1
|
Nguyen MX, Brown AM, Lin T, Sillitoe RV, Gill JS. Thalamic deep brain stimulation improves movement in a cerebellar model of lesion-based status dystonicus. Neurotherapeutics 2025; 22:e00543. [PMID: 39948022 PMCID: PMC12014419 DOI: 10.1016/j.neurot.2025.e00543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 12/17/2024] [Accepted: 01/25/2025] [Indexed: 03/05/2025] Open
Abstract
Dystonia is the third most common movement disorder and an incapacitating co-morbidity in a variety of neurologic conditions. Dystonia can be caused by genetic, degenerative, idiopathic, and acquired etiologies, which are hypothesized to converge on a "dystonia network" consisting of the basal ganglia, thalamus, cerebellum, and cerebral cortex. In acquired dystonia, focal lesions to subcortical network regions lead to dystonia that can be difficult to manage with canonical treatments, including deep brain stimulation (DBS). While studies in animal models have begun to parse the contribution of individual nodes in the dystonia network, how acquired injury to the cerebellar outflow tracts instigates dystonia; and how network modulation interacts with symptom latency remain unexplored questions. Here, we present an electrolytic lesioning paradigm that bilaterally targets the cerebellar outflow tracts. We found that lesioning these tracts, at the junction of the superior cerebellar peduncles and the medial and intermediate cerebellar nuclei, resulted in transient, acute, and severe dystonia with immobility and fixed posturing similar to status dystonicus. We observed a rapid reduction in dystonia with 1 h of DBS of the centrolateral thalamic nucleus, a first order node in the network downstream of the cerebellar nuclei. In contrast, 1 h of stimulation at a second order node in the short latency, disynaptic projection from the cerebellar nuclei, the striatum, did not show similar rapid modulation of dystonia. Our study introduces a robust paradigm for inducing acute, severe dystonia, and demonstrates that targeted modulation based on network principles powerfully rescues motor behavior. These data inspire the identification of a short latency therapeutic target for acquired dystonia and status dystonicus.
Collapse
Affiliation(s)
- Megan X Nguyen
- Department of Pediatrics, Division of Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
| | - Amanda M Brown
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA; Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Tao Lin
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA; Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Roy V Sillitoe
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA; Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA; Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, USA.
| | - Jason S Gill
- Department of Pediatrics, Division of Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA.
| |
Collapse
|
2
|
Ahidjo N, Seke Etet PF, Ngarka L, Maidawa Yaya F, Ndianteng EW, Eyenga Nna AL, Meka’a Zang LY, Kemmo C, Nwasike CNC, Yonkeu Tatchou FG, Njamnshi WY, Nfor LN, Tsouh Fokou PV, Djiogue S, Fekam Boyom F, Ngadjui BT, Njamnshi AK. Effects of diet and ovariectomy on Toxoplasma gondii brain infection: functional alterations and neuronal loss in rats. Brain Commun 2024; 7:fcae441. [PMID: 39741781 PMCID: PMC11686407 DOI: 10.1093/braincomms/fcae441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 10/14/2024] [Accepted: 12/26/2024] [Indexed: 01/03/2025] Open
Abstract
Epidemiological evidence associates Toxoplasma gondii latent infection with the development of neuropsychiatric disorders, and various immunological and environmental factors play key pathophysiological roles through host immune response alterations. We investigated the cognitive and motor alterations occurring in the terminal stage of T. gondii infection in rats, and whether a low-protein diet, a high-fat diet or ovariectomy may accelerate their development, given the role of malnutrition and menopause on immunity and resistance to infection. In two sets of experiments, 2-month-old (157.5 ± 4.3 g, n = 42) male (n = 18) and female (n = 24) Wistar rats were infected with T. gondii (ATCC 40050). Open-field and elevated plus maze tests were performed in the terminal stage of infection first and then in the early stage in low-protein diet-fed, high-fat diet-fed and ovariectomized infected rats. Late-stage (90 days) infected and early-stage (17 days) low-protein diet-fed groups showed significant decreases in body weight (42.42%↓, P = 0.016 and 57.14%↓, P < 0.001 versus non-infected, respectively), increases in body temperature (P = 0.001 and P < 0.001, respectively), decreases in blood glucose levels (P = 0.006 and P = 0.020, respectively), signs of cognitive and motor impairment and lower neuron counts. The alterations observed in high-fat diet-fed and ovariectomized infected animals were milder. Low-protein diet feeding to T. gondii-infected rats accelerated the occurrence of the infection terminal stage. Thus, a diet low in proteins could transform a slow early-stage T. gondii infection into an active neurotoxoplasmosis with neuropsychiatric manifestations and possible neurodegeneration in rats.
Collapse
Affiliation(s)
- Nene Ahidjo
- Brain Research Africa Initiative (BRAIN), P.O. Box 25625, Yaoundé, Cameroon
| | - Paul F Seke Etet
- Brain Research Africa Initiative (BRAIN), P.O. Box 25625, Yaoundé, Cameroon
- Neuroscience Laboratory, Faculty of Medicine and Biomedical Sciences, The University of Yaoundé I, P.O. Box 25625, Yaoundé, Cameroon
- Basic and Translational Research Unit, Center for Sustainable Health and Development, Garoua, Cameroon
- Department of Physiological Sciences and Biochemistry, Faculty of Medicine and Biomedical Sciences, University of Garoua, P.O. Box 346 Garoua, Garoua, Cameroon
| | - Leonard Ngarka
- Brain Research Africa Initiative (BRAIN), P.O. Box 25625, Yaoundé, Cameroon
- Neuroscience Laboratory, Faculty of Medicine and Biomedical Sciences, The University of Yaoundé I, P.O. Box 25625, Yaoundé, Cameroon
| | - Frederic Maidawa Yaya
- Neuroscience Laboratory, Faculty of Medicine and Biomedical Sciences, The University of Yaoundé I, P.O. Box 25625, Yaoundé, Cameroon
- Basic and Translational Research Unit, Center for Sustainable Health and Development, Garoua, Cameroon
- Department of Physiological Sciences and Biochemistry, Faculty of Medicine and Biomedical Sciences, University of Garoua, P.O. Box 346 Garoua, Garoua, Cameroon
| | - Ethel W Ndianteng
- Neuroscience Laboratory, Faculty of Medicine and Biomedical Sciences, The University of Yaoundé I, P.O. Box 25625, Yaoundé, Cameroon
| | - Aude L Eyenga Nna
- Neuroscience Laboratory, Faculty of Medicine and Biomedical Sciences, The University of Yaoundé I, P.O. Box 25625, Yaoundé, Cameroon
| | - Luc Yvan Meka’a Zang
- Neuroscience Laboratory, Faculty of Medicine and Biomedical Sciences, The University of Yaoundé I, P.O. Box 25625, Yaoundé, Cameroon
- Laboratory of Animal Physiology, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Christelle Kemmo
- Neuroscience Laboratory, Faculty of Medicine and Biomedical Sciences, The University of Yaoundé I, P.O. Box 25625, Yaoundé, Cameroon
- Laboratory of Animal Physiology, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Caroline N C Nwasike
- Neuroscience Laboratory, Faculty of Medicine and Biomedical Sciences, The University of Yaoundé I, P.O. Box 25625, Yaoundé, Cameroon
| | - Floriane G Yonkeu Tatchou
- Neuroscience Laboratory, Faculty of Medicine and Biomedical Sciences, The University of Yaoundé I, P.O. Box 25625, Yaoundé, Cameroon
- Laboratory of Animal Physiology, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Wepnyu Y Njamnshi
- Brain Research Africa Initiative (BRAIN), P.O. Box 25625, Yaoundé, Cameroon
- Neuroscience Laboratory, Faculty of Medicine and Biomedical Sciences, The University of Yaoundé I, P.O. Box 25625, Yaoundé, Cameroon
- Division of Health Operations Research, Ministry of Public Health, P. O. Box 1937, Yaoundé, Cameroon
| | - Leonard N Nfor
- Brain Research Africa Initiative (BRAIN), P.O. Box 25625, Yaoundé, Cameroon
- Neuroscience Laboratory, Faculty of Medicine and Biomedical Sciences, The University of Yaoundé I, P.O. Box 25625, Yaoundé, Cameroon
| | - Patrick V Tsouh Fokou
- Antimicrobial & Biocontrol Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Studies (LPMPS), The University of Yaoundé I, P. O. Box 812, Yaoundé, Cameroon
- Department of Biochemistry, Faculty of Science, University of Bamenda, P.O. Box 39, Bamenda, Cameroon
- Advanced Research and Health Innovation Hub, P.O. Box 20133, Yaoundé, Cameroon
| | - Sefirin Djiogue
- Laboratory of Animal Physiology, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Fabrice Fekam Boyom
- Antimicrobial & Biocontrol Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Studies (LPMPS), The University of Yaoundé I, P. O. Box 812, Yaoundé, Cameroon
- Advanced Research and Health Innovation Hub, P.O. Box 20133, Yaoundé, Cameroon
| | - Bonaventure T Ngadjui
- Department of Organic Chemistry, The University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Alfred K Njamnshi
- Brain Research Africa Initiative (BRAIN), P.O. Box 25625, Yaoundé, Cameroon
- Neuroscience Laboratory, Faculty of Medicine and Biomedical Sciences, The University of Yaoundé I, P.O. Box 25625, Yaoundé, Cameroon
| |
Collapse
|
3
|
Benarroch E. What Is the Role of the Dentate Nucleus in Normal and Abnormal Cerebellar Function? Neurology 2024; 103:e209636. [PMID: 38954796 DOI: 10.1212/wnl.0000000000209636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024] Open
|
4
|
Ahidjo N, Maidawa Yaya F, Njamnshi WY, Rissia-Ngo Pambe JC, Ndianteng EW, Nwasike CNC, Kemmo C, Choupo AC, Meka’a Zang LY, Pieme AC, Vecchio L, Ngadjui BT, Njamnshi AK, Seke Etet PF. Therapeutic potential of Garcinia kola against experimental toxoplasmosis in rats. Brain Commun 2024; 6:fcae255. [PMID: 39130514 PMCID: PMC11316209 DOI: 10.1093/braincomms/fcae255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 06/19/2024] [Accepted: 08/03/2024] [Indexed: 08/13/2024] Open
Abstract
Cerebral toxoplasmosis, the most common opportunistic infection in immunocompromised individuals, is increasingly reported in immunocompetent individuals due to mutant strains of Toxoplasma gondii, which, furthermore, are reported to be resistant to available treatments. We assessed the therapeutic potential of Garcinia kola, a medicinal plant reported to have antiplasmodial and neuroprotective properties, against experimental toxoplasmosis in rats. Severe toxoplasmosis was induced in male Wistar rats (156.7 ± 4.1 g) by injecting them with 10 million tachyzoites in suspension in 500 µl of saline (intraperitoneal), and exclusive feeding with a low-protein diet [7% protein (weight by weight)]. Then, animals were treated with hexane, dichloromethane, and ethyl acetate fractions of Garcinia kola. Footprints were analysed and open-field and elevated plus maze ethological tests were performed when symptoms of severe disease were observed in the infected controls. After sacrifice, blood samples were processed for Giemsa staining, organs were processed for haematoxylin and eosin staining, and brains were processed for Nissl staining and cell counting. Compared with non-infected animals, the infected control animals had significantly lower body weights (30.27%↓, P = 0.001), higher body temperatures (P = 0.033) during the sacrifice, together with signs of cognitive impairment and neurologic deficits such as lower open-field arena centre entries (P < 0.001), elevated plus maze open-arm time (P = 0.029) and decreased stride lengths and step widths (P < 0.001), as well as neuronal loss in various brain areas. The ethyl acetate fraction of Garcinia kola prevented or mitigated most of these signs. Our data suggest that the ethyl acetate fraction of Garcinia kola has therapeutic potential against cerebral toxoplasmosis.
Collapse
Affiliation(s)
- Nene Ahidjo
- Brain Research Africa Initiative (BRAIN), Yaoundé, Cameroon
- Faculty of Medicine and Biomedical Sciences, Neuroscience Laboratory, The University of Yaoundé I, Yaoundé, Cameroon
| | - Frederic Maidawa Yaya
- Faculty of Medicine and Biomedical Sciences, Neuroscience Laboratory, The University of Yaoundé I, Yaoundé, Cameroon
- Department of Physiological Sciences and Biochemistry, Faculty of Medicine and Biomedical Sciences, Center for Sustainable Health and Development, University of Garoua, Garoua, Cameroon
| | - Wepnyu Y Njamnshi
- Brain Research Africa Initiative (BRAIN), Yaoundé, Cameroon
- Faculty of Medicine and Biomedical Sciences, Neuroscience Laboratory, The University of Yaoundé I, Yaoundé, Cameroon
| | - Judith C Rissia-Ngo Pambe
- Department of Morphological Sciences and Pathological Anatomy, Faculty of Medicine and Biomedical Sciences, University of Garoua, Garoua, Cameroon
| | - Ethel W Ndianteng
- Faculty of Medicine and Biomedical Sciences, Neuroscience Laboratory, The University of Yaoundé I, Yaoundé, Cameroon
| | - Caroline N C Nwasike
- Faculty of Medicine and Biomedical Sciences, Neuroscience Laboratory, The University of Yaoundé I, Yaoundé, Cameroon
| | - Christelle Kemmo
- Faculty of Medicine and Biomedical Sciences, Neuroscience Laboratory, The University of Yaoundé I, Yaoundé, Cameroon
| | - Arnaud C Choupo
- Faculty of Medicine and Biomedical Sciences, Laboratory of Biochemistry, University of Yaoundé I, Yaoundé, Cameroon
| | - Luc Yvan Meka’a Zang
- Faculty of Medicine and Biomedical Sciences, Neuroscience Laboratory, The University of Yaoundé I, Yaoundé, Cameroon
| | - Anatole C Pieme
- Faculty of Medicine and Biomedical Sciences, Laboratory of Biochemistry, University of Yaoundé I, Yaoundé, Cameroon
| | - Lorella Vecchio
- Brain Research Africa Initiative (BRAIN), Yaoundé, Cameroon
- Department of Physiological Sciences and Biochemistry, Faculty of Medicine and Biomedical Sciences, Center for Sustainable Health and Development, University of Garoua, Garoua, Cameroon
| | | | - Alfred K Njamnshi
- Brain Research Africa Initiative (BRAIN), Yaoundé, Cameroon
- Faculty of Medicine and Biomedical Sciences, Neuroscience Laboratory, The University of Yaoundé I, Yaoundé, Cameroon
| | - Paul F Seke Etet
- Brain Research Africa Initiative (BRAIN), Yaoundé, Cameroon
- Faculty of Medicine and Biomedical Sciences, Neuroscience Laboratory, The University of Yaoundé I, Yaoundé, Cameroon
- Department of Physiological Sciences and Biochemistry, Faculty of Medicine and Biomedical Sciences, Center for Sustainable Health and Development, University of Garoua, Garoua, Cameroon
| |
Collapse
|
5
|
Nguyen MX, Brown AM, Lin T, Sillitoe RV, Gill JS. Targeting DBS to the centrolateral thalamic nucleus improves movement in a lesion-based model of acquired cerebellar dystonia in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.21.595095. [PMID: 38826430 PMCID: PMC11142135 DOI: 10.1101/2024.05.21.595095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Dystonia is the third most common movement disorder and an incapacitating co-morbidity in a variety of neurologic conditions. Dystonia can be caused by genetic, degenerative, idiopathic, and acquired etiologies, which are hypothesized to converge on a "dystonia network" consisting of the basal ganglia, thalamus, cerebellum, and cerebral cortex. In acquired dystonia, focal lesions to subcortical areas in the network - the basal ganglia, thalamus, and cerebellum - lead to a dystonia that can be difficult to manage with canonical treatments, including deep brain stimulation (DBS). While studies in animal models have begun to parse the contribution of individual nodes in the dystonia network, how acquired injury to the cerebellar outflow tracts instigates dystonia; and how network modulation interacts with symptom latency remain as unexplored questions. Here, we present an electrolytic lesioning paradigm that bilaterally targets the cerebellar outflow tracts. We found that lesioning these tracts, at the junction of the superior cerebellar peduncles and the medial and intermediate cerebellar nuclei, resulted in acute, severe dystonia. We observed that dystonia is reduced with one hour of DBS of the centrolateral thalamic nucleus, a first order node in the network downstream of the cerebellar nuclei. In contrast, one hour of stimulation at a second order node in the short latency, disynaptic projection from the cerebellar nuclei, the striatum, did not modulate the dystonia in the short-term. Our study introduces a robust paradigm for inducing acute, severe dystonia, and demonstrates that targeted modulation based on network principles powerfully rescues motor behavior. These data inspire the identification of therapeutic targets for difficult to manage acquired dystonia.
Collapse
Affiliation(s)
- Megan X. Nguyen
- Department of Pediatrics, Division of Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, USA
| | - Amanda M. Brown
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Tao Lin
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Roy V. Sillitoe
- Department of Pediatrics, Division of Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, USA
| | - Jason S. Gill
- Department of Pediatrics, Division of Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, USA
| |
Collapse
|
6
|
Lüttig A, Perl S, Zetsche M, Richter F, Franz D, Heerdegen M, Köhling R, Richter A. Short-term stimulations of the entopeduncular nucleus induce cerebellar changes of c-Fos expression in an animal model of paroxysmal dystonia. Brain Res 2024; 1823:148672. [PMID: 37956748 DOI: 10.1016/j.brainres.2023.148672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/23/2023] [Accepted: 11/07/2023] [Indexed: 11/15/2023]
Abstract
Deep brain stimulation (DBS) of the globus pallidus internus (entopeduncular nucleus, EPN, in rodents) is important for the treatment of drug-refractory dystonia. The pathophysiology of this movement disorder and the mechanisms of DBS are largely unknown. Insights into the mechanisms of DBS in animal models of dystonia can be helpful for optimization of DBS and add-on therapeutics. We recently found that short-term EPN-DBS with 130 Hz (50 µA, 60 µs) for 3 h improved dystonia in dtsz hamsters and reduced spontaneous excitatory cortico-striatal activity in brain slices of this model, indicating fast effects on synaptic plasticity. Therefore, in the present study, we examined if these effects are related to changes of c-Fos, a marker of neuronal activity, in brains derived from dtsz hamsters after these short-term DBS or sham stimulations. After DBS vs. sham, c-Fos intensity was increased around the electrode, but the number of c-Fos+ cells was not altered within the whole EPN and projection areas (habenula, thalamus). DBS did not induce changes in striatal and cortical c-Fos+ cells as GABAergic (GAD67+ and parvalbumin-reactive) neurons in motor cortex and striatum. Unexpectedly, c-Fos+ cells were decreased in deep cerebellar nuclei (DCN) after DBS, suggesting that cerebellar changes may be involved in antidystonic effects already during short-term DBS. However, the present results do not exclude functional changes within the basal ganglia-thalamo-cortical network, which will be further investigated by long-term EPN stimulations. The present study indicates that the cerebellum deserves attention in ongoing examinations on the mechanisms of DBS in dystonia.
Collapse
Affiliation(s)
- Anika Lüttig
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 15, 04103 Leipzig, Germany.
| | - Stefanie Perl
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 15, 04103 Leipzig, Germany
| | - Maria Zetsche
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 15, 04103 Leipzig, Germany
| | - Franziska Richter
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 15, 04103 Leipzig, Germany; Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany
| | - Denise Franz
- Oscar Langendorff Institute of Physiology, University Rostock, Gertrudenstraße 9, 18057 Rostock, Germany
| | - Marco Heerdegen
- Oscar Langendorff Institute of Physiology, University Rostock, Gertrudenstraße 9, 18057 Rostock, Germany
| | - Rüdiger Köhling
- Oscar Langendorff Institute of Physiology, University Rostock, Gertrudenstraße 9, 18057 Rostock, Germany
| | - Angelika Richter
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 15, 04103 Leipzig, Germany.
| |
Collapse
|
7
|
Gill JS, Nguyen MX, Hull M, van der Heijden ME, Nguyen K, Thomas SP, Sillitoe RV. Function and dysfunction of the dystonia network: an exploration of neural circuits that underlie the acquired and isolated dystonias. DYSTONIA 2023; 2:11805. [PMID: 38273865 PMCID: PMC10810232 DOI: 10.3389/dyst.2023.11805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Dystonia is a highly prevalent movement disorder that can manifest at any time across the lifespan. An increasing number of investigations have tied this disorder to dysfunction of a broad "dystonia network" encompassing the cerebellum, thalamus, basal ganglia, and cortex. However, pinpointing how dysfunction of the various anatomic components of the network produces the wide variety of dystonia presentations across etiologies remains a difficult problem. In this review, a discussion of functional network findings in non-mendelian etiologies of dystonia is undertaken. Initially acquired etiologies of dystonia and how lesion location leads to alterations in network function are explored, first through an examination of cerebral palsy, in which early brain injury may lead to dystonic/dyskinetic forms of the movement disorder. The discussion of acquired etiologies then continues with an evaluation of the literature covering dystonia resulting from focal lesions followed by the isolated focal dystonias, both idiopathic and task dependent. Next, how the dystonia network responds to therapeutic interventions, from the "geste antagoniste" or "sensory trick" to botulinum toxin and deep brain stimulation, is covered with an eye towards finding similarities in network responses with effective treatment. Finally, an examination of how focal network disruptions in mouse models has informed our understanding of the circuits involved in dystonia is provided. Together, this article aims to offer a synthesis of the literature examining dystonia from the perspective of brain networks and it provides grounding for the perspective of dystonia as disorder of network function.
Collapse
Affiliation(s)
- Jason S. Gill
- Division of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, United States
| | - Megan X. Nguyen
- Division of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, United States
| | - Mariam Hull
- Division of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Meike E. van der Heijden
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, United States
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United State
| | - Ken Nguyen
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, United States
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United State
| | - Sruthi P. Thomas
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, United States
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - Roy V. Sillitoe
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, United States
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United State
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
- Development, Disease Models and Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
8
|
Cui Z, Lan Y, Chang Y, Liu X, Wang J, Lou X, Wang R. Case report: Short-term efficacy and changes in 18F-FDG-PET with acute multi-target stimulation in spinocerebellar ataxia type 3 (SCA3/MJD). Front Neurol 2023; 14:1246430. [PMID: 37830087 PMCID: PMC10564991 DOI: 10.3389/fneur.2023.1246430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/29/2023] [Indexed: 10/14/2023] Open
Abstract
Objective Spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph disease (MJD), is a rare neurodegenerative disease for which there is no specific treatment. Very few cases have been treated with single-target deep brain stimulation (DBS), and the results were not satisfactory. We applied multi-target DBS to an SCA3/MJD patient and performed positron emission computed tomography (PET) before and after DBS to explore the short-term clinical therapeutic effect. Materials and methods A 26-year-old right-hand-dominant female with a family history of SCA3/MJD suffered from cerebellar ataxia and dystonia. Genetic testing indicated an expanded CAG trinucleotide repeat in the ATXN3 gene and a diagnosis of SCA3/MJD. Conservative treatment had no obvious effect; therefore, leads were implanted in the bilateral dentate nucleus (DN) and the globus pallidus internus (GPi) and connected to an external stimulation device. The treatment effect was evaluated in a double-blind, randomized protocol in five phases (over a total of 15 days): no stimulation, GPi, DN, or sham stimulation, and combined GPi and DN stimulation. 18F-fluoro-2-deoxy-d-glucose and dopamine transporter PET, Scale for the Assessment and Rating of Ataxia, Fahn-Tolosa-Marin Clinical Rating Scale for Tremor (FTM), Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS), and SF-36 quality of life scores were compared before and after DBS. Results The Total Scale for the Assessment and Rating of Ataxia scores improved by ~42% (from 24 to 14). The BFMDRS movement scores improved by ~30% (from 40.5 to 28.5). The BFMDRS disability scores improved by ~12.5% (from 16 to 14). Daily living activities were not noticeably improved. Compared with the findings in pre-DBS imaging, 18F-fluoro-2-deoxy-d-glucose uptake increased in the cerebellum, while according to dopamine transporter imaging, there were no significant differences in the bilateral caudate nucleus and putamen. Conclusion Multi-target acute stimulation (DN DBS and GPi DBS) in SCA3/MJD can mildly improve cerebellar ataxia and dystonia and increase cerebellar metabolism.
Collapse
Affiliation(s)
- Zhiqiang Cui
- Department of Neurosurgery, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Yina Lan
- Department of Radiology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Yan Chang
- Department of Nuclear Medicine, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Xinyun Liu
- Department of Radiology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Jian Wang
- Department of Neurosurgery, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Xin Lou
- Department of Radiology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Ruimin Wang
- Department of Nuclear Medicine, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| |
Collapse
|
9
|
Cerebellar deep brain stimulation for movement disorders. Neurobiol Dis 2022; 175:105899. [DOI: 10.1016/j.nbd.2022.105899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
|
10
|
Kaji R. Direct cerebello-striatal loop in dystonia as a possible new target for deep brain stimulation: A revised view of subcortical pathways involved. Front Neurol 2022; 13:912818. [PMID: 36090883 PMCID: PMC9450946 DOI: 10.3389/fneur.2022.912818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Dystonia is the second most common movement disorder next to tremor, but its pathophysiology remains unsettled. Its therapeutic measures include anti-cholingerics and other medications, in addition to botulinum neurotoxin injections, and stereotaxic surgery including deep brain stimulation (DBS), but there still remain a number of patients resistant to the therapy. Evidence has been accumulating suggesting that basal ganglia in association with the cerebellum are playing a pivotal role in pathogenesis. Clinical observations such as sensory tricks and the effects of muscle afferent stimulation and blockage suggest the conflict between the cortical voluntary motor plan and the subcortical motor program or motor subroutine controlling the intended action semi-automatically. In this review, the current understanding of the possible pathways or loops involved in dystonia is presented, and we review promising new targets for Deep Brain Stimulation (DBS) including the cerebellum.
Collapse
Affiliation(s)
- Ryuji Kaji
- Department of Clinical Neuroscience, Tokushima University, Tokushima, Japan
- National Hospital Organization Utano Hospital, Kyoto, Japan
- *Correspondence: Ryuji Kaji
| |
Collapse
|
11
|
Diniz JM, Cury RG, Iglesio RF, Lepski GA, França CC, Barbosa ER, de Andrade DC, Teixeira MJ, Duarte KP. Dentate nucleus deep brain stimulation: Technical note of a novel methodology assisted by tractography. Surg Neurol Int 2021; 12:400. [PMID: 34513166 PMCID: PMC8422468 DOI: 10.25259/sni_338_2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/30/2021] [Indexed: 11/04/2022] Open
Abstract
Background The cerebellum has emerged as an attractive and promising target for neuromodulation in movement disorders due to its vast connection with important cortical and subcortical areas. Here, we describe a novel technique of deep brain stimulation (DBS) of the dentate nucleus (DN) aided by tractography. Methods Since 2015, patients with movement disorders including dystonia, ataxia, and tremor have been treated with DN DBS. The cerebellar target was initially localized using coordinates measured from the fastigial point. The target was adjusted with direct visualization of the DN in the susceptibility-weighted imaging and T2 sequences of the MRI and finally refined based on the reconstruction of the dentatorubrothalamic tract (DRTT). Results Three patients were treated with this technique. The final target was located in the anterior portion of DN in close proximity to the DRTT, with the tip of the lead on the white matter and the remaining contacts on the DN. Clinical outcomes were variable and overall positive, with no major side effect. Conclusion Targeting the DN based on tractography of the DRTT seems to be feasible and safe. Larger studies will be necessary to support our preliminary findings.
Collapse
Affiliation(s)
- Juliete Melo Diniz
- Department of Neurology, Functional Neurosurgery Division, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Rubens Gisbert Cury
- Department of Neurology, Movement Disorders Center, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Ricardo Ferrareto Iglesio
- Department of Neurology, Functional Neurosurgery Division, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Guilherme Alves Lepski
- Department of Neurology, Functional Neurosurgery Division, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Carina Cura França
- Department of Neurology, Movement Disorders Center, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Egberto Reis Barbosa
- Department of Neurology, Movement Disorders Center, School of Medicine, University of São Paulo, São Paulo, Brazil
| | | | - Manoel Jacobsen Teixeira
- Department of Neurology, Functional Neurosurgery Division, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Kleber Paiva Duarte
- Department of Neurology, Functional Neurosurgery Division, School of Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
12
|
Morigaki R, Miyamoto R, Matsuda T, Miyake K, Yamamoto N, Takagi Y. Dystonia and Cerebellum: From Bench to Bedside. Life (Basel) 2021; 11:776. [PMID: 34440520 PMCID: PMC8401781 DOI: 10.3390/life11080776] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/20/2021] [Accepted: 07/29/2021] [Indexed: 12/31/2022] Open
Abstract
Dystonia pathogenesis remains unclear; however, findings from basic and clinical research suggest the importance of the interaction between the basal ganglia and cerebellum. After the discovery of disynaptic pathways between the two, much attention has been paid to the cerebellum. Basic research using various dystonia rodent models and clinical studies in dystonia patients continues to provide new pieces of knowledge regarding the role of the cerebellum in dystonia genesis. Herein, we review basic and clinical articles related to dystonia focusing on the cerebellum, and clarify the current understanding of the role of the cerebellum in dystonia pathogenesis. Given the recent evidence providing new hypotheses regarding dystonia pathogenesis, we discuss how the current evidence answers the unsolved clinical questions.
Collapse
Affiliation(s)
- Ryoma Morigaki
- Department of Advanced Brain Research, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima 770-8501, Japan; (N.Y.); (Y.T.)
- Department of Neurosurgery, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima 770-8501, Japan; (T.M.); (K.M.)
| | - Ryosuke Miyamoto
- Department of Neurology, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima 770-8501, Japan;
| | - Taku Matsuda
- Department of Neurosurgery, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima 770-8501, Japan; (T.M.); (K.M.)
| | - Kazuhisa Miyake
- Department of Neurosurgery, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima 770-8501, Japan; (T.M.); (K.M.)
| | - Nobuaki Yamamoto
- Department of Advanced Brain Research, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima 770-8501, Japan; (N.Y.); (Y.T.)
- Department of Neurology, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima 770-8501, Japan;
| | - Yasushi Takagi
- Department of Advanced Brain Research, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima 770-8501, Japan; (N.Y.); (Y.T.)
- Department of Neurosurgery, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima 770-8501, Japan; (T.M.); (K.M.)
| |
Collapse
|
13
|
Deep Brain Stimulation and Hypoxemic Perinatal Encephalopathy: State of Art and Perspectives. Life (Basel) 2021; 11:life11060481. [PMID: 34070634 PMCID: PMC8227328 DOI: 10.3390/life11060481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
Cerebral palsy (CP) is a heterogeneous group of non-progressive syndromes with lots of clinical variations due to the extent of brain damages and etiologies. CP is majorly defined by dystonia and spasticity. The treatment of acquired dystonia in CP is very difficult. Many pharmacological treatments have been tried and surgical treatment consists of deep brain stimulation (continuous electrical neuromodulation) of internal globus pallidus (GPi). A peculiar cause of CP is neonatal encephalopathy due to an anoxic event in the perinatal period. Many studies showed an improvement of dystonia in CP patients with bilateral GPi DBS. However, it remains a variability in the range of 1% to 50%. Published case-series concerned mainly small population with a majority of adult patients. Selection of patients according to the clinical pattern, to the brain lesions observed on classical imaging and to DTI is the key of a high success rate of DBS in children with perinatal hypoxemic encephalopathy. Only a large retrospective study with a high number of patients in a homogeneous pediatric population with a long-term follow-up or a prospective multicenter trial investigation could answer with a high degree of certitude of the real interest of this therapeutic in children with hypoxemic perinatal encephalopathy.
Collapse
|