1
|
Peritumor Edema Serves as an Independent Predictive Factor of Recurrence Patterns and Recurrence-Free Survival for High-Grade Glioma. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:9547166. [PMID: 35936378 PMCID: PMC9348930 DOI: 10.1155/2022/9547166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022]
Abstract
Objective. This study is aimed at analyzing the factors affecting the recurrence patterns and recurrence-free survival (RFS) of high-grade gliomas (HGG). Methods. Eligible patients admitted to the Affiliated Hospital of Xuzhou Medical University were selected. Subsequently, the effects of some clinical data including age, gender, WHO pathological grades, tumor site, tumor size, clinical treatments, and peritumoral edema (PTE) area and molecular markers (Ki-67, MGMT, IDH-1, and p53) on HGG patients’ recurrence patterns and RFS were analyzed. Results. A total number of 77 patients were enrolled into this study. After analyzing all the cases, it was determined that tumor size and tumor site had a significant influence on the recurrent patterns of HGG, and PTE was an independent predict factor of recurrence patterns. Specifically, when the PTE was mild (<1 cm), the recurrence pattern tended to be local; in contrast, HGG was more likely to progress to marginal recurrence and distant recurrence. Furthermore, age and PTE were significantly associated with RFS; the median RFS of the population with
(23.60 months) was obviously longer than the population with
(5.00 months). Conclusions. PTE is an independent predictor of recurrence patterns and RFS for HGG. Therefore, preoperative identification of PTE in HGG patients is crucially important, which is helpful to accurately estimate the recurrence pattern and RFS.
Collapse
|
2
|
Bunyaratavej K, Siwanuwatn R, Tuchinda L, Wangsawatwong P. Impact of Intraoperative Magnetic Resonance Imaging (i-MRI) on Surgeon Decision Making and Clinical Outcomes in Cranial Tumor Surgery. Asian J Neurosurg 2022; 17:218-226. [PMID: 36120606 PMCID: PMC9473858 DOI: 10.1055/s-0042-1751008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background
Although intraoperative magnetic resonance imaging (iMRI) has an established role in guiding intraoperative extent of resection (EOR) in cranial tumor surgery, the details of how iMRI data are used by the surgeon in the real-time decision-making process is lacking.
Materials and Methods
The authors retrospectively reviewed 40 consecutive patients who underwent cranial tumor resection with the guidance of iMRI. The tumor volumes were measured by volumetric software. Intraoperative and postoperative EOR were calculated and compared. Surgeon preoperative EOR intention, intraoperative EOR assessment, and how iMRI data impacted surgeon decisions were analyzed.
Results
The pathology consisted of 29 gliomas, 8 pituitary tumors, and 3 other tumors. Preoperative surgeon intention called for gross total resection (GTR) in 28 (70%) cases. After resection and before iMRI scanning, GTR was 20 (50.0%) cases based on the surgeon's perception. After iMRI scanning, the results helped identify 19 (47.5%) cases with unexpected results consisting of 5 (12.5%) with unexpected locations of residual tumors and 14 (35%) with unexpected EOR. Additional resection was performed in 24 (60%) cases after iMRI review, including 6 (15%) cases with expected iMRI results. Among 34 cases with postoperative MRI results, iMRI helped improve EOR in 12 (35.3%) cases.
Conclusion
In cranial tumor surgery, the surgeon's preoperative and intraoperative assessment is frequently imprecise. iMRI data serve several purposes, including identifying the presence of residual tumors, providing residual tumor locations, giving spatial relation data of the tumor with nearby eloquent structures, and updating the neuro-navigation system for the final stage of tumor resection.
Collapse
Affiliation(s)
- Krishnapundha Bunyaratavej
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Pathumwan, Bangkok, Thailand
| | - Rungsak Siwanuwatn
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Pathumwan, Bangkok, Thailand
| | - Lawan Tuchinda
- Department of Anesthesiology, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Pathumwan, Bangkok, Thailand
| | - Piyanat Wangsawatwong
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Pathumwan, Bangkok, Thailand
| |
Collapse
|
3
|
Motomura K, Ohka F, Aoki K, Saito R. Supratotal Resection of Gliomas With Awake Brain Mapping: Maximal Tumor Resection Preserving Motor, Language, and Neurocognitive Functions. Front Neurol 2022; 13:874826. [PMID: 35645972 PMCID: PMC9133877 DOI: 10.3389/fneur.2022.874826] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 04/15/2022] [Indexed: 11/13/2022] Open
Abstract
Gliomas are a category of infiltrating glial neoplasms that are often located within or near the eloquent areas involved in motor, language, and neurocognitive functions. Surgical resection being the first-line treatment for gliomas, plays a crucial role in patient outcome. The role of the extent of resection (EOR) was evaluated, and we reported significant correlations between a higher EOR and better clinical prognosis of gliomas. However, recurrence is inevitable, even after aggressive tumor removal. Thus, efforts have been made to achieve extended tumor resection beyond contrast-enhanced mass lesions in magnetic resonance imaging (MRI)-defined areas, a process known as supratotal resection. Since it has been reported that tumor cells invade beyond regions visible as abnormal areas on MRI, imaging underestimates the true spatial extent of tumors. Furthermore, tumor cells have the potential to spread 10–20 mm away from the MRI-verified tumor boundary. The primary goal of supratotal resection is to maximize EOR and prolong the progression-free and overall survival of patients with gliomas. The available data, as well as our own work, clearly show that supratotal resection of gliomas is a feasible technique that has improved with the aid of awake functional mapping using intraoperative direct electrical stimulation. Awake brain mapping has enabled neurosurgeons achieve supratotal resection with favorable motor, language, and neurocognitive outcomes, ensuring a better quality of life in patients with gliomas.
Collapse
|
4
|
Fuentes AM, Ansari D, Burch TG, Mehta AI. Use of intraoperative MRI for resection of intracranial tumors: A nationwide analysis of short-term outcomes. J Clin Neurosci 2022; 99:152-157. [PMID: 35279588 DOI: 10.1016/j.jocn.2022.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 02/22/2022] [Accepted: 03/02/2022] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Recent evidence supports the use of intraoperative MRI (iMRI) during resection of intracranial tumors due to its demonstrated efficacy and clinical benefit. Though many single-center investigations have been conducted, larger nationwide outcomes have yet to be characterized. METHODS We used the American College of Surgeons National Surgical Quality Improvement Program database to examine baseline characteristics and 30-day postoperative outcomes among patients undergoing craniotomy for tumor resection with and without iMRI. Comparisons between outcomes were accomplished after propensity matching using chi-square tests for categorical variables and Welch two-sample t-tests for continuous variables. RESULTS A total of 38,003 patients met inclusion criteria. Of this population, 54 (0.1%) received iMRI, while 37,949 (99.9%) did not receive iMRI. After propensity score matching, the resulting groups consisted of an iMRI group (n = 54) and a matched non-iMRI group (n = 54). Procedures involving iMRI were associated with significantly increased operation length compared to those without (p < 0.01). Length of hospital stay was higher in patients without iMRI, with this difference trending towards significance (p = 0.05) in the unmatched comparison. Patients undergoing craniotomy without iMRI had a higher rate of readmission (p = 0.04). There was no significant difference in occurrence of other adverse events between the two patient groups. CONCLUSION Despite increasing operative length, iMRI is not associated with higher infection rate and may have a clinical benefit associated with reducing readmissions and a trend towards reducing inpatient length of stay. Additional nationwide analyses including more iMRI patients would provide further insight into the strength of these findings.
Collapse
Affiliation(s)
- Angelica M Fuentes
- Department of Neurosurgery, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Darius Ansari
- Department of Neurosurgery, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Taylor G Burch
- Department of Neurosurgery, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Ankit I Mehta
- Department of Neurosurgery, University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
5
|
Matsumae M, Nishiyama J, Kuroda K. Intraoperative MR Imaging during Glioma Resection. Magn Reson Med Sci 2022; 21:148-167. [PMID: 34880193 PMCID: PMC9199972 DOI: 10.2463/mrms.rev.2021-0116] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/11/2021] [Indexed: 11/09/2022] Open
Abstract
One of the major issues in the surgical treatment of gliomas is the concern about maximizing the extent of resection while minimizing neurological impairment. Thus, surgical planning by carefully observing the relationship between the glioma infiltration area and eloquent area of the connecting fibers is crucial. Neurosurgeons usually detect an eloquent area by functional MRI and identify a connecting fiber by diffusion tensor imaging. However, during surgery, the accuracy of neuronavigation can be decreased due to brain shift, but the positional information may be updated by intraoperative MRI and the next steps can be planned accordingly. In addition, various intraoperative modalities may be used to guide surgery, including neurophysiological monitoring that provides real-time information (e.g., awake surgery, motor-evoked potentials, and sensory evoked potential); photodynamic diagnosis, which can identify high-grade glioma cells; and other imaging techniques that provide anatomical information during the surgery. In this review, we present the historical and current context of the intraoperative MRI and some related approaches for an audience active in the technical, clinical, and research areas of radiology, as well as mention important aspects regarding safety and types of devices.
Collapse
Affiliation(s)
- Mitsunori Matsumae
- Department of Neurosurgery, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Jun Nishiyama
- Department of Neurosurgery, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Kagayaki Kuroda
- Department of Human and Information Sciences, School of Information Science and Technology, Tokai University, Hiratsuka, Kanagawa, Japan
| |
Collapse
|
6
|
Tamura M, Kurihara H, Saito T, Nitta M, Maruyama T, Tsuzuki S, Fukui A, Koriyama S, Kawamata T, Muragaki Y. Combining Pre-operative Diffusion Tensor Images and Intraoperative Magnetic Resonance Images in the Navigation Is Useful for Detecting White Matter Tracts During Glioma Surgery. Front Neurol 2022; 12:805952. [PMID: 35126299 PMCID: PMC8812689 DOI: 10.3389/fneur.2021.805952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/27/2021] [Indexed: 12/21/2022] Open
Abstract
Purpose We developed a navigation system that superimposes the fractional anisotropy (FA) color map of pre-operative diffusion tensor imaging (DTI) and intraoperative magnetic resonance imaging (MRI). The current study aimed to investigate the usefulness of this system for neurophysiological monitoring and examination under awake craniotomy during tumor removal. Method A total of 10 glioma patients (4 patients with right-side tumors; 5 men and 5 women; average age, 34 years) were evaluated. Among them, the tumor was localized to the frontal lobe, insular cortex, and parietal lobe in 8, 1, and 1 patient, respectively. There were 3 patients who underwent surgery on general anesthesia, while 7 patients underwent awake craniotomy. The index of DTI anisotropy taken pre-operatively (magnetic field: 3 tesla, 6 motion probing gradient directions) was analyzed as a color map (FA color map) and concurrently co-registered in the intraoperative MRI within the navigation. In addition to localization of the bipolar coagulator and the cortical stimulator for brain mapping on intraoperative MRI, the pre-operative FA color map was also concurrently integrated and displayed on the navigation monitor. This white matter nerve functional information was confirmed directly by using neurological examination and referring to the electrophysiological monitoring. Results Intraoperative MRI, integrated pre-operative FA color map, and microscopic surgical view were displayed on one screen in all 10 patients, and white matter fibers including the pyramidal tract were displayed as a reference in blue. Regarding motor function, motor-evoked potential was monitored as appropriate in all cases, and removal was possible while directly confirming motor symptoms under awake craniotomy. Furthermore, the white matter fibers including the superior longitudinal fasciculus were displayed in green. Importantly, it was useful not only to localize the resection site, but to identify language-related, eye movement-related, and motor fibers at the electrical stimulation site. All motor and/or language white matter tracts were identified and visualized with the co-registration and then with an acceptable post-operative neurological outcome. Conclusion Co-registering an intraoperative MR images and a pre-operative FA color map is a practical and useful method to predict the localization of critical white matter nerve functions intraoperatively in glioma surgery.
Collapse
Affiliation(s)
- Manabu Tamura
- Faculty of Advanced Techno-Surgery, Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Hiroyuki Kurihara
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Taiichi Saito
- Faculty of Advanced Techno-Surgery, Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Masayuki Nitta
- Faculty of Advanced Techno-Surgery, Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Takashi Maruyama
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Shunsuke Tsuzuki
- Faculty of Advanced Techno-Surgery, Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Atsushi Fukui
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Shunichi Koriyama
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Takakazu Kawamata
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Yoshihiro Muragaki
- Faculty of Advanced Techno-Surgery, Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
- Department of Neurosurgery, Tokyo Women's Medical University, Tokyo, Japan
- *Correspondence: Yoshihiro Muragaki
| |
Collapse
|
7
|
Habra K, McArdle SEB, Morris RH, Cave GWV. Synthesis and Functionalisation of Superparamagnetic Nano-Rods towards the Treatment of Glioblastoma Brain Tumours. NANOMATERIALS 2021; 11:nano11092157. [PMID: 34578472 PMCID: PMC8472662 DOI: 10.3390/nano11092157] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/06/2021] [Accepted: 08/12/2021] [Indexed: 12/28/2022]
Abstract
The complete removal of glioblastoma brain tumours is impossible to achieve by surgery alone due to the complex finger-like tentacle structure of the tumour cells and their migration away from the bulk of the tumour at the time of surgery; furthermore, despite aggressive chemotherapy and radiotherapy treatments following surgery, tumour cells continue to grow, leading to the death of patients within 15 months after diagnosis. The naturally occurring carnosine dipeptide has previously demonstrated activity against in vitro cultured glioblastoma cells; however, at natural physiological concentrations, its activity is too low to have a significant effect. Towards realising the full oncological potential of carnosine, the dipeptide was embedded within an externally triggered carrier, comprising a novel nano rod-shaped superparamagnetic iron oxide nanoparticle (ca. 86 × 19 × 11 nm) capped with a branched polyethyleneimine, which released the therapeutic agent in the presence of an external magnetic field. The new nano-carrier was characterized using electron microscopy, dynamic light scattering, elemental analysis, and magnetic resonance imaging techniques. In addition to cytotoxicity studies, the carnosine carrier’s effectiveness as a treatment for glioblastoma was screened in vitro using the U87 human glioblastoma astrocytoma cell line. The labile carnosine (100 mM) suppresses both the U87 cells’ proliferation and mobility over 48 h, resulting in significant reduction in migration and potential metastasis. Carnosine was found to be fully released from the carrier using only mild hyperthermia conditions (40 °C), facilitating an achievable clinical application of the slow, sustained-release treatment of glioblastoma brain tumours that demonstrates potential to inhibit post-surgery metastasis with the added benefit of non-invasive monitoring via MRI.
Collapse
Affiliation(s)
- Kinana Habra
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK; (K.H.); (R.H.M.)
| | - Stéphanie E. B. McArdle
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK;
| | - Robert H. Morris
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK; (K.H.); (R.H.M.)
| | - Gareth W. V. Cave
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK; (K.H.); (R.H.M.)
- Correspondence: ; Tel.: +44-115-84-83242
| |
Collapse
|
8
|
Microsurgical resection of fronto-temporo-insular gliomas in the non-dominant hemisphere, under general anesthesia using adjunct intraoperative MRI and no cortical and subcortical mapping: a series of 20 consecutive patients. Sci Rep 2021; 11:6994. [PMID: 33772073 PMCID: PMC7997967 DOI: 10.1038/s41598-021-86165-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 02/23/2021] [Indexed: 12/18/2022] Open
Abstract
Fronto-temporo-insular (FTI) gliomas continue to represent a surgical challenge despite numerous technical advances. Some authors advocate for surgery in awake condition even for non-dominant hemisphere FTI, due to risk of sociocognitive impairment. Here, we report outcomes in a series of patients operated using intraoperative magnetic resonance imaging (IoMRI) guided surgery under general anesthesia, using no cortical or subcortical mapping. We evaluated the extent of resection, functional and neuropsychological outcomes after IoMRI guided surgery under general anesthesia of FTI gliomas located in the non-dominant hemisphere. Twenty patients underwent FTI glioma resection using IoMRI in asleep condition. Seventeen tumors were de novo, three were recurrences. Tumor WHO grades were II:12, III:4, IV:4. Patients were evaluated before and after microsurgical resection, clinically, neuropsychologically (i.e., social cognition) and by volumetric MR measures (T1G+ for enhancing tumors, FLAIR for non-enhancing). Fourteen (70%) patients benefited from a second IoMRI. The median age was 33.5 years (range 24–56). Seizure was the inaugural symptom in 71% of patients. The median preoperative volume was 64.5 cm3 (min 9.9, max 211). Fourteen (70%) patients underwent two IoMRI. The final median EOR was 92% (range 69–100). The median postoperative residual tumor volume (RTV) was 4.3 cm3 (range 0–38.2). A vast majority of residual tumors were located in the posterior part of the insula. Early postoperative clinical events (during hospital stay) were three transient left hemiparesis (which lasted less than 48 h) and one prolonged left brachio-facial hemiparesis. Sixty percent of patients were free of any symptom at discharge. The median Karnofsky Performance Score was of 90 both at discharge and at 3 months. No significant neuropsychological impairment was reported, excepting empathy distinction in less than 40% of patients. After surgery, 45% of patients could go back to work. In our experience and using IoMRI as an adjunct, microsurgical resection of non-dominant FTI gliomas under general anesthesia is safe. Final median EOR was 92%, with a vast majority of residual tumors located in the posterior insular part. Patients experienced minor neurological and neuropsychological morbidity. Moreover, neuropsychological evaluation reported a high preservation of sociocognitive abilities. Solely empathy seemed to be impaired in some patients.
Collapse
|
9
|
Idris Z, Zakaria Z, Ghani ARI, Abdullah JM. Commentary: Temporoinsular Glioma Resection Under Awake Mapping: 2-Dimensional Operative Video. Oper Neurosurg (Hagerstown) 2020; 19:E55-E57. [PMID: 31811304 DOI: 10.1093/ons/opz390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 10/16/2019] [Indexed: 11/14/2022] Open
Affiliation(s)
- Zamzuri Idris
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia.,Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Zaitun Zakaria
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Abdul Rahman Izaini Ghani
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia.,Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Jafri Malin Abdullah
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia.,Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
10
|
Yang X, Lin Y. Surgical resection of glioma involving eloquent brain areas: Tumor boundary, functional boundary, and plasticity consideration. GLIOMA 2020. [DOI: 10.4103/glioma.glioma_16_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
11
|
High-field intraoperative MRI and glioma surgery: results after the first 100 consecutive patients. Acta Neurochir (Wien) 2019; 161:1467-1474. [PMID: 31073784 DOI: 10.1007/s00701-019-03920-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 04/18/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND High-field intraoperative MRI (IoMRI) is part of the neurosurgical armamentarium to improve the extent of glioma resection (EOR). OBJECTIVE To report our oncological and functional outcomes using IoMRI for neuronavigated glioma surgery. METHODS In this prospective monocentric study, we reported 100 consecutive adult patients operated on for glioma using IoMRI with neuronavigation, under general anesthesia without intraoperative stimulation, from July 2014 to April 2017. The volumetric evaluation was based on the FLAIR hypersignal for non-enhancing tumors after Gadolinium infusion and on the T1 hypersignal after Gadolinium infusion for enhancing tumors. We evaluated the surgical workflow, the EOR and the clinical outcomes (using Karnofsky performance score (KPS)). RESULTS Sixty-nine patients underwent one IoMRI, and 31 from two IoMRI controls. At first IoMRI, the median tumor residue was higher in the FLAIR group than in the T1G+ group whereas no more difference was reported after the second IoMRI between the 2 groups (p = 0.56). Additional resection was performed 6 times more frequently in the FLAIR group (OR = 5.7, CI (1.9-17)). The median EOR was 100% (IQR, 93.6-100) whatever the tumor type (first surgery or recurrence) and location. Higher residues were reported only in the insula area (p = 0.004). The median KPS was 90 (IQR, 80-100) at discharge, 3, 6 and 12 months after surgery, with no statistical difference between low- and high-grade gliomas (p = 0.34). CONCLUSION IoMRI neuronavigated surgery provided maximal EOR whatever the type of glioma and location. IoMRI was all the more useful for non- or minimally enhancing tumors. The step by step surgical resection, introducing the concept of "staged volume" surgery, ensured a high security for the surgeon and low permanent morbidity for the patients.
Collapse
|
12
|
Abstract
BACKGROUND Emerging evidence suggests survival benefit from resection beyond all MRI abnormalities present on T1-enhanced and T2‒fluid attenuated inversion recovery (FLAIR) modalities in glioma (supratotal resection); however, the quality of evidence is unclear. We addressed this question via systematic review of the literature. METHODS EMBASE, MEDLINE, Scopus, and Web of Science databases were queried. Case studies, reviews or editorials, non-English, abstract-only, brain metastases, and descriptive works were excluded. All others were included. RESULTS Three hundred and nine unique references yielded 41 studies for full-text review, with 7 included in the final analysis. Studies were mostly of Oxford Center for Evidence-Based Medicine Level 4 quality. A total of 88 patients underwent supratotal resection in a combined cohort of 492 patients (214 males and 278 females, age 18 to 82 years). Fifty-one supratotal resections were conducted on high-grade gliomas, and 37 on low-grade gliomas. Karnofsky performance status, overall survival, progression-free survival, neurological deficits postoperatively, and anaplastic transformation were the main measured outcomes. No randomized controlled trials were identified. Preliminary low-quality support was found for supratotal resection in increasing overall survival and progression-free survival for both low-grade and high-grade glioma. CONCLUSION The literature suggests insufficient evidence for carte blanche application of supratotal resection, particularly in lower-grade gliomas where neurological deficits can result in long-term disability. While the preliminary studies discussed here, containing data from only a few centers, have reported increased progression-free and overall survival, these claims require validation in prospective research studies involving larger patient populations with clearly defined appropriate outcome metrics in order to reduce potential bias.
Collapse
Affiliation(s)
| | - Michael A Vogelbaum
- Brain Tumor and NeuroOncology Center and Department of Neurosurgery, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|