1
|
Cossu G, Le Van T, Kerherve L, Houidi SA, Morlaix E, Bonneville F, Chapon R, Baland O, Cao C, Lleu M, Farah W, El Cadhi A, Beaurain J, Picart T, Xu B, Berhouma M. Enlightening the invisible: Applications, limits and perspectives of intraoperative fluorescence in neurosurgery. BRAIN & SPINE 2024; 4:103928. [PMID: 39823065 PMCID: PMC11735926 DOI: 10.1016/j.bas.2024.103928] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 01/19/2025]
Abstract
Introduction The introduction of intraoperative fluorophores represented a significant advancement in neurosurgical practice. Nowadays they found different applications: in oncology to improve the visualization of tumoral tissue and optimize resection rates and in vascular neurosurgery to assess the exclusion of vascular malformations or the permeability of bypasses, with real-time intraoperative evaluations. Research question A comprehensive knowledge of how fluorophores work is crucial to maximize their benefits and to incorporate them into daily neurosurgical practice. We would like to revise here their applications and clinical relevance. Material and methods A focused literature review of relevant articles dealing with the versatile applications of fluorophores in neurosurgery was performed. Results The fundamental mechanisms of action of intraoperative fluorophores are enlightened, examining their interactions with target tissues and the principles driving fluorescence-guided surgery. The clinical applications of the principal fluorophores, namely fluorescein sodium, 5-ALA and indocyanine green, are detailed, in regards to the management of vascular malformations, brain tumors and pathologies treated through endoscopic endonasal approaches. Discussion and conclusion Future perspective dealing with the development of new technologies or of new molecules are discussed. By critically assessing the efficacy and applications of the different fluorophores, as well as charting their potential future uses, this paper seeks to guide clinicians in their practice and provide insights for driving innovation and progress in fluorescence-based surgery and research.
Collapse
Affiliation(s)
- Giulia Cossu
- Department of Neurosurgery, University Hospital of Lausanne and University of Lausanne, Lausanne, Switzerland
- Department of Neurosurgery, University Hospital of Dijon Bourgogne, Dijon, France
| | - Tuan Le Van
- Department of Neurosurgery, University Hospital of Dijon Bourgogne, Dijon, France
| | - Luc Kerherve
- Department of Neurosurgery, University Hospital of Dijon Bourgogne, Dijon, France
| | - Sayda A. Houidi
- Department of Neurosurgery, University Hospital of Dijon Bourgogne, Dijon, France
| | - Edouard Morlaix
- Department of Neurosurgery, University Hospital of Dijon Bourgogne, Dijon, France
| | - Florent Bonneville
- Department of Neurosurgery, University Hospital of Dijon Bourgogne, Dijon, France
| | - Renan Chapon
- Department of Neurosurgery, University Hospital of Dijon Bourgogne, Dijon, France
| | - Olivier Baland
- Department of Neurosurgery, University Hospital of Dijon Bourgogne, Dijon, France
| | - Catherine Cao
- Department of Neurosurgery, University Hospital of Dijon Bourgogne, Dijon, France
| | - Maxime Lleu
- Department of Neurosurgery, University Hospital of Dijon Bourgogne, Dijon, France
| | - Walid Farah
- Department of Neurosurgery, University Hospital of Dijon Bourgogne, Dijon, France
| | - Ahmed El Cadhi
- Department of Neurosurgery, University Hospital of Dijon Bourgogne, Dijon, France
| | - Jacques Beaurain
- Department of Neurosurgery, University Hospital of Dijon Bourgogne, Dijon, France
| | - Thiebaud Picart
- Department of Neurosurgery, Groupe Hospitalier Est, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron, France
- Université Claude Bernard Lyon 1, 43 Bd du 11 Novembre 1918, Villeurbanne, France
- Cancer Research Centre of Lyon (CRCL), INSERM 1052, CNRS 5286, 28 Rue Laennec, Lyon, France
| | - Bin Xu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Moncef Berhouma
- Department of Neurosurgery, University Hospital of Dijon Bourgogne, Dijon, France
- Functional and Molecular Imaging Team (CNRS 6302), Molecular Chemistry Institute (ICMUB), University of Burgundy, France
| |
Collapse
|
2
|
Rammeloo E, Schouten JW, Krikour K, Bos EM, Berger MS, Nahed BV, Vincent AJPE, Gerritsen JKW. Preoperative assessment of eloquence in neurosurgery: a systematic review. J Neurooncol 2023; 165:413-430. [PMID: 38095774 DOI: 10.1007/s11060-023-04509-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/12/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND AND OBJECTIVES Tumor location and eloquence are two crucial preoperative factors when deciding on the optimal treatment choice in glioma management. Consensus is currently lacking regarding the preoperative assessment and definition of eloquent areas. This systematic review aims to evaluate the existing definitions and assessment methods of eloquent areas that are used in current clinical practice. METHODS A computer-aided search of Embase, Medline (OvidSP), and Google Scholar was performed to identify relevant studies. This review includes articles describing preoperative definitions of eloquence in the study's Methods section. These definitions were compared and categorized by anatomical structure. Additionally, various techniques to preoperatively assess tumor eloquence were extracted, along with their benefits, drawbacks and ease of use. RESULTS This review covers 98 articles including 12,714 participants. Evaluation of these studies indicated considerable variability in defining eloquence. Categorization of these definitions yielded a list of 32 brain regions that were considered eloquent. The most commonly used methods to preoperatively determine tumor eloquence were anatomical classification systems and structural MRI, followed by DTI-FT, functional MRI and nTMS. CONCLUSIONS There were major differences in the definitions and assessment methods of eloquence, and none of them proved to be satisfactory to express eloquence as an objective, quantifiable, preoperative factor to use in glioma decision making. Therefore, we propose the development of a novel, objective, reliable, preoperative classification system to assess eloquence. This should in the future aid neurosurgeons in their preoperative decision making to facilitate personalized treatment paradigms and to improve surgical outcomes.
Collapse
Affiliation(s)
- Emma Rammeloo
- Department of Neurosurgery, Erasmus Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.
| | - Joost Willem Schouten
- Department of Neurosurgery, Erasmus Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Keghart Krikour
- Department of Neurosurgery, Erasmus Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Eelke Marijn Bos
- Department of Neurosurgery, Erasmus Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Mitchel Stuart Berger
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Brian Vala Nahed
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Jasper Kees Wim Gerritsen
- Department of Neurosurgery, Erasmus Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| |
Collapse
|
3
|
Di Cristofori A, Carone G, Rocca A, Rui CB, Trezza A, Carrabba G, Giussani C. Fluorescence and Intraoperative Ultrasound as Surgical Adjuncts for Brain Metastases Resection: What Do We Know? A Systematic Review of the Literature. Cancers (Basel) 2023; 15:cancers15072047. [PMID: 37046709 PMCID: PMC10092992 DOI: 10.3390/cancers15072047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023] Open
Abstract
(1) Background: brain metastases (BMs) are the most common neoplasm of the central nervous system; despite the high incidence of this type of tumour, to date there is no universal consensus on the most effective treatment in patients with BMs, even if surgery still plays a primary role. Despite this, the adjunct systems that help to reach the GTR, which are well structured for other tumour forms such as ultrasound and fluorescence systems, are not yet well employed and standardised in surgical practice. The aim of this review is to provide a picture of the current state-of-art of the roles of iOUS and intraoperative fluorescence to better understand their potential roles as surgical tools. (2) Methods: to reach this goal, the PubMed database was searched using the following string as the keyword: (((Brain cerebral metastasis [MeSH Major Topic])OR (brain metastasis, [MeSH Major Topic])) AND ((5-ala, [MeSH Terms]) OR (Aminolevulinicacid [All fields]) OR (fluorescein, [MeSH Terms]) OR (contrast enhanced ultrasound [MeSH Terms])OR ((intraoperative ultrasound. [MeSH Terms]))) AND (english [Filter]) AND ((english [Filter]) AND (2010:2022 [pdat])) AND (english [Filter]). (3) Results: from our research, a total of 661 articles emerged; of these, 57 were selected. 21 of these included BMs generically as a secondary class for comparisons with gliomas, without going deeply into specific details. Therefore, for our purposes, 36 articles were considered. (4) Conclusions: with regard to BMs treatment and their surgical adjuncts, there is still much to be explored. This is mainly related to the heterogeneity of patients, the primary tumour histology and the extent of systemic disease; regardless, surgery plays a paramount role in obtaining a local disease control, and more standardised surgical protocols need to be made, with the aim of optimizing the use of the available surgical adjuncts and in order to increase the rate of GTR.
Collapse
Affiliation(s)
- Andrea Di Cristofori
- Division of Neurosurgery, Fondazione IRCCS San Gerardo dei Tintori, Via GB Pergolesi, 20900 Monza, Italy
- PhD Program in Neuroscience, University of Milano-Bicocca, Piazza Ateneo Nuovo 1, 20126 Milano, Italy
| | - Giovanni Carone
- Department of Neurosurgery, School of Medicine, Surgery Università degli Studi di Milano-Bicocca, Piazza Ateneo Nuovo 1, 20126 Milano, Italy
| | - Alessandra Rocca
- Department of Neurosurgery, School of Medicine, Surgery Università degli Studi di Milano-Bicocca, Piazza Ateneo Nuovo 1, 20126 Milano, Italy
| | - Chiara Benedetta Rui
- Department of Neurosurgery, School of Medicine, Surgery Università degli Studi di Milano-Bicocca, Piazza Ateneo Nuovo 1, 20126 Milano, Italy
| | - Andrea Trezza
- Division of Neurosurgery, Fondazione IRCCS San Gerardo dei Tintori, Via GB Pergolesi, 20900 Monza, Italy
| | - Giorgio Carrabba
- Division of Neurosurgery, Fondazione IRCCS San Gerardo dei Tintori, Via GB Pergolesi, 20900 Monza, Italy
- Department of Neurosurgery, School of Medicine, Surgery Università degli Studi di Milano-Bicocca, Piazza Ateneo Nuovo 1, 20126 Milano, Italy
| | - Carlo Giussani
- Division of Neurosurgery, Fondazione IRCCS San Gerardo dei Tintori, Via GB Pergolesi, 20900 Monza, Italy
- Department of Neurosurgery, School of Medicine, Surgery Università degli Studi di Milano-Bicocca, Piazza Ateneo Nuovo 1, 20126 Milano, Italy
| |
Collapse
|
4
|
Ius T, Sabatino G, Panciani PP, Fontanella MM, Rudà R, Castellano A, Barbagallo GMV, Belotti F, Boccaletti R, Catapano G, Costantino G, Della Puppa A, Di Meco F, Gagliardi F, Garbossa D, Germanò AF, Iacoangeli M, Mortini P, Olivi A, Pessina F, Pignotti F, Pinna G, Raco A, Sala F, Signorelli F, Sarubbo S, Skrap M, Spena G, Somma T, Sturiale C, Angileri FF, Esposito V. Surgical management of Glioma Grade 4: technical update from the neuro-oncology section of the Italian Society of Neurosurgery (SINch®): a systematic review. J Neurooncol 2023; 162:267-293. [PMID: 36961622 PMCID: PMC10167129 DOI: 10.1007/s11060-023-04274-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/20/2023] [Indexed: 03/25/2023]
Abstract
PURPOSE The extent of resection (EOR) is an independent prognostic factor for overall survival (OS) in adult patients with Glioma Grade 4 (GG4). The aim of the neuro-oncology section of the Italian Society of Neurosurgery (SINch®) was to provide a general overview of the current trends and technical tools to reach this goal. METHODS A systematic review was performed. The results were divided and ordered, by an expert team of surgeons, to assess the Class of Evidence (CE) and Strength of Recommendation (SR) of perioperative drugs management, imaging, surgery, intraoperative imaging, estimation of EOR, surgery at tumor progression and surgery in elderly patients. RESULTS A total of 352 studies were identified, including 299 retrospective studies and 53 reviews/meta-analysis. The use of Dexamethasone and the avoidance of prophylaxis with anti-seizure medications reached a CE I and SR A. A preoperative imaging standard protocol was defined with CE II and SR B and usefulness of an early postoperative MRI, with CE II and SR B. The EOR was defined the strongest independent risk factor for both OS and tumor recurrence with CE II and SR B. For intraoperative imaging only the use of 5-ALA reached a CE II and SR B. The estimation of EOR was established to be fundamental in planning postoperative adjuvant treatments with CE II and SR B and the stereotactic image-guided brain biopsy to be the procedure of choice when an extensive surgical resection is not feasible (CE II and SR B). CONCLUSIONS A growing number of evidences evidence support the role of maximal safe resection as primary OS predictor in GG4 patients. The ongoing development of intraoperative techniques for a precise real-time identification of peritumoral functional pathways enables surgeons to maximize EOR minimizing the post-operative morbidity.
Collapse
Affiliation(s)
- Tamara Ius
- Division of Neurosurgery, Head-Neck and NeuroScience Department, University Hospital of Udine, Udine, Italy
| | - Giovanni Sabatino
- Institute of Neurosurgery, Fondazione Policlinico Gemelli, Catholic University, Rome, Italy
- Unit of Neurosurgery, Mater Olbia Hospital, Olbia, Italy
| | - Pier Paolo Panciani
- Division of Neurosurgery, Department of Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy.
| | - Marco Maria Fontanella
- Department of Neuro-Oncology, University of Turin and City of Health and Science Hospital, 10094, Torino, Italy
| | - Roberta Rudà
- Department of Neuro-Oncology, University of Turin and City of Health and Science Hospital, 10094, Torino, Italy
- Neurology Unit, Hospital of Castelfranco Veneto, 31033, Castelfranco Veneto, Italy
| | - Antonella Castellano
- Department of Neuroradiology, San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy
| | - Giuseppe Maria Vincenzo Barbagallo
- Department of Medical and Surgical Sciences and Advanced Technologies (G.F. Ingrassia), Neurological Surgery, Policlinico "G. Rodolico - San Marco" University Hospital, University of Catania, Catania, Italy
- Interdisciplinary Research Center On Brain Tumors Diagnosis and Treatment, University of Catania, Catania, Italy
| | - Francesco Belotti
- Division of Neurosurgery, Department of Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | | | - Giuseppe Catapano
- Division of Neurosurgery, Department of Neurological Sciences, Ospedale del Mare, Naples, Italy
| | | | - Alessandro Della Puppa
- Neurosurgical Clinical Department of Neuroscience, Psychology, Pharmacology and Child Health, Careggi Hospital, University of Florence, Florence, Italy
| | - Francesco Di Meco
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Johns Hopkins Medical School, Baltimore, MD, USA
| | - Filippo Gagliardi
- Department of Neurosurgery and Gamma Knife Radiosurgery, San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy
| | - Diego Garbossa
- Department of Neuroscience "Rita Levi Montalcini," Neurosurgery Unit, University of Turin, Torino, Italy
| | | | - Maurizio Iacoangeli
- Department of Neurosurgery, Università Politecnica Delle Marche, Azienda Ospedali Riuniti, Ancona, Italy
| | - Pietro Mortini
- Department of Neurosurgery and Gamma Knife Radiosurgery, San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy
| | | | - Federico Pessina
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090, Milan, Italy
- Neurosurgery Department, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Milan, Italy
| | - Fabrizio Pignotti
- Institute of Neurosurgery, Fondazione Policlinico Gemelli, Catholic University, Rome, Italy
- Unit of Neurosurgery, Mater Olbia Hospital, Olbia, Italy
| | - Giampietro Pinna
- Unit of Neurosurgery, Department of Neurosciences, Hospital Trust of Verona, 37134, Verona, Italy
| | - Antonino Raco
- Division of Neurosurgery, Department of NESMOS, AOU Sant'Andrea, Sapienza University, Rome, Italy
| | - Francesco Sala
- Department of Neurosciences, Biomedicines and Movement Sciences, Institute of Neurosurgery, University of Verona, 37134, Verona, Italy
| | - Francesco Signorelli
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, Neurosurgery Unit, University "Aldo Moro", 70124, Bari, Italy
| | - Silvio Sarubbo
- Department of Neurosurgery, Santa Chiara Hospital, Azienda Provinciale Per I Servizi Sanitari (APSS), Trento, Italy
| | - Miran Skrap
- Division of Neurosurgery, Head-Neck and NeuroScience Department, University Hospital of Udine, Udine, Italy
| | | | - Teresa Somma
- Division of Neurosurgery, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Università Degli Studi Di Napoli Federico II, Naples, Italy
| | | | | | - Vincenzo Esposito
- Department of Neurosurgery "Giampaolo Cantore"-IRCSS Neuromed, Pozzilli, Italy
- Department of Human, Neurosciences-"Sapienza" University of Rome, Rome, Italy
| |
Collapse
|
5
|
Bonosi L, Marrone S, Benigno UE, Buscemi F, Musso S, Porzio M, Silven MP, Torregrossa F, Grasso G. Maximal Safe Resection in Glioblastoma Surgery: A Systematic Review of Advanced Intraoperative Image-Guided Techniques. Brain Sci 2023; 13:brainsci13020216. [PMID: 36831759 PMCID: PMC9954589 DOI: 10.3390/brainsci13020216] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/15/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Glioblastoma multiforme (GBM) represents the most common and aggressive central nervous system tumor associated with a poor prognosis. The aim of this study was to depict the role of intraoperative imaging techniques in GBM surgery and how they can ensure the maximal extent of resection (EOR) while preserving the functional outcome. The authors conducted a systematic review following PRISMA guidelines on the PubMed/Medline and Scopus databases. A total of 1747 articles were identified for screening. Studies focusing on GBM-affected patients, and evaluations of EOR and functional outcomes with the aid of advanced image-guided techniques were included. The resulting studies were assessed for methodological quality using the Risk of Bias in Systematic Review tool. Open Science Framework registration DOI 10.17605/OSF.IO/3FDP9. Eighteen studies were eligible for this systematic review. Among the selected studies, eight analyzed Sodium Fluorescein, three analyzed 5-aminolevulinic acid, two evaluated IoMRI imaging, two evaluated IoUS, and three evaluated multiple intraoperative imaging techniques. A total of 1312 patients were assessed. Gross Total Resection was achieved in the 78.6% of the cases. Follow-up time ranged from 1 to 52 months. All studies assessed the functional outcome based on the Karnofsky Performance Status scale, while one used the Neurologic Assessment in Neuro-Oncology score. In 77.7% of the cases, the functional outcome improved or was stable over the pre-operative assessment. Combining multiple intraoperative imaging techniques could provide better results in GBM surgery than a single technique. However, despite good surgical outcomes, patients often present a neurocognitive decline leading to a marked deterioration of the quality of life. Advanced intraoperative image-guided techniques can allow a better understanding of the anatomo-functional relationships between the tumor and the surrounding brain, thus maximizing the EOR while preserving functional outcomes.
Collapse
|
6
|
Goryaynov SA, Buklina SB, Khapov IV, Batalov AI, Potapov AA, Pronin IN, Belyaev AU, Aristov AA, Zhukov VU, Pavlova GV, Belykh E. 5-ALA-guided tumor resection during awake speech mapping in gliomas located in eloquent speech areas: Single-center experience. Front Oncol 2022; 12:940951. [PMID: 36212421 PMCID: PMC9538677 DOI: 10.3389/fonc.2022.940951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Background Achieving maximal functionally safe resection of gliomas located within the eloquent speech areas is challenging, and there is a lack of literature on the combined use of 5-aminolevulinic acid (5-ALA) guidance and awake craniotomy. Objective The aim of this study was to describe our experience with the simultaneous use of 5-ALA fluorescence and awake speech mapping in patients with left frontal gliomas located within the vicinity of eloquent speech areas. Materials and methods A prospectively collected database of patients was reviewed. 5-ALA was administered at a dose of 20 mg/kg 2 h prior to operation, and an operating microscope in BLUE400 mode was used to visualize fluorescence. All patients underwent surgery using the "asleep-awake-asleep" protocol with monopolar and bipolar electrical stimulation to identify the proximity of eloquent cortex and white matter tracts and to guide safe limits of resection along with fluorescence guidance. Speech function was assessed by a trained neuropsychologist before, during, and after surgery. Results In 28 patients operated with cortical mapping and 5-ALA guidance (12 Grade 4, 6 Grade 3, and 10 Grade 2 gliomas), Broca's area was identified in 23 cases and Wernicke's area was identified in 5 cases. Fluorescence was present in 14 cases. Six tumors had residual fluorescence due to the positive speech mapping in the tumor bed. Transient aphasia developed in 14 patients, and permanent aphasia developed in 4 patients. In 6 patients operated with cortical and subcortical speech mapping and 5-ALA guidance (4 Grade 4, 1 Grade 3, and 1 Grade 2 gliomas), cortical speech areas were mapped in 5 patients and subcortical tracts were encountered in all cases. In all cases, resection was stopped despite the presence of residual fluorescence due to speech mapping findings. Transient aphasia developed in 6 patients and permanent aphasia developed in 4 patients. In patients with Grade 2-3 gliomas, targeted biopsy of focal fluorescence areas led to upgrading the grade and thus more accurate diagnosis. Conclusion 5-ALA guidance during awake speech mapping is useful in augmenting the extent of resection for infiltrative high-grade gliomas and identifying foci of anaplasia in non-enhancing gliomas, while maintaining safe limits of functional resection based on speech mapping. Positive 5-ALA fluorescence in diffuse Grade 2 gliomas may be predictive of a more aggressive disease course.
Collapse
Affiliation(s)
- Sergey A. Goryaynov
- Departments of Neurotraumatology and Neurooncology, N.N.Burdenko National Medical Research Center of Neurosurgery, Moscow, Russia
| | - Svetlana B. Buklina
- Departments of Neurotraumatology and Neurooncology, N.N.Burdenko National Medical Research Center of Neurosurgery, Moscow, Russia
| | - Ivan V. Khapov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Artyom I. Batalov
- Departments of Neurotraumatology and Neurooncology, N.N.Burdenko National Medical Research Center of Neurosurgery, Moscow, Russia
| | - Alexander A. Potapov
- Departments of Neurotraumatology and Neurooncology, N.N.Burdenko National Medical Research Center of Neurosurgery, Moscow, Russia
| | - Igor N. Pronin
- Departments of Neurotraumatology and Neurooncology, N.N.Burdenko National Medical Research Center of Neurosurgery, Moscow, Russia
| | - Artem U. Belyaev
- Departments of Neurotraumatology and Neurooncology, N.N.Burdenko National Medical Research Center of Neurosurgery, Moscow, Russia
| | - Andrey A. Aristov
- Departments of Neurotraumatology and Neurooncology, N.N.Burdenko National Medical Research Center of Neurosurgery, Moscow, Russia
| | - Vadim U. Zhukov
- Departments of Neurotraumatology and Neurooncology, N.N.Burdenko National Medical Research Center of Neurosurgery, Moscow, Russia
| | - Galina V. Pavlova
- Departments of Neurotraumatology and Neurooncology, N.N.Burdenko National Medical Research Center of Neurosurgery, Moscow, Russia
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Department of Neurogenetics, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Evgenii Belykh
- Department of Neurosurgery, New Jersey Medical School, Rutgers University, New Jersey, NJ, United States
| |
Collapse
|
7
|
Li G, Rodrigues A, Kim L, Garcia C, Jain S, Zhang M, Hayden-Gephart M. 5-Aminolevulinic Acid Imaging of Malignant Glioma. Surg Oncol Clin N Am 2022; 31:581-593. [DOI: 10.1016/j.soc.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Valente O, Messina R, Ingravallo G, Bellitti E, Zimatore DS, de Gennaro L, Abbrescia P, Pati R, Palazzo C, Nicchia GP, Trojano M, Signorelli F, Frigeri A. Alteration of the translational readthrough isoform AQP4ex induces redistribution and downregulation of AQP4 in human glioblastoma. Cell Mol Life Sci 2022; 79:140. [PMID: 35187599 PMCID: PMC8858924 DOI: 10.1007/s00018-021-04123-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/21/2021] [Accepted: 12/29/2021] [Indexed: 11/03/2022]
Abstract
Glioblastoma multiforme (GBM) is characterized by a remarkable cellular and molecular heterogeneity that make the behavior of this tumor highly variable and resistant to therapy. In addition, the most serious clinical complication of GBM and other brain tumors is the development of vasogenic edema which dramatically increase the intracranial pressure. In the present study we evaluate the expression, supramolecular organization and spatial distribution of AQP4 and AQP4ex, the new readthrough isoform of AQP4, in relationship with the degree of vasogenic brain edema and tumor progression. To this purpose, tissue samples from regions of tumor core, peritumoral and non-infiltrated tissues of each GBM patient (n = 31) were analyzed. Immunofluorescence experiments revealed that the expression of AQP4ex was almost absent in tumoral regions while the canonical AQP4 isoforms appear mostly delocalized. In peritumoral tissues, AQP4 expression was found altered in those perivascular astrocyte processes where AQP4ex appeared reduced and partially delocalized. Protein expression levels measured by immunoblot showed that global AQP4 was reduced mainly in the tumor core. Notably, the relative amount of AQP4ex was more severely reduced starting from the peritumoral region. BN-PAGE experiments showed that the supramolecular organization of AQP4 is only partially affected in GBM. Edema assessment by magnetic resonance imaging revealed that the level of AQP4ex downregulation correlated with edema severity. Finally, the degree of BBB alteration, measured with sodium fluorescein content in GBM biopsies, correlated with the edema index and AQP4ex downregulation. Altogether these data suggest that the AQP4ex isoform is critical in the triggering event of progressive downregulation and mislocalization of AQP4 in GBM, which may affect the integrity of the BBB and contributes to accumulation of edema in the peritumoral tissue. Thus, AQP4ex could be considered as a potential early biomarker of GBM progression.
Collapse
Affiliation(s)
- Onofrio Valente
- Laboratory of Neurochemistry, Department of Basic Medical Sciences, Neurosciences and Sense Organs, School of Medicine, University of Bari Aldo Moro, Piazza Giulio Cesare, 70100, Bari, Italy
| | - Raffaella Messina
- Division of Neurosurgery, Department of Basic Medical Sciences, Neurosciences and Sense Organs, School of Medicine, University of Bari Aldo Moro, Piazza Giulio Cesare, 70100, Bari, Italy
| | - Giuseppe Ingravallo
- Department of Emergency and Organ Transplant, School of Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Emilio Bellitti
- Department of Emergency and Organ Transplant, School of Medicine, University of Bari Aldo Moro, Bari, Italy
| | | | - Luigi de Gennaro
- Division of Neurosurgery, Department of Basic Medical Sciences, Neurosciences and Sense Organs, School of Medicine, University of Bari Aldo Moro, Piazza Giulio Cesare, 70100, Bari, Italy
| | - Pasqua Abbrescia
- Laboratory of Neurochemistry, Department of Basic Medical Sciences, Neurosciences and Sense Organs, School of Medicine, University of Bari Aldo Moro, Piazza Giulio Cesare, 70100, Bari, Italy
| | - Roberta Pati
- Laboratory of Neurochemistry, Department of Basic Medical Sciences, Neurosciences and Sense Organs, School of Medicine, University of Bari Aldo Moro, Piazza Giulio Cesare, 70100, Bari, Italy
| | - Claudia Palazzo
- Laboratory of Neurochemistry, Department of Basic Medical Sciences, Neurosciences and Sense Organs, School of Medicine, University of Bari Aldo Moro, Piazza Giulio Cesare, 70100, Bari, Italy
| | - Grazia Paola Nicchia
- Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 840 Kennedy Center, Bronx, NY, USA
| | - Maria Trojano
- Laboratory of Neurochemistry, Department of Basic Medical Sciences, Neurosciences and Sense Organs, School of Medicine, University of Bari Aldo Moro, Piazza Giulio Cesare, 70100, Bari, Italy
| | - Francesco Signorelli
- Division of Neurosurgery, Department of Basic Medical Sciences, Neurosciences and Sense Organs, School of Medicine, University of Bari Aldo Moro, Piazza Giulio Cesare, 70100, Bari, Italy
| | - Antonio Frigeri
- Laboratory of Neurochemistry, Department of Basic Medical Sciences, Neurosciences and Sense Organs, School of Medicine, University of Bari Aldo Moro, Piazza Giulio Cesare, 70100, Bari, Italy.
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 840 Kennedy Center, Bronx, NY, USA.
| |
Collapse
|
9
|
Intraoperative 5-ALA fluorescence-guided resection of high-grade glioma leads to greater extent of resection with better outcomes: a systematic review. J Neurooncol 2022; 156:233-256. [PMID: 34989964 DOI: 10.1007/s11060-021-03901-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/12/2021] [Indexed: 12/13/2022]
Abstract
IMPORTANCE High-grade gliomas (HGG) are the most aggressive and common malignant brain tumors in adults. They have a dismally fatal prognosis. Even if gross total resection of the enhancing tumor is achieved, inevitably, invading tumor cells that are indistinguishable to the un-aided eye are left behind, which eventually leads to tumor recurrence. 5-aminolevulinic acid (5-ALA) is an increasingly utilized intraoperative fluorescent imaging agent for patients with HGG. It enhances visualization of HGG tissue. Despite early promising randomized clinical trial data suggesting a survival benefit for 5-ALA-guided surgery, the growing body of literature must be analyzed to confirm efficacy on patient outcomes. OBJECTIVE To perform a systematic review of the literature to evaluate whether there is a beneficial effect upon survival and extent of resection due to the utilization of 5-ALA in HGG surgery. EVIDENCE REVIEW Literature regarding 5-ALA usage in HGG surgery was reviewed according to the PRISMA guidelines. Two databases, PubMed and SCOPUS, were searched for assorted combinations of the keywords "5-ALA," "high-grade glioma," "5-aminolevulinic acid," and "resection" in July 2020 for case reports and retrospective, prospective, and randomized clinical trials assessing and analyzing 5-ALA intraoperative use in patients with HGG. Entailed studies on PubMed and SCOPUS were found for screening using a snowball search technique upon the initially searched papers. Systematic reviews and meta-analyses were excluded from our PRISMA table. FINDINGS 3756 previously published studies were screened, 536 of which were further evaluated, and ultimately 45 were included in our systematic review. There were no date restrictions on the screened publications. Our literature search was finalized on July 16, 2020. We found an observed increase in the overall survival (OS) and progression-free survival (PFS) of the 5-ALA group compared to the white light group, as well as an observed increase in the OS and PFS of complete resections compared to incomplete resections. Of the studies that directly compared the use of 5-ALA to white light (13 of the total analyzed 45, or 28.9%), 5-ALA lead to a better PFS and OS in 88.4 and 67.5% of patients, respectively. When the studies that reported postoperative neurologic outcomes of surgeries using 5-ALA vs. white light were analyzed, 42.2% of subjects demonstrated 5-ALA use was associated with less post-op neurological deficits, whereas 34.5% demonstrated no difference between 5-ALA and without. 23.3% of studies showed that intraoperative 5-ALA guided surgeries lead to more post-op neurological deficits. CONCLUSIONS AND RELEVANCE Utilization of 5-ALA was found to be associated with a greater extent of resection in HGG surgeries, as well as longer OS and PFS. Postop neurologic deficit rates were mixed and inconclusive when comparing 5-ALA groups to white light groups. 5-ALA is a useful surgical adjunct for resection of HGG when patient safety is preserved.
Collapse
|
10
|
Schupper AJ, Baron RB, Cheung W, Rodriguez J, Kalkanis SN, Chohan MO, Andersen BJ, Chamoun R, Nahed BV, Zacharia BE, Kennedy J, Moulding HD, Zucker L, Chicoine MR, Olson JJ, Jensen RL, Sherman JH, Zhang X, Price G, Fowkes M, Germano IM, Carter BS, Hadjipanayis CG, Yong RL. 5-Aminolevulinic acid for enhanced surgical visualization of high-grade gliomas: a prospective, multicenter study. J Neurosurg 2021:1-10. [PMID: 34624862 DOI: 10.3171/2021.5.jns21310] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/05/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Greater extent of resection (EOR) is associated with longer overall survival in patients with high-grade gliomas (HGGs). 5-Aminolevulinic acid (5-ALA) can increase EOR by improving intraoperative visualization of contrast-enhancing tumor during fluorescence-guided surgery (FGS). When administered orally, 5-ALA is converted by glioma cells into protoporphyrin IX (PPIX), which fluoresces under blue 400-nm light. 5-ALA has been available for use in Europe since 2010, but only recently gained FDA approval as an intraoperative imaging agent for HGG tissue. In this first-ever, to the authors' knowledge, multicenter 5-ALA FGS study conducted in the United States, the primary objectives were the following: 1) assess the diagnostic accuracy of 5-ALA-induced PPIX fluorescence for HGG histopathology across diverse centers and surgeons; and 2) assess the safety profile of 5-ALA FGS, with particular attention to neurological morbidity. METHODS This single-arm, multicenter, prospective study included adults aged 18-80 years with Karnofsky Performance Status (KPS) score > 60 and an MRI diagnosis of suspected new or recurrent resectable HGG. Intraoperatively, 3-5 samples per tumor were taken and their fluorescence status was recorded by the surgeon. Specimens were submitted for histopathological analysis. Patients were followed for 6 weeks postoperatively for adverse events, changes in the neurological exam, and KPS score. Multivariate analyses were performed of the outcomes of KPS decline, EOR, and residual enhancing tumor volume to identify predictive patient and intraoperative variables. RESULTS Sixty-nine patients underwent 5-ALA FGS, providing 275 tumor samples for analysis. PPIX fluorescence had a sensitivity of 96.5%, specificity of 29.4%, positive predictive value (PPV) for HGG histopathology of 95.4%, and diagnostic accuracy of 92.4%. Drug-related adverse events occurred at a rate of 22%. Serious adverse events due to intraoperative neurological injury, which may have resulted from FGS, occurred at a rate of 4.3%. There were 2 deaths unrelated to FGS. Compared to preoperative KPS scores, postoperative KPS scores were significantly lower at 48 hours and 2 weeks but were not different at 6 weeks postoperatively. Complete resection of enhancing tumor occurred in 51.9% of patients. Smaller preoperative tumor volume and use of intraoperative MRI predicted lower residual tumor volume. CONCLUSIONS PPIX fluorescence, as judged by the surgeon, has a high sensitivity and PPV for HGG. 5-ALA was well tolerated in terms of drug-related adverse events, and its application by trained surgeons in FGS for HGGs was not associated with any excess neurological morbidity.
Collapse
Affiliation(s)
- Alexander J Schupper
- 1Department of Neurological Surgery, Mount Sinai Health System, New York, New York
| | - Rebecca B Baron
- 1Department of Neurological Surgery, Mount Sinai Health System, New York, New York
| | - William Cheung
- 1Department of Neurological Surgery, Mount Sinai Health System, New York, New York
| | - Jessica Rodriguez
- 1Department of Neurological Surgery, Mount Sinai Health System, New York, New York
| | - Steven N Kalkanis
- 2Department of Neurological Surgery, Henry Ford Medical Center, Detroit, Michigan
| | - Muhammad O Chohan
- 3Department of Neurological Surgery, University of New Mexico Hospital, Albuquerque, New Mexico
| | - Bruce J Andersen
- 4Department of Neurological Surgery, St. Alphonsus Regional Medical Center, Boise, Idaho
| | - Roukoz Chamoun
- 5Department of Neurological Surgery, University of Kansas Medical Center, Kansas City, Kansas
| | - Brian V Nahed
- 6Department of Neurological Surgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Brad E Zacharia
- 7Department of Neurological Surgery, Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | | | - Hugh D Moulding
- 9Department of Neurological Surgery, St. Luke's University Health Network, Bethlehem, Pennsylvania
| | - Lloyd Zucker
- 10Department of Neurological Surgery, Delray Medical Center, Delray Beach, Florida
| | - Michael R Chicoine
- 11Department of Neurological Surgery, Barnes-Jewish Hospital, St. Louis, Missouri
| | - Jeffrey J Olson
- 12Department of Neurological Surgery, Emory University Hospital, Atlanta, Georgia
| | - Randy L Jensen
- 13Department of Neurological Surgery, Huntsman Cancer Institute, Salt Lake City, Utah; and
| | - Jonathan H Sherman
- 14Department of Neurological Surgery, George Washington University Hospital, Washington, DC
| | - Xiangnan Zhang
- 1Department of Neurological Surgery, Mount Sinai Health System, New York, New York
| | - Gabrielle Price
- 1Department of Neurological Surgery, Mount Sinai Health System, New York, New York
| | - Mary Fowkes
- 1Department of Neurological Surgery, Mount Sinai Health System, New York, New York
| | - Isabelle M Germano
- 1Department of Neurological Surgery, Mount Sinai Health System, New York, New York
| | - Bob S Carter
- 6Department of Neurological Surgery, Massachusetts General Hospital, Boston, Massachusetts
| | | | - Raymund L Yong
- 1Department of Neurological Surgery, Mount Sinai Health System, New York, New York
| |
Collapse
|
11
|
Zhang Z, Ma J, Xu Y, Zhang H. Observation of the impact of the eight-step process combined with the four-track crossover quality control applied to patients with glioma surgery: a randomised trial. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:696. [PMID: 33987394 PMCID: PMC8106022 DOI: 10.21037/atm-21-1228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background At present, surgery is the main treatment for patients with glioma, but there are certain risks in the operation. The traction and stress reaction of related brain tissue during surgery can cause complications such as cerebral edema, which adversely affects the prognosis of patients. The purpose of the present study was to explore the effect of an eight-step process combined with four-track quality control applied to patients undergoing glioma surgery. Methods A total of 122 patients undergoing glioma surgery admitted to our hospital from March 2017 to March 2020 were selected and divided into two groups according to the random number table method, each with 61 cases. The control group underwent routine intervention after surgery and the observation group underwent an eight-step process combined with four-track cross-over quality control intervention after surgery. The postoperative rehabilitation effects, cancer-related fatigue, changes in quality of life, and the incidence of complications before and after intervention were compared between the two groups. Results The time of catheter removal, the time of first eating, the time of getting out of bed, and the length of hospital stay of the observation group were shorter than those of the control group (P<0.05). In the observation group cognitive fatigue, physical fatigue, and emotional fatigue scores were lower than those of the control group after intervention (P<0.05) and the quality-of-life scores of the observation group after intervention were higher than those of the control group (P<0.05). The total incidence of complications in the observation group was lower than that of the control group (P<0.05). Conclusions The eight-step process combined with four-track quality control applied to patients undergoing glioma surgery can reduce cancer-related fatigue, improve quality of life, reduce complications, and promote speedy recovery.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jing Ma
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ying Xu
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Huihui Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
12
|
Farrell C, Shi W, Bodman A, Olson JJ. Congress of neurological surgeons systematic review and evidence-based guidelines update on the role of emerging developments in the management of newly diagnosed glioblastoma. J Neurooncol 2020; 150:269-359. [PMID: 33215345 DOI: 10.1007/s11060-020-03607-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/23/2020] [Indexed: 12/12/2022]
Abstract
TARGET POPULATION These recommendations apply to adult patients with newly diagnosed or suspected glioblastoma. IMAGING Question What imaging modalities are in development that may be able to provide improvements in diagnosis, and therapeutic guidance for individuals with newly diagnosed glioblastoma? RECOMMENDATION Level III: It is suggested that techniques utilizing magnetic resonance imaging for diffusion weighted imaging, and to measure cerebral blood and magnetic spectroscopic resonance imaging of N-acetyl aspartate, choline and the choline to N-acetyl aspartate index to assist in diagnosis and treatment planning in patients with newly diagnosed or suspected glioblastoma. SURGERY Question What new surgical techniques can be used to provide improved tumor definition and resectability to yield better tumor control and prognosis for individuals with newly diagnosed glioblastoma? RECOMMENDATIONS Level II: The use of 5-aminolevulinic acid is recommended to improve extent of tumor resection in patients with newly diagnosed glioblastoma. Level II: The use of 5-aminolevulinic acid is recommended to improve median survival and 2 year survival in newly diagnosed glioblastoma patients with clinical characteristics suggesting poor prognosis. Level III: It is suggested that, when available, patients be enrolled in properly designed clinical trials assessing the value of diffusion tensor imaging in improving the safety of patients with newly diagnosed glioblastoma undergoing surgery. NEUROPATHOLOGY Question What new pathology techniques and measurement of biomarkers in tumor tissue can be used to provide improved diagnostic ability, and determination of therapeutic responsiveness and prognosis for patients with newly diagnosed glioblastomas? RECOMMENDATIONS Level II: Assessment of tumor MGMT promoter methylation status is recommended as a significant predictor of a longer progression free survival and overall survival in patients with newly diagnosed with glioblastoma. Level II: Measurement of tumor expression of neuron-glia-2, neurofilament protein, glutamine synthetase and phosphorylated STAT3 is recommended as a predictor of overall survival in patients with newly diagnosed with glioblastoma. Level III: Assessment of tumor IDH1 mutation status is suggested as a predictor of longer progression free survival and overall survival in patients with newly diagnosed with glioblastoma. Level III: Evaluation of tumor expression of Phosphorylated Mitogen-Activated Protein Kinase protein, EGFR protein, and Insulin-like Growth Factor-Binding Protein-3 is suggested as a predictor of overall survival in patients with newly diagnosed with glioblastoma. RADIATION Question What radiation therapy techniques are in development that may be used to provide improved tumor control and prognosis for individuals with newly diagnosed glioblastomas? RECOMMENDATIONS Level III: It is suggested that patients with newly diagnosed glioblastoma undergo pretreatment radio-labeled amino acid tracer positron emission tomography to assess areas at risk for tumor recurrence to assist in radiation treatment planning. Level III: It is suggested that, when available, patients be with newly diagnosed glioblastomas be enrolled in properly designed clinical trials of radiation dose escalation, altered fractionation, or new radiation delivery techniques. CHEMOTHERAPY Question What emerging chemotherapeutic agents or techniques are available to provide better tumor control and prognosis for patients with newly diagnosed glioblastomas? RECOMMENDATION Level III: As no emerging chemotherapeutic agents or techniques were identified in this review that improved tumor control and prognosis it is suggested that, when available, patients with newly diagnosed glioblastomas be enrolled in properly designed clinical trials of chemotherapy. MOLECULAR AND TARGETED THERAPY Question What new targeted therapy agents are available to provide better tumor control and prognosis for individuals with newly diagnosed glioblastomas? RECOMMENDATION Level III: As no new molecular and targeted therapies have clearly provided better tumor control and prognosis it is suggested that, when available, patients with newly diagnosed glioblastomas be enrolled in properly designed clinical trials of molecular and targeted therapies IMMUNOTHERAPY: Question What emerging immunotherapeutic agents or techniques are available to provide better tumor control and prognosis for patients with newly diagnosed glioblastomas? RECOMMENDATION Level III: As no immunotherapeutic agents have clearly provided better tumor control and prognosis it is suggested that, when available, patients with newly diagnosed glioblastomas be enrolled in properly designed clinical trials of immunologically-based therapies. NOVEL THERAPIES Question What novel therapies or techniques are in development to provide better tumor control and prognosis for individuals with newly diagnosed glioblastomas? RECOMMENDATIONS Level II: The use of tumor-treating fields is recommended for patients with newly diagnosed glioblastoma who have undergone surgical debulking and completed concurrent chemoradiation without progression of disease at the time of tumor-treating field therapy initiation. Level II: It is suggested that, when available, enrollment in properly designed studies of vector containing herpes simplex thymidine kinase gene and prodrug therapies be considered in patients with newly diagnosed glioblastoma.
Collapse
Affiliation(s)
- Christopher Farrell
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Wenyin Shi
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Jeffrey J Olson
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
13
|
Picart T, Berhouma M, Dumot C, Pallud J, Metellus P, Armoiry X, Guyotat J. Optimization of high-grade glioma resection using 5-ALA fluorescence-guided surgery: A literature review and practical recommendations from the neuro-oncology club of the French society of neurosurgery. Neurochirurgie 2019; 65:164-177. [PMID: 31125558 DOI: 10.1016/j.neuchi.2019.04.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 04/17/2019] [Accepted: 04/28/2019] [Indexed: 11/20/2022]
Abstract
BACKGROUND When feasible, the surgical resection is the standard first step of the management of high-grade gliomas. 5-ALA fluorescence-guided-surgery (5-ALA-FGS) was developed to ease the intra-operative delineation of tumor borders in order to maximize the extent of resection. METHODS A Medline electronic database search was conducted. English language studies from January 1998 until July 2018 were included, following the PRISMA guidelines. RESULTS 5-ALA can be considered as a specific tool for the detection of tumor remnant but has a weaker sensibility (level 2). 5-ALA-FGS is associated with a significant increase in the rate of gross total resection reaching more than 90% in some series (level 1). Consistently, 5-ALAFGS improves progression-free survival (level 1). However, the gain in overall survival is more debated. The use of 5-ALA-FGS in eloquent areas is feasible but requires simultaneous intraoperative electrophysiologic functional brain monitoring to precisely locate and preserve eloquent areas (level 2). 5-ALA is usable during the first resection of a glioma but also at recurrence (level 2). From a practical standpoint, 5-ALA is orally administered 3 hours before the induction of anesthesia, the recommended dose being 20 mg/kg. Intra-operatively, the procedure is performed as usually with a central debulking and a peripheral dissection during which the surgeon switches from white to blue light. Provided that some precautions are observed, the technique does not expose the patient to particular complications. CONCLUSION Although 5-ALA-FGS contributes to improve gliomas management, there are still some limitations. Future methods will be developed to improve the sensibility of 5-ALA-FGS.
Collapse
Affiliation(s)
- T Picart
- Service de neurochirurgie D, hospices civils de Lyon, hôpital neurologique Pierre-Wertheimer, 59, boulevard Pinel, 69677 Bron, France; Inserm 1052, UMR 5286,Team ATIP/AVENIR Transcriptomic diversity of stem cells, centre de cancérologie de Lyon, centre Léon-Bérard, 69008 Lyon, France.
| | - M Berhouma
- Service de neurochirurgie D, hospices civils de Lyon, hôpital neurologique Pierre-Wertheimer, 59, boulevard Pinel, 69677 Bron, France; CREATIS Laboratory, Inserm U1206, UMR 5220, université de Lyon, 69100 Villeurbanne, France
| | - C Dumot
- Service de neurochirurgie D, hospices civils de Lyon, hôpital neurologique Pierre-Wertheimer, 59, boulevard Pinel, 69677 Bron, France; CREATIS Laboratory, Inserm U1206, UMR 5220, université de Lyon, 69100 Villeurbanne, France
| | - J Pallud
- Département de neurochirurgie, hôpital Sainte-Anne, 75014 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75005 Paris, France; IMA-Brain, Inserm U894, institut de psychiatrie et neurosciences de Paris, 7013 Paris, France
| | - P Metellus
- Hôpital Privé Clairval, Ramsay général de santé, 13009 Marseille, France; UMR 7051, institut de neurophysiopathologie, université d'Aix-Marseille, 13344 Marseille, France
| | - X Armoiry
- MATEIS (Team I2B), University of Lyon, Lyon school of pharmacy, 69008 Lyon, France; Édouard-Herriot Hospital, Pharmacy Department, 69008 Lyon, France; University of Warwick, Warwick Medical School, Coventry, UK
| | - J Guyotat
- Service de neurochirurgie D, hospices civils de Lyon, hôpital neurologique Pierre-Wertheimer, 59, boulevard Pinel, 69677 Bron, France
| |
Collapse
|
14
|
Duffau H. Surgery for Malignant Brain Gliomas: Fluorescence-Guided Resection or Functional-Based Resection? Front Surg 2019; 6:21. [PMID: 31032260 PMCID: PMC6473023 DOI: 10.3389/fsurg.2019.00021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 03/22/2019] [Indexed: 12/17/2022] Open
Affiliation(s)
- Hugues Duffau
- Department of Neurosurgery, Montpellier University Medical Center, Gui de Chauliac Hospital, Montpellier, France.,Team "Plasticity of Central Nervous System, Stem Cells and Glial Tumors, " U1051 Laboratory, National Institute for Health and Medical Research (INSERM), Institute for Neurosciences of Montpellier, Montpellier University Medical Center, Montpellier, France
| |
Collapse
|
15
|
Pardey Bracho GF, Guyotat J, Picart T. Letter to the Editor Regarding "Hypnosis-Aided Awake Surgery for the Management of Intrinsic Brain Tumors versus Standard Awake-Asleep-Awake Protocol: A Preliminary, Promising Experience". World Neurosurg 2019; 126:688-689. [PMID: 30682509 DOI: 10.1016/j.wneu.2019.01.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 11/24/2022]
Affiliation(s)
- Gilda F Pardey Bracho
- Department of Anesthesia and Critical Care, D. Pierre Wertheimer Neurological and Neurosurgical Hospital, Hospices Civils de Lyon, Bron, France.
| | - Jacques Guyotat
- Department of Neurosurgery, D. Pierre Wertheimer Neurological and Neurosurgical Hospital, Hospices Civils de Lyon, Bron, France
| | - Thiébaud Picart
- Department of Neurosurgery, D. Pierre Wertheimer Neurological and Neurosurgical Hospital, Hospices Civils de Lyon, Bron, France
| |
Collapse
|
16
|
Abstract
Critical limb ischemia (CLI) remains a challenge for an interdisciplinary therapeutic team due to chronic nonhealing wounds. Against this background, there is a necessity of quality control after revascularization. Beside the isolated evaluation of the macrocirculation by Ankle-Brachial or Toe-Brachial Index measurements, the microcirculation as an additional important factor of wound healing often remains underestimated. The following article gives an overview about the current investigation methods for noninvasive perfusion control of the CLI patient. Therefore, transcutaneous oxygen pressure (tcpO2), the “oxygen-to-see” method which is a combination of white light tissue spectrometry and laser-Doppler flowmetry, fluorescence angiography with indocyanine green, and multispectral optoacoustic tomography will be described.
Collapse
|
17
|
Roux A, Caire F, Guyotat J, Menei P, Metellus P, Pallud J. Carmustine wafer implantation for high-grade gliomas: Evidence-based safety efficacy and practical recommendations from the Neuro-oncology Club of the French Society of Neurosurgery. Neurochirurgie 2017; 63:433-443. [PMID: 29122306 DOI: 10.1016/j.neuchi.2017.07.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/21/2017] [Accepted: 07/28/2017] [Indexed: 11/16/2022]
Abstract
There is a growing body of evidence that carmustine wafer implantation during surgery is an effective therapeutic adjunct to the standard combined radio-chemotherapy regimen using temozolomide in newly diagnosed and recurrent high-grade glioma patient management with a statistically significant survival benefit demonstrated across several randomized clinical trials, as well as prospective and retrospective studies (grade A recommendation). Compelling clinical data also support the safety of carmustine wafer implantation (grade A recommendation) in these patients and suggest that observed adverse events can be avoided in experienced neurosurgeon hands. Furthermore, carmustine wafer implantation does not seem to impact negatively on the quality of life and the completion of adjuvant oncological treatments (grade C recommendation). Moreover, emerging findings support the potential of high-grade gliomas molecular status, especially the O(6)-Methylguanine-DNA Methyltransferase promoter methylation status, in predicting the efficacy of such a surgical strategy, especially at recurrence (grade B recommendation). Finally, carmustine wafer implantation appears to be cost-effective in high-grade glioma patients when performed by an experienced team and when total or subtotal resection can be achieved. Altogether, these data underline the current need for a new randomized clinical trial to assess the impact of a maximal safe resection with carmustine wafer implantation followed by the standard combined chemoradiation protocol stratified by molecular status in high-grade glioma patients.
Collapse
Affiliation(s)
- A Roux
- Department of Neurosurgery, Sainte-Anne Hospital, 1, rue Cabanis, 75674 Paris cedex 14, France; Paris Descartes University, Sorbonne Paris Cité, 75006 Paris, France; Inserm, U894, Centre de psychiatrie et neurosciences, 75006 Paris, France
| | - F Caire
- Department of Neurosurgery, CHU de Limoges, Limoges, France
| | - J Guyotat
- Lyon Civil Hospitals, Pierre Wertheimer Neurological and Neurosurgical Hospital, Service of Neurosurgery D, Lyon, France
| | - P Menei
- Department of Neurosurgery, CHU d'Angers, Angers, France; Inserm 1232/CRCINA, France
| | - P Metellus
- Department of Neurosurgery, Clairval Private Hospital, Marseille, France
| | - J Pallud
- Department of Neurosurgery, Sainte-Anne Hospital, 1, rue Cabanis, 75674 Paris cedex 14, France; Paris Descartes University, Sorbonne Paris Cité, 75006 Paris, France; Inserm, U894, Centre de psychiatrie et neurosciences, 75006 Paris, France.
| | | |
Collapse
|