1
|
Friederich ARW, Audu ML, Triolo RJ. Trunk Posture from Randomly Oriented Accelerometers. SENSORS (BASEL, SWITZERLAND) 2022; 22:7690. [PMID: 36236788 PMCID: PMC9573549 DOI: 10.3390/s22197690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Feedback control of functional neuromuscular stimulation has the potential to improve daily function for individuals with spinal cord injuries (SCIs) by enhancing seated stability. Our fully implanted networked neuroprosthesis (NNP) can provide real-time feedback signals for controlling the trunk through accelerometers embedded in modules distributed throughout the trunk. Typically, inertial sensors are aligned with the relevant body segment. However, NNP implanted modules are placed according to surgical constraints and their precise locations and orientations are generally unknown. We have developed a method for calibrating multiple randomly oriented accelerometers and fusing their signals into a measure of trunk orientation. Six accelerometers were externally attached in random orientations to the trunks of six individuals with SCI. Calibration with an optical motion capture system resulted in RMSE below 5° and correlation coefficients above 0.97. Calibration with a handheld goniometer resulted in RMSE of 7° and correlation coefficients above 0.93. Our method can obtain trunk orientation from a network of sensors without a priori knowledge of their relationships to the body anatomical axes. The results of this study will be invaluable in the design of feedback control systems for stabilizing the trunk of individuals with SCI in combination with the NNP implanted technology.
Collapse
Affiliation(s)
- Aidan R. W. Friederich
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
- Advanced Platform Technology Center, Louis Stokes Veterans Affairs Hospital, Cleveland, OH 44106, USA
| | - Musa L. Audu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
- Advanced Platform Technology Center, Louis Stokes Veterans Affairs Hospital, Cleveland, OH 44106, USA
| | - Ronald J. Triolo
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
- Advanced Platform Technology Center, Louis Stokes Veterans Affairs Hospital, Cleveland, OH 44106, USA
| |
Collapse
|
2
|
Castillo-Escario Y, Kumru H, Valls-Solé J, García-Alen L, Jané R, Vidal J. Quantitative evaluation of trunk function and the StartReact effect during reaching in patients with cervical and thoracic spinal cord injury. J Neural Eng 2021; 18. [PMID: 34340222 DOI: 10.1088/1741-2552/ac19d3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/02/2021] [Indexed: 11/12/2022]
Abstract
Objective.Impaired trunk stability is frequent in spinal cord injury (SCI), but there is a lack of quantitative measures for assessing trunk function. Our objectives were to: (a) evaluate trunk muscle activity and movement patterns during a reaching task in SCI patients, (b) compare the impact of cervical (cSCI) and thoracic (tSCI) injuries in trunk function, and (c) investigate the effects of a startling acoustic stimulus (SAS) in these patients.Approach.Electromyographic (EMG) and smartphone accelerometer data were recorded from 15 cSCI patients, nine tSCI patients, and 24 healthy controls, during a reaching task requiring trunk tilting. We calculated the response time (RespT) until pressing a target button, EMG onset latencies and amplitudes, and trunk tilt, lateral deviation, and other movement features from accelerometry. Statistical analysis was applied to analyze the effects of group (cSCI, tSCI, control) and condition (SAS, non-SAS) in each outcome measure.Main results.SCI patients, especially those with cSCI, presented significantly longer RespT and EMG onset latencies than controls. Moreover, in SCI patients, forward trunk tilt was accompanied by significant lateral deviation. RespT and EMG latencies were remarkably shortened by the SAS (the so-called StartReact effect) in tSCI patients and controls, but not in cSCI patients, who also showed higher variability.Significance. The combination of EMG and smartphone accelerometer data can provide quantitative measures for the assessment of trunk function in SCI. Our results show deficits in postural control and compensatory strategies employed by SCI patients, including delayed responses and higher lateral deviations, possibly to improve sitting balance. This is the first study investigating the StartReact responses in trunk muscles in SCI patients and shows that the SAS significantly accelerates RespT in tSCI, but not in cSCI, suggesting an increased cortical control exerted by these patients.
Collapse
Affiliation(s)
- Yolanda Castillo-Escario
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain.,Department of Automatic Control, Universitat Politècnica de Catalunya-Barcelona Tech (UPC), 08028 Barcelona, Spain.,Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Hatice Kumru
- Fundación Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, 08916 Badalona, Spain.,Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain.,Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, 08916 Badalona, Spain
| | - Josep Valls-Solé
- Institut d'Investigació August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Loreto García-Alen
- Fundación Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, 08916 Badalona, Spain.,Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain.,Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, 08916 Badalona, Spain
| | - Raimon Jané
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain.,Department of Automatic Control, Universitat Politècnica de Catalunya-Barcelona Tech (UPC), 08028 Barcelona, Spain.,Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Joan Vidal
- Fundación Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, 08916 Badalona, Spain.,Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain.,Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, 08916 Badalona, Spain
| |
Collapse
|