 patients with medically intractable epilepsy who underwent stereo-electroencephalography (SEEG) monitoring for presurgical assessment. Demographic and clinical data were gathered and evaluated to delineate the determinants of the occurrence of positive responses, types of responses, and size of body regions involved. The stimulation of 244 sites in S1 yielded 198 positive sites (81.1%), most of which were located in the sulcal cortex. In multivariable analyses, no clinical or demographic factors predicted the occurrence of responses or their threshold levels. The size of body region involved in the responses had ordinal association with the stimulated BA sites (p < 0.001). Various types of responses elicited from the S1 were documented and classified, and the predictors of those responses were also assessed. Our analysis revealed the functional characteristics of the entire S1 and proved the multiplicity of functions of S1.
Collapse
Affiliation(s)
- Fengqiao Sun
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China
| | - Guojun Zhang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China.
| | - Tao Yu
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China
| | - Xiaohua Zhang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China
| | - Xueyuan Wang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China
| | - Xiaoming Yan
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China
| | - Liang Qiao
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China
| | - Kai Ma
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China
| | - Xi Zhang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China
| |
Collapse
|
5
|
Chirchiglia D, Chirchiglia P, Latorre D. An update of the imaging and diagnostic techniques in use for the preservation of eloquent areas in brain tumor surgery – An opinion paper. INTERDISCIPLINARY NEUROSURGERY 2020. [DOI: 10.1016/j.inat.2019.100611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
6
|
The role of tailored intraoperative neurophysiological monitoring in glioma surgery: a single institute experience. J Neurooncol 2020; 146:459-467. [PMID: 32020476 DOI: 10.1007/s11060-019-03347-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/15/2019] [Indexed: 10/25/2022]
Abstract
INTRODUCTION Glioma surgery near the functional area is still a dilemma. Intraoperative neurophysiologic monitoring (IONM) and functional mapping can play a role to maximize the extent of resection (EOR), while minimizing the risk of sequelae. We herein review the utility of tailored intraoperative mapping and monitoring in patients undergoing glioma surgery in our institute. METHODS Patients were divided into two groups on the basis of application tailored IONM (group A, 2013-2017, n = 53) or not (group B, 2008-2012, n = 49) between January 2008 and December 2017. The setup, tailored IONM protocols, surgery, and clinical results of all patients with eloquent glioma were analyzed with the EOR, functionality scores, overall survival (OS) and progression-free survival (PFS) retrospectively. RESULTS The 102 patients were considered eligible for analysis. High grade and low grade gliomas accounted for 73 (72%) and 29 (28%) cases, respectively. There was a positive association between the application of neuromonitor and post-operative functional preservation, but no significant statistical differences over the EOR, OS and PFS between the two groups. CONCLUSIONS In our experience, tailored intraoperative functional mapping provides an effective neurological function preservation. Routine implementation of neurophysiological monitoring with adequate pre-operative planning and intraoperative teamwork in eloquent glioma can get more satisfied functional preservation. Due to the maturation and experience of our IONM team may also be the variation factor, prospective studies with a more prominent sample and proper multivariate analysis will be expected to determine the real benefit.
Collapse
|
7
|
Lawson McLean A. Publication trends in transcranial magnetic stimulation: a 30-year panorama. Brain Stimul 2019; 12:619-627. [DOI: 10.1016/j.brs.2019.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 01/02/2019] [Accepted: 01/07/2019] [Indexed: 01/11/2023] Open
|
8
|
Abstract
Glioblastoma (GBM) is the most common and most aggressive type of primary brain tumour in adults. It represents 54% of all gliomas and 16% of all brain tumours (Ostrom et al. 2016). Despite surgery and treatment with radiotherapy plus an oral alkylating agent, temozolomide (TMZ), tumours invariably recur, and the patient survival is an average of ~14–16 months. In this review we summarise the current understanding of multiple factors that may affect survival of patients with GBMs. In particular, we discuss recent advancements in surgery and detection of genomic-based markers with prognostic values, such as IDH1/2 mutations, MGMT gene promoter methylation, and TERT gene promoter alterations. We address the issue of tumour heterogeneity and evolution that may result in different parts of the same tumour exhibiting different GBM subtypes and in subtype switching, which may restrict the usefulness of the expression-based classification as a prognostic marker before relapse. The determinants of long-term survival in patients with IDH1/2wt GBM, beyond MGMT promoter methylation, remain to be identified, and even the absence of both IDH1/2 mutations and MGMT promoter methylation does not preclude long-term survival. These findings suggest that host-derived factors, such as immune system responsiveness may contribute to long-term survival in such patients. We report the results of high-throughput approaches, suggesting links between long-term survival and enhanced immune-related gene expression. The further search for new gene candidates, promoter methylation status, and specific features of host immunity should provide prognostic biomarkers for the evaluation of survival of IDH1 wild-type/non-G-CIMP GBMs.
Collapse
|
9
|
Maranhão DKM, Souza MLPD, Costa MLGD, Vieira ACDC. Characterization of aphasia in aneurysmal subarachnoid hemorrhage. Codas 2018; 30:e20160255. [PMID: 29489955 DOI: 10.1590/2317-1782/20182016225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 09/02/2017] [Indexed: 11/22/2022] Open
Abstract
PURPOSE Characterize the profile of aphasic syndromes determined by aneurysmal subarachnoid hemorrhage (aSAH) of the left middle cerebral artery (LMCA). METHODS An analytical, retrospective, cross-sectional study was conducted using a database of cognitive assessments of 193 patients with aSAH admitted to Hospital da Restauração between March 2007 and November 2009. Of these, a total of 26 patients with aSAH in the LMCA territory confirmed by digital angiography were selected. Aphasia was assessed through the Montreal-Toulouse Language Assessment Alpha Version Protocol (Alpha Version) and the CERAD Neuropsychological Test Battery (Verbal fluency). RESULTS Language and verbal fluency impairments were identified in patients with aSAH in the LMCA territory when compared with the control population (50 individuals). Of the 26 patients with aSAH, 11 presented aphasic characteristics preoperatively. CONCLUSION The results of this research corroborate the literature, showing that the aSAH frame causes cognitive impairments even in the preoperative phase for aneurysm occlusion. Considering the observed aspects, the predominant aphasic syndromes characterize comprehension aphasia due to sequels in the posterior cerebral artery territory.
Collapse
|
10
|
Roux A, Caire F, Guyotat J, Menei P, Metellus P, Pallud J. Carmustine wafer implantation for high-grade gliomas: Evidence-based safety efficacy and practical recommendations from the Neuro-oncology Club of the French Society of Neurosurgery. Neurochirurgie 2017; 63:433-443. [PMID: 29122306 DOI: 10.1016/j.neuchi.2017.07.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/21/2017] [Accepted: 07/28/2017] [Indexed: 11/16/2022]
Abstract
There is a growing body of evidence that carmustine wafer implantation during surgery is an effective therapeutic adjunct to the standard combined radio-chemotherapy regimen using temozolomide in newly diagnosed and recurrent high-grade glioma patient management with a statistically significant survival benefit demonstrated across several randomized clinical trials, as well as prospective and retrospective studies (grade A recommendation). Compelling clinical data also support the safety of carmustine wafer implantation (grade A recommendation) in these patients and suggest that observed adverse events can be avoided in experienced neurosurgeon hands. Furthermore, carmustine wafer implantation does not seem to impact negatively on the quality of life and the completion of adjuvant oncological treatments (grade C recommendation). Moreover, emerging findings support the potential of high-grade gliomas molecular status, especially the O(6)-Methylguanine-DNA Methyltransferase promoter methylation status, in predicting the efficacy of such a surgical strategy, especially at recurrence (grade B recommendation). Finally, carmustine wafer implantation appears to be cost-effective in high-grade glioma patients when performed by an experienced team and when total or subtotal resection can be achieved. Altogether, these data underline the current need for a new randomized clinical trial to assess the impact of a maximal safe resection with carmustine wafer implantation followed by the standard combined chemoradiation protocol stratified by molecular status in high-grade glioma patients.
Collapse
Affiliation(s)
- A Roux
- Department of Neurosurgery, Sainte-Anne Hospital, 1, rue Cabanis, 75674 Paris cedex 14, France; Paris Descartes University, Sorbonne Paris Cité, 75006 Paris, France; Inserm, U894, Centre de psychiatrie et neurosciences, 75006 Paris, France
| | - F Caire
- Department of Neurosurgery, CHU de Limoges, Limoges, France
| | - J Guyotat
- Lyon Civil Hospitals, Pierre Wertheimer Neurological and Neurosurgical Hospital, Service of Neurosurgery D, Lyon, France
| | - P Menei
- Department of Neurosurgery, CHU d'Angers, Angers, France; Inserm 1232/CRCINA, France
| | - P Metellus
- Department of Neurosurgery, Clairval Private Hospital, Marseille, France
| | - J Pallud
- Department of Neurosurgery, Sainte-Anne Hospital, 1, rue Cabanis, 75674 Paris cedex 14, France; Paris Descartes University, Sorbonne Paris Cité, 75006 Paris, France; Inserm, U894, Centre de psychiatrie et neurosciences, 75006 Paris, France.
| | | |
Collapse
|