1
|
Li X, Jin R, Lu X, Zhan Y, Jiang N, Peng W. Alpha transcranial alternating current stimulation modulates pain anticipation and perception in a context-dependent manner. Pain 2025; 166:1157-1166. [PMID: 39432811 DOI: 10.1097/j.pain.0000000000003452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/11/2024] [Indexed: 10/23/2024]
Abstract
ABSTRACT Pain perception is closely tied to the brain's anticipatory processes, particularly involving the suppression of sensorimotor α-oscillations, which reflect the system's readiness for incoming pain. Higher sensorimotor α-oscillation levels are correlated with lower pain sensitivity. Alpha transcranial alternating current stimulation (α-tACS) can enhance these oscillations, potentially reducing pain perception, with effects that may be sustained and influenced by the certainty of pain expectations. Hence, this study investigated the immediate and sustained effects of α-tACS on pain anticipation and perception, focusing on how these effects are shaped by the certainty of expectations. In a double-blind, sham-controlled design, 80 healthy participants underwent a 20-minute session of real or sham α-tACS over the right sensorimotor region. Behavioral and neural responses related to pain anticipation and perception were recorded before, immediately after, and 30 minutes poststimulation under both certain and uncertain conditions. Compared with sham stimulation, real α-tACS disrupted the habituation of laser-evoked potentials (N2-P2 complex), particularly under certain expectations, with effects persisting 30 minutes poststimulation. In anticipatory brain oscillations, real α-tACS enhanced somatosensory α1-oscillations and increased midfrontal θ-oscillations in conditions of certainty, with θ-oscillation modulation showing sustained effects. Mediation analysis revealed that α-tACS reduced pain reactivity by enhancing somatosensory α1-oscillations but increased pain reactivity through the enhancement of midfrontal θ-oscillations, with the latter effect being more pronounced. These findings suggest that while α-tACS may provide pain relief through somatosensory α-oscillation augmentation, its stronger and longer-lasting impact on midfrontal θ-oscillations could lead to hyperalgesia, particularly in the context of certain pain expectations.
Collapse
Affiliation(s)
- Xiaoyun Li
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Richu Jin
- Tech X Academy, Shenzhen Polytechnic University, Shenzhen, China
- Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Xuejing Lu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Yilin Zhan
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Naifu Jiang
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Weiwei Peng
- School of Psychology, Shenzhen University, Shenzhen, China
| |
Collapse
|
2
|
Júlio SU, Schneuwly M, Scheuren PS, Hubli M, Schubert M. Does intra-epidermal electrical stimulation activate mechano- and thermo-nociceptors? A discrimination approach. J Neurosci Methods 2025; 416:110382. [PMID: 39889856 DOI: 10.1016/j.jneumeth.2025.110382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/28/2025] [Accepted: 01/28/2025] [Indexed: 02/03/2025]
Abstract
BACKGROUND Objective laboratory tests are needed to diagnose lesions within the nociceptive system accurately. One approach is assessing pain-related evoked potentials (PREPs) in response to intra-epidermal electrical stimulation (IES). In this context, peripheral characterization of the specificity of nociceptor activation with IES is needed. NEW METHOD As IES directly depolarizes free nerve endings, it might allow a more comprehensive nociceptor activation than classical contact heat stimulation. Hence, this study aimed to investigate whether mechano-nociceptors are activated by IES. To test this hypothesis, a heat pain model was used to assess whether IES would show comparable pain hypersensitivity in the experimentally-induced area of secondary mechanical hyperalgesia (SMH), as known for pinprick but not for contact heat stimuli. Pain ratings and PREPs were recorded in response to 15 contact heat and pinprick stimuli as well as IES applied to the volar forearm before (PRE) and after (POST) a heat pain model inducing an area of SMH (EXP) or a control model (CTRL). RESULTS AND COMPARISON WITH EXISTING METHODS All 24 participants (25.5 ± 4.7 y, 10 f/14 m) presented with SMH in POST-EXP condition. Pain ratings were significantly increased in EXP versus CTRL for IES (p = 0.016) and pinprick (p = 0.006) but not for contact heat (p = 0.683). PREP NP-amplitude between EXP and CTRL was only increased in response to pinprick (p = 0.027), but not to IES (p = 0.547) and contact heat stimuli (p = 0.070). CONCLUSIONS Psychophysical assessments suggest mechano-nociceptor activation by IES, while PREPs do not support this assumption, indicating the predominant activation of thermo-nociceptors by IES.
Collapse
Affiliation(s)
- S U Júlio
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland.
| | - M Schneuwly
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland.
| | - P S Scheuren
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland; Department of Neurology, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland; International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada.
| | - M Hubli
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland.
| | - M Schubert
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
3
|
Yordanova J, Nicolardi V, Malinowski P, Simione L, Aglioti SM, Raffone A, Kolev V. EEG oscillations reveal neuroplastic changes in pain processing associated with long-term meditation. Sci Rep 2025; 15:10604. [PMID: 40148498 PMCID: PMC11950376 DOI: 10.1038/s41598-025-94223-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 03/12/2025] [Indexed: 03/29/2025] Open
Abstract
The experience of pain is a combined product of bottom-up and top-down influences mediated by attentional and emotional factors. Meditation states and traits are characterized by enhanced attention/emotion regulation and expanded self-awareness that can be expected to modify pain processing. The main objective of the present study was to explore the effects of long-term meditation on neural mechanisms of pain processing. EEG pain-related oscillations (PROs) were analysed in highly experienced practitioners and novices during a non-meditative resting state with respect to (a) local frequency-specific and temporal synchronizing characteristics to reflect mainly bottom-up mechanisms, (b) spatial synchronizing patterns to reflect the neural communication of noxious information, (c) pre-stimulus oscillations to reflect top-down mechanisms during pain expectancy, and (d) the P3b component of the pain-related potential to compare the emotional/cognitive reappraisal of pain events by expert and novice meditators. Main results demonstrated that in experienced (long-term) meditators as compared to non-experienced (short-term) meditators (1) the temporal and spatial synchronizations of multispectral (from theta-alpha to gamma) PROs were substantially suppressed at primary and secondary somatosensory regions contra-lateral to pain stimulation within 200 ms after noxious stimulus; (2) pre-stimulus alpha activity was significantly increased at the same regions, which predicted the suppressed synchronization of PROs in long-term meditators; (3) the decrease of the P3b component was non-significant. These novel observations provide evidence that even when subjected to pain outside of meditation, experienced meditators exhibit a pro-active top-down inhibition of somatosensory areas resulting in suppressed processing and communication of sensory information at early stages of painful input. The emotional/cognitive appraisal of pain is reduced but remains preserved revealing a capacity of experienced meditators to dissociate pro-active and reactive top-down processes during pain control.
Collapse
Affiliation(s)
- Juliana Yordanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 23, 1113, Sofia, Bulgaria.
| | | | - Peter Malinowski
- School of Psychology, Research Centre for Brain and Behaviour, Liverpool John Moores University (LJMU), Liverpool, UK
| | - Luca Simione
- Institute of Cognitive Sciences and Technologies, CNR, Rome, Italy
| | - Salvatore M Aglioti
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- Neuroscience and Society Lab, Istituto Italiano Di Tecnologia, Rome, Italy
| | - Antonino Raffone
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- School of Buddhist Studies, Philosophy and Comparative Religions, Nalanda University, Rajgir, India
| | - Vasil Kolev
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 23, 1113, Sofia, Bulgaria
| |
Collapse
|
4
|
Hohn VD, Tiemann L, Bott FS, May ES, Fritzen C, Nickel MM, Gil Ávila C, Ploner M. Neurofeedback and attention modulate somatosensory alpha oscillations but not pain perception. PLoS Biol 2025; 23:e3002972. [PMID: 39847605 PMCID: PMC11756787 DOI: 10.1371/journal.pbio.3002972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/06/2024] [Indexed: 01/25/2025] Open
Abstract
Pain is closely linked to alpha oscillations (8 < 13 Hz) which are thought to represent a supra-modal, top-down mediated gating mechanism that shapes sensory processing. Consequently, alpha oscillations might also shape the cerebral processing of nociceptive input and eventually the perception of pain. To test this mechanistic hypothesis, we designed a sham-controlled and double-blind electroencephalography (EEG)-based neurofeedback study. In a short-term neurofeedback training protocol, healthy participants learned to up- and down-regulate somatosensory alpha oscillations using attention. Subsequently, we investigated how this manipulation impacts experimental pain applied during neurofeedback. Using Bayesian statistics and mediation analysis, we aimed to test whether alpha oscillations mediate attention effects on pain perception. The results showed that attention and neurofeedback successfully up- and down-regulated the asymmetry of somatosensory alpha oscillations. However, attention and neurofeedback did not modulate pain ratings or related brain responses. Accordingly, somatosensory alpha oscillations did not mediate attention effects on pain perception. Thus, our results challenge the hypothesis that somatosensory alpha oscillations shape pain perception. A causal relationship between alpha oscillations and pain perception might not exist or be more complex than hypothesized. Trial registration: Following Stage 1 acceptance, the study was registered at ClinicalTrials.gov NCT05570695.
Collapse
Affiliation(s)
- Vanessa D. Hohn
- Department of Neurology, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
- TUM-Neuroimaging Center, School of Medicine and Health, TUM, Munich, Germany
| | - Laura Tiemann
- Department of Neurology, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
- TUM-Neuroimaging Center, School of Medicine and Health, TUM, Munich, Germany
| | - Felix S. Bott
- Department of Neurology, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
- TUM-Neuroimaging Center, School of Medicine and Health, TUM, Munich, Germany
| | - Elisabeth S. May
- Department of Neurology, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
- TUM-Neuroimaging Center, School of Medicine and Health, TUM, Munich, Germany
| | - Clara Fritzen
- Department of Neurology, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
- TUM-Neuroimaging Center, School of Medicine and Health, TUM, Munich, Germany
| | - Moritz M. Nickel
- Department of Neurology, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
- TUM-Neuroimaging Center, School of Medicine and Health, TUM, Munich, Germany
| | - Cristina Gil Ávila
- Department of Neurology, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
- TUM-Neuroimaging Center, School of Medicine and Health, TUM, Munich, Germany
| | - Markus Ploner
- Department of Neurology, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
- TUM-Neuroimaging Center, School of Medicine and Health, TUM, Munich, Germany
- Center for Interdisciplinary Pain Medicine, School of Medicine and Health, TUM, Munich, Germany
| |
Collapse
|
5
|
Gozzi N, Preatoni G, Ciotti F, Hubli M, Schweinhardt P, Curt A, Raspopovic S. Unraveling the physiological and psychosocial signatures of pain by machine learning. MED 2024; 5:1495-1509.e5. [PMID: 39116869 DOI: 10.1016/j.medj.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/12/2024] [Accepted: 07/15/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Pain is a complex subjective experience, strongly impacting health and quality of life. Despite many attempts to find effective solutions, present treatments are generic, often unsuccessful, and present significant side effects. Designing individualized therapies requires understanding of multidimensional pain experience, considering physical and emotional aspects. Current clinical pain assessments, relying on subjective one-dimensional numeric self-reports, fail to capture this complexity. METHODS To this aim, we exploited machine learning to disentangle physiological and psychosocial components shaping the pain experience. Clinical, psychosocial, and physiological data were collected from 118 chronic pain and healthy participants undergoing 40 pain trials (4,697 trials). FINDINGS To understand the objective response to nociception, we classified pain from the physiological signals (accuracy >0.87), extracting the most important biomarkers. Then, using multilevel mixed-effects models, we predicted the reported pain, quantifying the mismatch between subjective level and measured physiological response. From these models, we introduced two metrics: TIP (subjective index of pain) and Φ (physiological index). These represent possible added value in the clinical process, capturing psychosocial and physiological pain dimensions, respectively. Patients with high TIP are characterized by frequent sick leave from work and increased clinical depression and anxiety, factors associated with long-term disability and poor recovery, and are indicated for alternative treatments, such as psychological ones. By contrast, patients with high Φ show strong nociceptive pain components and could benefit more from pharmacotherapy. CONCLUSIONS TIP and Φ, explaining the multidimensionality of pain, might provide a new tool potentially leading to targeted treatments, thereby reducing the costs of inefficient generic therapies. FUNDING RESC-PainSense, SNSF-MOVE-IT197271.
Collapse
Affiliation(s)
- Noemi Gozzi
- Laboratory for Neuroengineering, Department of Health Sciences and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich, 8092 Zürich, Switzerland
| | - Greta Preatoni
- Laboratory for Neuroengineering, Department of Health Sciences and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich, 8092 Zürich, Switzerland
| | - Federico Ciotti
- Laboratory for Neuroengineering, Department of Health Sciences and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich, 8092 Zürich, Switzerland
| | - Michèle Hubli
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zürich, 8008 Zürich, Switzerland
| | - Petra Schweinhardt
- Department of Chiropractic Medicine, Balgrist University Hospital, University of Zürich, 8008 Zürich, Switzerland
| | - Armin Curt
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zürich, 8008 Zürich, Switzerland
| | - Stanisa Raspopovic
- Laboratory for Neuroengineering, Department of Health Sciences and Technology, Institute for Robotics and Intelligent Systems, ETH Zürich, 8092 Zürich, Switzerland; Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
6
|
Li X, Liu Z, Hu Y, Jin R, Lou W, Peng W. Analgesic effects of high-frequency rTMS on pain anticipation and perception. Commun Biol 2024; 7:1573. [PMID: 39592816 PMCID: PMC11599282 DOI: 10.1038/s42003-024-07129-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
Previous studies suggest that pain perception is greatly shaped by anticipation, with M1 and DLPFC involved in this process. We hypothesized that high-frequency rTMS targeting these regions could alter pain anticipation and thereby reduce pain perception. In a double-blind, sham-controlled study, healthy participants received 10 Hz rTMS to M1, DLPFC, or a sham treatment. Assessments were conducted before, immediately after, and 60 min after stimulation, including laser-evoked potentials, pain ratings, and anticipatory EEG. M1-rTMS immediately reduced laser-evoked P2 amplitude, increased sensorimotor high-frequency α-oscillation power, and accelerated peak alpha frequency in the midfrontal region during pain anticipation. In contrast, DLPFC-rTMS reduced the N2-P2 complex and pain ratings 60 min post-stimulation, an effect associated with prolonged microstate C duration during pain anticipation-a microstate linked to default mode network activity. Thus, M1-rTMS immediately modulates anticipatory α-oscillations and laser-evoked potentials, while DLPFC-rTMS induces delayed analgesic effects partially by modulating default mode network activity.
Collapse
Affiliation(s)
- Xiaoyun Li
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Zhouan Liu
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Yuzhen Hu
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Richu Jin
- Tech X Academy, Shenzhen Polytechnic University, Shenzhen, China
| | - Wutao Lou
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China.
| | - Weiwei Peng
- School of Psychology, Shenzhen University, Shenzhen, China.
| |
Collapse
|
7
|
Leone CM, Truini A. Understanding neuropathic pain: the role of neurophysiological tests in unveiling underlying mechanisms. JOURNAL OF ANESTHESIA, ANALGESIA AND CRITICAL CARE 2024; 4:77. [PMID: 39558394 PMCID: PMC11575013 DOI: 10.1186/s44158-024-00212-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/05/2024] [Indexed: 11/20/2024]
Abstract
Neuropathic pain, arising from lesions of the somatosensory nervous system, presents with diverse symptoms including ongoing pain, paroxysmal pain, and provoked pain, usually accompanied by sensory deficits. Understanding the pathophysiological mechanisms behind these symptoms is crucial for targeted treatment strategies. Neurophysiological techniques such as nerve conduction studies, reflexes, and evoked potentials help elucidate these mechanisms by assessing large myelinated non-nociceptive fibres and small nociceptive fibres. This argumentative review highlights the importance of tailored neurophysiological assessments for improving our understanding of the pathophysiological mechanisms behind neuropathic pain symptoms.
Collapse
Affiliation(s)
| | - Andrea Truini
- Department of Human Neuroscience, Sapienza University, Rome, Italy.
| |
Collapse
|
8
|
Hubli M, Leone C. Clinical neurophysiology of neuropathic pain. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 179:125-154. [PMID: 39580211 DOI: 10.1016/bs.irn.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
Timely and accurate diagnosis of neuropathic pain is critical for optimizing therapeutic outcomes and minimizing treatment delays. According to current standards, the diagnosis of definite neuropathic pain requires objective confirmation of a lesion or disease affecting the somatosensory nervous system. This can be provided by specialized neurophysiological techniques as conventional methods like nerve conduction studies and somatosensory evoked potentials may not be sufficient as they do not assess pain pathways. These specialized techniques apply various stimuli, such as thermal, electrical, or mechanical, alongside assessments of spinal/cortical potential or electromyographic reflex recordings. The selection of techniques is guided by the patient's clinical history and examination. The most common neurophysiological tests used in clinical practice are pain-related evoked potentials (PREPs) providing an objective evaluation of nociceptive pathways. Four types of PREPs are employed: laser evoked potentials, contact-heat evoked potentials, intra-epidermal electrical stimulation evoked potentials, and pinprick evoked potentials, with the two former ones being the most robust and reliable ones. These techniques investigate small-diameter fibers, primarily Aδ-fibers, and spinothalamic tracts allowing the identification of peripheral or central nervous system lesions. Yet, they are limited in capturing neuronal mechanisms underlying neuropathic pain or in providing objective quantification of pain sensation. Two neurophysiological measures which investigate the pain system beyond its integrity are the nociceptive withdrawal reflex and the N13 component of somatosensory evoked potentials. Both of these methods are more commonly used in research than clinical practice, but they pose interesting approaches to quantify central sensitization, a key underlying mechanism of neuropathic pain. Future investigations in neuropathic pain are therefore warranted.
Collapse
Affiliation(s)
- Michèle Hubli
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Caterina Leone
- Department of Human Neuroscience, Sapienza University, Rome, Italy.
| |
Collapse
|
9
|
Stamp GE, Wadley AL, Iacovides S. Could Relationship-Based Learnt Beliefs and Expectations Contribute to Physiological Vulnerability of Chronic Pain? Making a Case to Consider Attachment in Pain Research. THE JOURNAL OF PAIN 2024; 25:104619. [PMID: 38945383 DOI: 10.1016/j.jpain.2024.104619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/10/2024] [Accepted: 06/22/2024] [Indexed: 07/02/2024]
Abstract
Pain is an interpersonal and inherently social experience. Pain perception and administration of medical treatment all occur in a particular environmental and social context. Early environmental influences and early learning experiences and interactions condition the body's response to different threats (like pain), ultimately shaping the underlying neurophysiology. These early interactions and experiences also determine what situations are perceived as threatening, as well as our belief in our own ability to self-manage, and our belief in others to offer support, during perceived threats. These beliefs intrinsically drive the combination of behaviors that emerge in response to perceived threats, including pain. Such behaviors can be categorized into attachment styles. In this interdisciplinary review, we synthesize and summarize evidence from the neurobiological, psychobiological, psychosocial, and psychobehavioral fields, to describe how these beliefs are embedded in the brain's prediction models to generate a series of expectations/perceptions around the level of safety/threat in different contexts. As such, these beliefs may predict how one experiences and responds to pain, with potentially significant implications for the development and management of chronic pain. Little attention has been directed to the effect of adult attachment style on pain in research studies and in the clinical setting. Using interdisciplinary evidence, we argue why we think this interaction merits further consideration and research. PERSPECTIVE: This review explores the influence of attachment styles on pain perception, suggesting a link between social connections and chronic pain development. It aligns with recent calls to emphasize the social context in pain research and advocates for increased focus on adult attachment styles in research and clinical practice.
Collapse
Affiliation(s)
- Gabriella Elisabeth Stamp
- Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Antonia Louise Wadley
- Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Stella Iacovides
- Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
10
|
da-Silva M, Pereira AR, Sampaio A, Coutinho J, González-Villar AJ. The effects of C-tactile stimulation on temporal summation of second pain: A study of the central and peripheral neural correlates. Brain Res 2024; 1846:149267. [PMID: 39374838 DOI: 10.1016/j.brainres.2024.149267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
Affective touch is mediated by specialized receptors sensitive to gentle and slow touch called C-tactile afferents (CT). The activation of these receptors has shown promise in reducing subjective pain ratings, however, how this type of touch can affect central sensitization processes is poorly studied. This work aimed to investigate if affective touch is able to modulate pain sensitization and its electrophysiological correlates during Temporal Summation of Second Pain (TSSP), a phenomenon characterized by an increase in pain perception due to repeated noxious stimuli. Thirty-seven participants underwent a TSSP protocol involving three conditions: TSSP alone, TSSP during vibrotactile stimulation, and TSSP during CT stimulation (administered with a brush mounted in a robot arm). We measured subjective pain ratings, electroencephalographic (N2-P2 complex) and electrocardiographic activity during these conditions. Participants reported a significantly lower increase of pain during CT stimulation compared to vibrotactile stimulation, but not to TSSP alone. In addition, TSSP was reduced when administered in the ipsilateral arm compared to the other somatosensory stimulation. Subjective reports of attention towards painful stimuli, amplitude of the N2-P2 complex, and heart rate were also reduced during CT stimulation. Conclusion: Our results indicated that the activation of CT receptors may reduce sensitization compared to other types of somatosensory stimulation, which is possibly related to the reduction of the attention devoted to nociceptive stimulation. Our results suggest that activation of CT receptors may alleviate the occurrence of central pain sensitization.
Collapse
Affiliation(s)
- Márcia da-Silva
- Psychological Neuroscience Laboratory (PNL), Research Center in Psychology (CIPsi), School of Psychology, University of Minho, Braga, Portugal
| | - Ana Rita Pereira
- Psychological Neuroscience Laboratory (PNL), Research Center in Psychology (CIPsi), School of Psychology, University of Minho, Braga, Portugal
| | - Adriana Sampaio
- Psychological Neuroscience Laboratory (PNL), Research Center in Psychology (CIPsi), School of Psychology, University of Minho, Braga, Portugal
| | - Joana Coutinho
- Psychological Neuroscience Laboratory (PNL), Research Center in Psychology (CIPsi), School of Psychology, University of Minho, Braga, Portugal
| | - Alberto J González-Villar
- Psychological Neuroscience Laboratory (PNL), Research Center in Psychology (CIPsi), School of Psychology, University of Minho, Braga, Portugal.
| |
Collapse
|
11
|
Coll MP, Walden Z, Bourgoin PA, Taylor V, Rainville P, Robert M, Nguyen DK, Jolicoeur P, Roy M. Pain reflects the informational value of nociceptive inputs. Pain 2024; 165:e115-e125. [PMID: 38713801 DOI: 10.1097/j.pain.0000000000003254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 03/13/2024] [Indexed: 05/09/2024]
Abstract
ABSTRACT Pain perception and its modulation are fundamental to human learning and adaptive behavior. This study investigated the hypothesis that pain perception is tied to pain's learning function. Thirty-one participants performed a threat conditioning task where certain cues were associated with a possibility of receiving a painful electric shock. The cues that signaled potential pain or safety were regularly changed, requiring participants to continually establish new associations. Using computational models, we quantified participants' pain expectations and prediction errors throughout the task and assessed their relationship with pain perception and electrophysiological responses. Our findings suggest that subjective pain perception increases with prediction error, that is, when pain was unexpected. Prediction errors were also related to physiological nociceptive responses, including the amplitude of nociceptive flexion reflex and electroencephalography markers of cortical nociceptive processing (N1-P2-evoked potential and gamma-band power). In addition, higher pain expectations were related to increased late event-related potential responses and alpha/beta decreases in amplitude during cue presentation. These results further strengthen the idea of a crucial link between pain and learning and suggest that understanding the influence of learning mechanisms in pain modulation could help us understand when and why pain perception is modulated in health and disease.
Collapse
Affiliation(s)
- Michel-Pierre Coll
- École de Psychologie, Université Laval, Québec, QC, Canada
- Centre interdisciplinaire de recherche en réadaptation et intégration sociale (CIRRIS), Québec, QC, Canada
| | - Zoey Walden
- Department of Psychology, McGill University, 2001 McGill College, Montréal, QC, Canada
| | | | - Veronique Taylor
- Department of Epidemiology, Brown University, Providence, RI, United States
| | - Pierre Rainville
- Research Center of the Institut Universitaire de Gériatrie de Montréal, Université de Montréal, Montréal, QC, Canada
- Department of Stomatology, Université de Montréal, Montréal, QC, Canada
| | - Manon Robert
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, Montréal, QC, Canada
| | - Dang Khoa Nguyen
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, Montréal, QC, Canada
| | - Pierre Jolicoeur
- Department of Psychology, Université de Montréal, Montréal, QC, Canada
| | - Mathieu Roy
- Department of Psychology, McGill University, 2001 McGill College, Montréal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| |
Collapse
|
12
|
De Schoenmacker I, Costa Marques D, Scheuren PS, Lütolf R, Gorrell LM, Mehli SC, Curt A, Rosner J, Hubli M. Novel neurophysiological evidence for preserved pain habituation across chronic pain conditions. Clin Neurophysiol 2024; 166:31-42. [PMID: 39094528 DOI: 10.1016/j.clinph.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 03/26/2024] [Accepted: 07/16/2024] [Indexed: 08/04/2024]
Abstract
OBJECTIVE The present study aimed to investigate whether subjective and objective measures of pain habituation can be used as potential markers for central sensitization across various chronic pain patients. METHODS Two blocks of contact-heat stimuli were applied to a non-painful area in 93 chronic pain patients (low back pain, neuropathic pain, and complex regional pain syndrome) and 60 healthy controls (HC). Habituation of pain ratings, contact-heat evoked potentials (CHEP), and sympathetic skin responses (SSR) was measured. RESULTS There was no significant difference in any measure of pain habituation between patients and HC. Even patients with apparent clinical signs of central sensitization showed no reduced pain habituation. However, prolonged baseline CHEP and SSR latencies (stimulation block 1) were found in patients compared to HC (CHEP: Δ-latency = 23 ms, p = 0.012; SSR: Δ-latency = 100 ms, p = 0.022). CONCLUSION Given the performed multimodal neurophysiological testing protocol, we provide evidence indicating that pain habituation may be preserved in patients with chronic pain and thereby be of limited use as a sensitive marker for central sensitization. These results are discussed within the framework of the complex interactions between pro- and antinociceptive mechanism as well as methodological issues. The prolonged latencies of CHEP and SSR after stimulation in non-painful areas may indicate subclinical changes in the integrity of thermo-nociceptive afferents, or a shift towards antinociceptive activity. This shift could potentially affect the relay of ascending signals. SIGNIFICANCE Our findings challenge the prevailing views in the literature and may encourage further investigations into the peripheral and central components of pain habituation, using advanced multimodal neurophysiological techniques.
Collapse
Affiliation(s)
- Iara De Schoenmacker
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland.
| | - David Costa Marques
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Paulina S Scheuren
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland; Department of Neurology, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland; International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada
| | - Robin Lütolf
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Lindsay M Gorrell
- Integrative Spinal Research Group, Department of Chiropractic Medicine, Balgrist University Hospital, University of Zurich, Switzerland
| | - Sarah C Mehli
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Armin Curt
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Jan Rosner
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland; Department of Neurology, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland; Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Michèle Hubli
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| |
Collapse
|
13
|
De Schoenmacker I, Scheuren PS, Sirucek L, Lütolf R, Gorrell LM, Rosner J, Curt A, Schweinhardt P, Hubli M. Understanding inter-individual variability of experimental pain habituation and conditioned pain modulation in healthy individuals. Sci Rep 2024; 14:22070. [PMID: 39333624 PMCID: PMC11436718 DOI: 10.1038/s41598-024-73158-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 09/16/2024] [Indexed: 09/29/2024] Open
Abstract
Although reduced experimental pain habituation is proposed as a proxy of diminished endogenous pain modulatory capacity in chronic pain, prior studies show contradictory findings. Even across healthy participants, pain habituation varies substantially, which may relate to another measure of endogenous pain modulation, i.e., conditioned pain modulation (CPM). Hence, this study investigated the relationship between pain habituation and CPM. Pain habituation was assessed in 45 healthy participants between two blocks of 15-20 contact-heat stimuli applied to the hand. Habituation of subjective pain ratings and objective neurophysiological readouts (contact-heat evoked potential (CHEP) and palmar sympathetic skin response (SSR)) was investigated. CPM was assessed by comparing heat pain thresholds before and after hand immersion in a noxious cold (9 °C) and lukewarm water bath (32 °C, to control for repeated measures effects). Pain habituation showed a large variability, with subjective but not objective pain habituation correlating with cold-induced CPM effects (r = 0.50; p = 0.025). This correlation was not observed for 'true' CPM effects (corrected for repeated measures effects) nor for CPM effects induced by a lukewarm water bath. These findings suggest that the observed variability in subjective pain habituation may be influenced by both descending endogenous pain modulation and peripheral adaptation processes associated with repeated measures. Objective pain habituation readouts, i.e., CHEPs and SSRs, capture different, complementary aspects of endogenous pain modulation.
Collapse
Affiliation(s)
- Iara De Schoenmacker
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Forchstrasse 340, 8008, Zurich, Switzerland.
- Biomedical Data Science Lab, Institute of Translational Medicine, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.
| | - Paulina S Scheuren
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Forchstrasse 340, 8008, Zurich, Switzerland
- Department of Neurology, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Laura Sirucek
- Department of Chiropractic Medicine, Integrative Spinal Research Group, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), Zurich, Switzerland
| | - Robin Lütolf
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Forchstrasse 340, 8008, Zurich, Switzerland
| | - Lindsay M Gorrell
- Department of Chiropractic Medicine, Integrative Spinal Research Group, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Jan Rosner
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Forchstrasse 340, 8008, Zurich, Switzerland
- Department of Neurology, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Armin Curt
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Forchstrasse 340, 8008, Zurich, Switzerland
| | - Petra Schweinhardt
- Department of Chiropractic Medicine, Integrative Spinal Research Group, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Michèle Hubli
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Forchstrasse 340, 8008, Zurich, Switzerland
| |
Collapse
|
14
|
Zidda F, Lyu Y, Nees F, Radev ST, Sitges C, Montoya P, Flor H, Andoh J. Neural dynamics of pain modulation by emotional valence. Cereb Cortex 2024; 34:bhae358. [PMID: 39245849 DOI: 10.1093/cercor/bhae358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/10/2024] [Accepted: 08/16/2024] [Indexed: 09/10/2024] Open
Abstract
Definitions of human pain acknowledge at least two dimensions of pain, affective and sensory, described as separable and thus potentially differentially modifiable. Using electroencephalography, we investigated perceptual and neural changes of emotional pain modulation in healthy individuals. Painful electrical stimuli were applied after presentation of priming emotional pictures (negative, neutral, positive) and followed by pain intensity and unpleasantness ratings. We found that perceptual and neural event-related potential responses to painful stimulation were significantly modulated by emotional valence. Specifically, pain unpleasantness but not pain intensity ratings were increased when pain was preceded by negative compared to neutral or positive pictures. Amplitudes of N2 were higher when pain was preceded by neutral compared to negative and positive pictures, and P2 amplitudes were higher for negative compared to neutral and positive pictures. In addition, a hierarchical regression analysis revealed that P2 alone and not N2, predicted pain perception. Finally, source analysis showed the anterior cingulate cortex and the thalamus as main spatial clusters accounting for the neural changes in pain processing. These findings provide evidence for a separation of the sensory and affective dimensions of pain and open new perspectives for mechanisms of pain modulation.
Collapse
Affiliation(s)
- Francesca Zidda
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim / Heidelberg University, J5, Mannheim 68159, Mannheim, Germany
| | - Yuanyuan Lyu
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim / Heidelberg University, J5, Mannheim 68159, Mannheim, Germany
- School of Biomedical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Frauke Nees
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim / Heidelberg University, J5, Mannheim 68159, Mannheim, Germany
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig-Holstein, Kiel University, 24105, Kiel, Germany
| | - Stefan T Radev
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim / Heidelberg University, J5, Mannheim 68159, Mannheim, Germany
| | - Carolina Sitges
- Department of Psychology, Research Institute of Health Sciences (IUNICS), Health Research Institute of the Balearic Islands (IdISBa), University of the Balearic Islands, 07122, Palma, Spain
| | - Pedro Montoya
- Department of Psychology, Research Institute of Health Sciences (IUNICS), Health Research Institute of the Balearic Islands (IdISBa), University of the Balearic Islands, 07122, Palma, Spain
| | - Herta Flor
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim / Heidelberg University, J5, Mannheim 68159, Mannheim, Germany
| | - Jamila Andoh
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim / Heidelberg University, J5, Mannheim 68159, Mannheim, Germany
- Department of Psychiatry and Psychotherapy, Medical Faculty Mannheim, Central Institute of Mental Health, University of Heidelberg, J5, 68159, Mannheim, Germany
| |
Collapse
|
15
|
Maestrini I, Viganò A, Di Stefano G, Toscano M, Di Piero V. Neurophysiological investigations in a case of primary paroxysmal hemicrania-tic syndrome. Neurol Sci 2024; 45:3917-3921. [PMID: 38523207 DOI: 10.1007/s10072-024-07470-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/13/2024] [Indexed: 03/26/2024]
Abstract
BACKGROUND The association between paroxysmal hemicrania (PH) and trigeminal neuralgia-the so-called PH-tic syndrome-has rarely been described. However, a correct diagnosis is crucial since both disorders require specific treatments. Little is known about pathophysiological mechanisms, and, to date, there are no electrophysiological studies in patients with PH-tic syndrome. CASE We describe the case of a 52-year-old man with a PH-tic syndrome successfully treated with an association of carbamazepine (1200 mg/day) and indomethacin (150 mg/die). Patient underwent trigeminal reflex testing, including blink and masseter inhibitory reflex, and laser-evoked potential (LEP) recording after supraorbital region stimulation in the affected and unaffected side. Both neurophysiological investigations resulted normal; LEPs failed to detect any latency asymmetry between both sides. CONCLUSIONS Neurophysiological findings demonstrate for the first time the integrity of somatosensory system in a primary PH-tic syndrome case. Central pathophysiological mechanisms and hypothalamic dysregulation may contribute to the development of this rare syndrome.
Collapse
Affiliation(s)
- Ilaria Maestrini
- Department of Systems Medicine, University Hospital of Rome "Tor Vergata", Rome, Italy.
- Department of Human Neurosciences, "Sapienza" University of Rome, Rome, Italy.
| | - Alessandro Viganò
- Rehabilitation Neurology Unit, I.R.C.C.S. Fondazione Don Carlo Gnocchi, Via Alfonso Capecelatro 66, 20148, Milan, Italy
| | - Giulia Di Stefano
- Department of Human Neurosciences, "Sapienza" University of Rome, Rome, Italy
| | - Massimiliano Toscano
- Department of Human Neurosciences, "Sapienza" University of Rome, Rome, Italy
- Department of Neurology, Fatebenefratelli Hospital-Gemelli Isola, Rome, Italy
| | - Vittorio Di Piero
- Department of Human Neurosciences, "Sapienza" University of Rome, Rome, Italy
- University Consortium for Adaptive Disorders and Head Pain (UCADH), Pavia, Italy
| |
Collapse
|
16
|
Legon W, Strohman A, In A, Payne B. Noninvasive neuromodulation of subregions of the human insula differentially affect pain processing and heart-rate variability: a within-subjects pseudo-randomized trial. Pain 2024; 165:1625-1641. [PMID: 38314779 PMCID: PMC11189760 DOI: 10.1097/j.pain.0000000000003171] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 02/07/2024]
Abstract
ABSTRACT The insula is an intriguing target for pain modulation. Unfortunately, it lies deep to the cortex making spatially specific noninvasive access difficult. Here, we leverage the high spatial resolution and deep penetration depth of low-intensity focused ultrasound (LIFU) to nonsurgically modulate the anterior insula (AI) or posterior insula (PI) in humans for effect on subjective pain ratings, electroencephalographic (EEG) contact heat-evoked potentials, as well as autonomic measures including heart-rate variability (HRV). In a within-subjects, repeated-measures, pseudo-randomized trial design, 23 healthy volunteers received brief noxious heat pain stimuli to the dorsum of their right hand during continuous heart-rate, electrodermal, electrocardiography and EEG recording. Low-intensity focused ultrasound was delivered to the AI (anterior short gyrus), PI (posterior longus gyrus), or under an inert Sham condition. The primary outcome measure was pain rating. Low-intensity focused ultrasound to both AI and PI similarly reduced pain ratings but had differential effects on EEG activity. Low-intensity focused ultrasound to PI affected earlier EEG amplitudes, whereas LIFU to AI affected later EEG amplitudes. Only LIFU to the AI affected HRV as indexed by an increase in SD of N-N intervals and mean HRV low-frequency power. Taken together, LIFU is an effective noninvasive method to individually target subregions of the insula in humans for site-specific effects on brain biomarkers of pain processing and autonomic reactivity that translates to reduced perceived pain to a transient heat stimulus.
Collapse
Affiliation(s)
- Wynn Legon
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, United States
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- Center for Human Neuroscience Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, United States
- Center for Health Behaviors Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, United States
| | - Andrew Strohman
- Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, United States
| | - Alexander In
- Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| | - Brighton Payne
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, United States
- Center for Health Behaviors Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, United States
| |
Collapse
|
17
|
van der Miesen MM, Joosten EA, Kaas AL, Linden DE, Peters JC, Vossen CJ. Habituation to pain: self-report, electroencephalography, and functional magnetic resonance imaging in healthy individuals. A scoping review and future recommendations. Pain 2024; 165:500-522. [PMID: 37851343 PMCID: PMC10859850 DOI: 10.1097/j.pain.0000000000003052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/02/2023] [Indexed: 10/19/2023]
Abstract
ABSTRACT Habituation to pain is a fundamental learning process and important adaption. Yet, a comprehensive review of the current state of the field is lacking. Through a systematic search, 63 studies were included. Results address habituation to pain in healthy individuals based on self-report, electroencephalography, or functional magnetic resonance imaging. Our findings indicate a large variety in methods, experimental settings, and contexts, making habituation a ubiquitous phenomenon. Habituation to pain based on self-report studies shows a large influence of expectations, as well as the presence of individual differences. Furthermore, widespread neural effects, with sometimes opposing effects in self-report measures, are noted. Electroencephalography studies showed habituation of the N2-P2 amplitude, whereas functional magnetic resonance imaging studies showed decreasing activity during painful repeated stimulation in several identified brain areas (cingulate cortex and somatosensory cortices). Important considerations for the use of terminology, methodology, statistics, and individual differences are discussed. This review will aid our understanding of habituation to pain in healthy individuals and may lead the way to improving methods and designs for personalized treatment approaches in chronic pain patients.
Collapse
Affiliation(s)
- Maite M. van der Miesen
- Department of Anesthesiology and Pain Management, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Elbert A. Joosten
- Department of Anesthesiology and Pain Management, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
- Department of Anesthesiology and Pain Medicine, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Amanda L. Kaas
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - David E.J. Linden
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Judith C. Peters
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Catherine J. Vossen
- Department of Anesthesiology and Pain Management, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
- Department of Anesthesiology and Pain Medicine, Maastricht University Medical Centre, Maastricht, the Netherlands
| |
Collapse
|
18
|
Frahm KS, Gervasio S, Arguissain F, Mouraux A. Influence of skin type and laser wavelength on laser-evoked potentials. Eur J Pain 2023; 27:1226-1238. [PMID: 37358263 DOI: 10.1002/ejp.2152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/03/2023] [Accepted: 06/08/2023] [Indexed: 06/27/2023]
Abstract
BACKGROUND Infrared laser stimulation is a valuable tool in pain research, its primary application being the recording of laser-evoked brain potentials (LEPs). Different types of laser stimulators, varying in their skin penetrance, are likely to have a large influence on the LEPs, when stimulating different skin types. The aim of this study was to investigate how LEPs depend on laser type and skin location. METHODS Two different laser stimulators (CO2 and Nd:YAP) were used to compare LEPs in healthy subjects. Stimuli were delivered to the hand dorsum and palm to investigate the effects of skin type on the evoked responses. Stimulus-evoked brain responses were recorded using EEG and perceived intensity ratings were recorded. Computational modelling was used to investigate the observed differences. RESULTS LEPs evoked by stimulation of the hairy skin were similar between CO2 and Nd:YAP stimulation. In contrast, LEPs elicited from the palm were markedly different and barely present for CO2 stimulation. There was a significant interaction between laser type and skin type (RM-ANOVA, p < 0.05) likely due to smaller CO2 LEPs in the palm. CO2 stimuli to the palm also elicited significantly lower perceived intensities. The computational model showed that the observed differences were explainable by the laser absorption characteristics and skin thickness affecting the temperature profile at the dermo-epidermal junction (DEJ). CONCLUSIONS This study shows that LEP elicitation depends on the combination of laser penetrance and skin type. Low penetrance stimuli, from a CO2 laser, elicited significantly lower LEPs and perceived intensities in the palm. SIGNIFICANCE This study showed that the elicitation of laser-evoked potentials in healthy humans greatly depends on the combination of laser stimulator type and skin type. It was shown that high penetrance laser stimuli are capable of eliciting responses in both hairy and glabrous skin, whereas low penetrance stimuli barely elicited responses from the glabrous skin. Computational modelling was used to demonstrate that the results could be fully explained by the combination of laser type and skin thickness.
Collapse
Affiliation(s)
- Ken Steffen Frahm
- Integrative Neuroscience Group, CNAP - Center for Neuroplasticity and Pain, SMI©, Department of Health Science & Technology, Aalborg University, Aalborg, Denmark
| | - Sabata Gervasio
- Neural Engineering and Neurophysiology Group, SMI©, Department of Health Science & Technology, Aalborg University, Aalborg, Denmark
| | - Federico Arguissain
- Integrative Neuroscience Group, CNAP - Center for Neuroplasticity and Pain, SMI©, Department of Health Science & Technology, Aalborg University, Aalborg, Denmark
| | - André Mouraux
- Université Catholique de Louvain, Institute of Neuroscience (IoNS), Faculty of Medicine, Bruxelles, Belgium
| |
Collapse
|
19
|
Asci F, Di Stefano G, Di Santo A, Bianchini E, Leone C, La Cesa S, Zampogna A, Cruccu G, Suppa A. Pain-motor integration in chronic pain: A neurophysiological study. Clin Neurophysiol 2023; 154:107-115. [PMID: 37595480 DOI: 10.1016/j.clinph.2023.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/22/2023] [Accepted: 07/18/2023] [Indexed: 08/20/2023]
Abstract
OBJECTIVE Chronic pain may lead to functional changes in several brain regions, including the primary motor cortex (M1). Our neurophysiological study aimed to probe M1 plasticity, through a non-invasive transcranial magnetic stimulation protocol, in a cohort of patients with chronic pain. METHODS Twenty patients with chronic pain (age ± SD: 62.9 ± 9.9) and 20 age- and sex-matched healthy controls (age ± SD: 59.6 ± 15.8) were recruited. Standardized scales were used for the evaluation of pain severity. Neurophysiological measures included laser-evoked potentials (LEPs) and motor-evoked potentials (MEPs) collected at baseline and over 60 minutes following a standardized Laser-paired associative stimulation (Laser-PAS) protocol. RESULTS LEPs and MEPs were comparable in patients with chronic pain and controls. The pain threshold was lower in patients than in controls. Laser-PAS elicited decreased responses in patients with chronic pain. The response to Laser-PAS was similar in subgroups of patients with different chronic pain phenotypes. CONCLUSIONS M1 plasticity, as tested by Laser-PAS, is altered in patients with chronic pain, possibly reflecting abnormal pain-motor integration processes. SIGNIFICANCE Chronic pain is associated with a disorder of M1 plasticity raising from abnormal pain-motor integration.
Collapse
Affiliation(s)
- Francesco Asci
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università, 30, 00185 Rome, Italy; IRCCS Neuromed Institute, Via Atinense, 18, 86077 Pozzilli, IS, Italy.
| | - Giulia Di Stefano
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università, 30, 00185 Rome, Italy.
| | - Alessandro Di Santo
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo 21, 00128 Rome, Italy.
| | - Edoardo Bianchini
- Department of Neuroscience, Mental Health and Sense Organs (NESMOS), Sapienza University of Rome, Via di Grottarossa 1035-1039, 00189 Rome, Italy.
| | - Caterina Leone
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università, 30, 00185 Rome, Italy.
| | - Silvia La Cesa
- Unit of Neurology, S. Camillo-Forlanini Hospital, Rome, Italy.
| | - Alessandro Zampogna
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università, 30, 00185 Rome, Italy.
| | - Giorgio Cruccu
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università, 30, 00185 Rome, Italy.
| | - Antonio Suppa
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università, 30, 00185 Rome, Italy; IRCCS Neuromed Institute, Via Atinense, 18, 86077 Pozzilli, IS, Italy.
| |
Collapse
|
20
|
Riganello F, Tonin P, Soddu A. I Feel! Therefore, I Am from Pain to Consciousness in DOC Patients. Int J Mol Sci 2023; 24:11825. [PMID: 37511583 PMCID: PMC10380260 DOI: 10.3390/ijms241411825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/13/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Pain assessment and management in patients with disorders of consciousness (DOC) is a challenging and important aspect of care, with implications for detecting consciousness and promoting recovery. This narrative review explores the role of pain in consciousness, the challenges of pain assessment, pharmacological treatment in DOC, and the implications of pain assessment when detecting changes in consciousness. The review discusses the Nociception Coma Scale and its revised version, which are behavioral scales used to assess pain in DOC patients, and the challenges and controversies surrounding the appropriate pharmacological treatment of pain in these patients. Moreover, we highlight recent evidence suggesting that an accurate pain assessment may predict changes in the level of consciousness in unresponsive wakefulness syndrome/vegetative state patients, underscoring the importance of ongoing pain management in these patients.
Collapse
Affiliation(s)
- Francesco Riganello
- Research in Advanced Neurorehabilitation, S. Anna Institute, 88900 Crotone, Italy
| | - Paolo Tonin
- Research in Advanced Neurorehabilitation, S. Anna Institute, 88900 Crotone, Italy
| | - Andrea Soddu
- Physics, and Astronomy Department, Western Institute for Neuroscience, University of Western Ontario, London, ON N6A 3K7, Canada
| |
Collapse
|
21
|
Rossettini G, Campaci F, Bialosky J, Huysmans E, Vase L, Carlino E. The Biology of Placebo and Nocebo Effects on Experimental and Chronic Pain: State of the Art. J Clin Med 2023; 12:4113. [PMID: 37373806 DOI: 10.3390/jcm12124113] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
(1) Background: In recent years, placebo and nocebo effects have been extensively documented in different medical conditions, including pain. The scientific literature has provided strong evidence of how the psychosocial context accompanying the treatment administration can influence the therapeutic outcome positively (placebo effects) or negatively (nocebo effects). (2) Methods: This state-of-the-art paper aims to provide an updated overview of placebo and nocebo effects on pain. (3) Results: The most common study designs, the psychological mechanisms, and neurobiological/genetic determinants of these phenomena are discussed, focusing on the differences between positive and negative context effects on pain in experimental settings on healthy volunteers and in clinical settings on chronic pain patients. Finally, the last section describes the implications for clinical and research practice to maximize the medical and scientific routine and correctly interpret the results of research studies on placebo and nocebo effects. (4) Conclusions: While studies on healthy participants seem consistent and provide a clear picture of how the brain reacts to the context, there are no unique results of the occurrence and magnitude of placebo and nocebo effects in chronic pain patients, mainly due to the heterogeneity of pain. This opens up the need for future studies on the topic.
Collapse
Affiliation(s)
| | - Francesco Campaci
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, 10124 Turin, Italy
| | - Joel Bialosky
- Department of Physical Therapy, University of Florida, Gainesville, FL 32611, USA
- Clinical Research Center, Brooks Rehabilitation, Jacksonville, FL 32211, USA
| | - Eva Huysmans
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
- Department of Physical Medicine and Physiotherapy, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Lene Vase
- Department of Psychology and Behavioural Sciences, School of Business and Social Sciences, Aarhus University, 8000 Aarhus, Denmark
| | - Elisa Carlino
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, 10124 Turin, Italy
| |
Collapse
|
22
|
Legon W, Strohman A, In A, Stebbins K, Payne B. Non-invasive neuromodulation of sub-regions of the human insula differentially affect pain processing and heart-rate variability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.05.539593. [PMID: 37205396 PMCID: PMC10187309 DOI: 10.1101/2023.05.05.539593] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The insula is a portion of the cerebral cortex folded deep within the lateral sulcus covered by the overlying opercula of the inferior frontal lobe and superior portion of the temporal lobe. The insula has been parsed into sub-regions based upon cytoarchitectonics and structural and functional connectivity with multiple lines of evidence supporting specific roles for each of these sub-regions in pain processing and interoception. In the past, causal interrogation of the insula was only possible in patients with surgically implanted electrodes. Here, we leverage the high spatial resolution combined with the deep penetration depth of low-intensity focused ultrasound (LIFU) to non-surgically modulate either the anterior insula (AI) or posterior insula (PI) in humans for effect on subjective pain ratings, electroencephalographic (EEG) contact head evoked potentials (CHEPs) and time-frequency power as well as autonomic measures including heart-rate variability (HRV) and electrodermal response (EDR). N = 23 healthy volunteers received brief noxious heat pain stimuli to the dorsum of their right hand during continuous heart-rate, EDR and EEG recording. LIFU was delivered to either the AI (anterior short gyrus), PI (posterior longus gyrus) or under an inert sham condition time-locked to the heat stimulus. Results demonstrate that single-element 500 kHz LIFU is capable of individually targeting specific gyri of the insula. LIFU to both AI and PI similarly reduced perceived pain ratings but had differential effects on EEG activity. LIFU to PI affected earlier EEG amplitudes around 300 milliseconds whereas LIFU to AI affected EEG amplitudes around 500 milliseconds. In addition, only LIFU to the AI affected HRV as indexed by an increase in standard deviation of N-N intervals (SDNN) and mean HRV low frequency power. There was no effect of LIFU to either AI or PI on EDR or blood pressure. Taken together, LIFU looks to be an effective method to individually target sub-regions of the insula in humans for site-specific effects on brain biomarkers of pain processing and autonomic reactivity that translates to reduced perceived pain to a transient heat stimulus. These data have implications for the treatment of chronic pain and several neuropsychological diseases like anxiety, depression and addiction that all demonstrate abnormal activity in the insula concomitant with dysregulated autonomic function.
Collapse
Affiliation(s)
- Wynn Legon
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
- Center for Human Neuroscience Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA
- Center for Health Behaviors Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA
| | - Andrew Strohman
- Virginia Tech Carilion School of Medicine, Roanoke, VA, 24016, USA
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, 24016, USA
| | - Alexander In
- Virginia Tech Carilion School of Medicine, Roanoke, VA, 24016, USA
| | - Katelyn Stebbins
- Virginia Tech Carilion School of Medicine, Roanoke, VA, 24016, USA
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, 24016, USA
| | - Brighton Payne
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA
- Center for Health Behaviors Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA
| |
Collapse
|
23
|
Zhuo S, Zhang Y, Lin C, Peng W. Testosterone administration enhances the expectation and perception of painful and non-painful somatosensory stimuli. Psychoneuroendocrinology 2023; 152:106081. [PMID: 36947967 DOI: 10.1016/j.psyneuen.2023.106081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/22/2022] [Accepted: 03/07/2023] [Indexed: 03/24/2023]
Abstract
The influence of testosterone on pain perception remains inconsistent in the literature. This randomized, placebo-controlled, double-blind, crossover study investigated the effect of testosterone administration on perception and expectation of electrocutaneous stimulus. Thirty healthy male participants received a single dose of testosterone in one session and a placebo in the other session. For each session, they completed a pain-rating task in which a predictability cue was inserted before a painful or non-painful electocutaneous stimulus delivery, while neural activity was simultaneously recorded by a 64-channel electroencephalographic (EEG) system. Expected and perceived pain ratings, as well as event-related potentials (ERPs) to electocutaneous stimuli and prestimulus EEG oscillatory activities while expecting upcoming electocutaneous stimuli were comprehensively compared between testosterone and placebo sessions. Compared with the placebo session, participants in the testosterone session reported greater pain rating and exhibited greater amplitude of N1 component on ERPs when perceiving both painful and non-painful electrocutaneous stimuli. Mediation analysis revealed that testosterone enhanced the pain-intensity ratings via the N1 response to the electrocutaneous stimulus. Upon viewing the predictability cues after testosterone administration, expected pain intensity increased and spontaneous low-frequency α-oscillation power in the frontal region decreased. These results provide evidence that testosterone enhanced perception and expectation of somatosensory events, and that this was a general effect rather than pain-specific. A plausible explanation for these findings is that testosterone acts to increase vigilance and sustained attention levels, as evidenced by the decreased α-oscillation power. Thus, our findings support a causal role for testosterone in heightening the biological salience of incoming somatosensory information.
Collapse
Affiliation(s)
- Shiwei Zhuo
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Yinhua Zhang
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Chennan Lin
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Weiwei Peng
- School of Psychology, Shenzhen University, Shenzhen, China.
| |
Collapse
|
24
|
Maestrini I, Rocchi L, Puledda F, Viganò A, Giuliani G, Jannini TB, Celletti C, Altieri M, Camerota F, Toscano M, Di Piero V. Habituation deficit of visual evoked potentials in migraine patients with hypermobile Ehlers-Danlos syndrome. Front Neurol 2023; 14:1072785. [PMID: 36970542 PMCID: PMC10034036 DOI: 10.3389/fneur.2023.1072785] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/14/2023] [Indexed: 03/11/2023] Open
Abstract
ObjectivesMigraine is one of the most frequent clinical manifestations of hypermobile Ehlers-Danlos syndrome (hEDS). The comorbidity between these two diseases has been only partially investigated. We aimed to observe whether neurophysiological alterations described in migraineurs in visual evoked potentials (VEPs) were present in hEDS patients with migraine.MethodsWe enrolled 22 hEDS patients with migraine (hEDS) and 22 non-hEDS patients with migraine (MIG), with and without aura (according to ICHD-3), as well as 22 healthy controls (HC). Repetitive pattern reversal (PR)-VEPs were recorded in basal conditions in all participants. During uninterrupted stimulation, 250 cortical responses were recorded (4,000 Hz sample rate) and divided into epochs of 300 ms after the stimulus. Cerebral responses were divided into five blocks. The habituation was calculated as the slope interpolating the amplitudes in each block, for both the N75-P100 and P100-N145 components of PR-VEP.ResultsWe observed a significant habituation deficit of the P100-N145 component of PR-VEP in hEDS compared to HC (p = 0.002), unexpectedly more pronounced than in MIG. We observed only a slight habituation deficit of N75-P100 in hEDS, with a slope degree that was intermediate between MIG and HC.DiscussionhEDS patients with migraine presented an interictal habituation deficit of both VEPs components like MIG. Pathophysiological aspects underlying the pathology could account for the peculiar pattern of habituation in hEDS patients with migraine characterized by a pronounced habituation deficit in the P100-N145 component and a less clear-cut habituation deficit in the N75-P100 component with respect to MIG.
Collapse
Affiliation(s)
- Ilaria Maestrini
- Department of Human Neurosciences, Headache Centre, “Sapienza” University of Rome, Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- *Correspondence: Ilaria Maestrini
| | - Lorenzo Rocchi
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Francesca Puledda
- Headache Group, Wolfson Centre for Age-Related Diseases (CARD), Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - Alessandro Viganò
- Department of Human Neurosciences, Headache Centre, “Sapienza” University of Rome, Rome, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Giada Giuliani
- Department of Human Neurosciences, Headache Centre, “Sapienza” University of Rome, Rome, Italy
| | | | - Claudia Celletti
- Physical Medicine and Rehabilitation Division, Umberto I Hospital, Rome, Italy
| | - Marta Altieri
- Department of Human Neurosciences, Headache Centre, “Sapienza” University of Rome, Rome, Italy
| | - Filippo Camerota
- Physical Medicine and Rehabilitation Division, Umberto I Hospital, Rome, Italy
| | - Massimiliano Toscano
- Department of Human Neurosciences, Headache Centre, “Sapienza” University of Rome, Rome, Italy
- Department of Neurology, Fatebenefratelli Hospital - Gemelli Isola, Rome, Italy
| | - Vittorio Di Piero
- Department of Human Neurosciences, Headache Centre, “Sapienza” University of Rome, Rome, Italy
- University Consortium for Adaptive Disorders and Head Pain (UCADH), Pavia, Italy
| |
Collapse
|
25
|
Vecchio A, De Pascalis V. ERP indicators of situational empathy pain. Behav Brain Res 2023; 439:114224. [PMID: 36427591 DOI: 10.1016/j.bbr.2022.114224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 11/17/2022] [Accepted: 11/20/2022] [Indexed: 11/25/2022]
Abstract
This study aimed to validate a recent conceptualization proposed by Coll and colleagues (2017a) that defines empathic response as a situational, cognitively complex process requiring emotion identification and affective sharing. Sixty right-handed women university students (18-29 years) voluntarily participated in the study. We measured ratings for empathy pain to assess the individual differences in empathy. At the same time, we collected peak amplitudes of the event-related potentials (ERPs) components to empathic stimulations of painful faces or hand stimuli and neutral images. Electrophysiological results proved that the P2, N170, N2, and P3 ERP components were associated with the modulation of empathic responses. Participants with low empathic responses (p < 0.05) disclosed a larger frontal central N2 for the painful hands than for painful faces (p < .05) and a reduced temporoparietal N170 for painful hands compared to neutral ones. Furthermore, our results highlighted higher frontal central P3a and P3b to painful stimuli than controls (p ≤ 0.01). We explained these findings assuming that in identifying the emotional value of a stimulus, the emotional content can modulate the reorientation of attention and the in-memory updating process associated with the empathic response. Results are in line with Coll and colleagues' conceptualization of the empathic response that includes two cognitive processes, the identification of emotions, and affective sharing, related to the recognition of the emotional state of the other in the self.
Collapse
Affiliation(s)
- Arianna Vecchio
- Department of Psychology, Sapienza University of Rome, Rome, Italy.
| | - Vilfredo De Pascalis
- Department of Psychology, Sapienza University of Rome, Rome, Italy; Department of Psychology, Sapienza Foundation, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
26
|
Caston RM, Davis TS, Smith EH, Rahimpour S, Rolston JD. A novel thermoelectric device integrated with a psychophysical paradigm to study pain processing in human subjects. J Neurosci Methods 2023; 386:109780. [PMID: 36586439 PMCID: PMC9892356 DOI: 10.1016/j.jneumeth.2022.109780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/01/2022] [Accepted: 12/24/2022] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Cerebral projections of nociceptive stimuli are of great interest as targets for neuromodulation in chronic pain. To study cerebral networks involved in processing noxious stimuli, researchers often rely on thermo-nociception to induce pain. However, various limitations exist in many pain-inducing techniques, such as not accounting for individual variations in pain and trial structure predictability. METHODS We propose an improved and reliable psychometric experimental method to evaluate human nociceptive processing to overcome some of these limitations. The developed testing paradigm leverages a custom-built, open-source, thermoelectric device (TED). The device construction and hardware are described. A maximum-likelihood adaptive algorithm is integrated into the TED software, facilitating individual psychometric functions representative of both hot and cold pain perception. In addition to testing only hot or cold thresholds, the TED may also be used to induce the thermal grill illusion (TGI), where the bars are set to alternating warm and cool temperatures. RESULTS Here, we validated the TED's capability to adjust between different temperatures and showed that the device quickly and automatically changes temperature without any experimenter input. We also validated the device and integrated psychometric pain task in 21 healthy human subjects. Hot and cold pain thresholds (HPT, CPT) were determined in human subjects with <1 °C of variation. Thresholds were anticorrelated, meaning a volunteer with a low CPT likely had a high HPT. We also showed how the TED can be used to induce the TGI. CONCLUSION The TED can induce thermo-nociception and provide probabilistic measures of hot and cold pain thresholds. Based on the findings presented, we discuss how the TED could be used to study thermo-nociceptive cerebral projections if paired with intracranial electrode monitoring.
Collapse
Affiliation(s)
- Rose M Caston
- University of Utah, Department of Biomedical Engineering, USA; University of Utah, Department of Neurosurgery, USA.
| | | | | | - Shervin Rahimpour
- University of Utah, Department of Biomedical Engineering, USA; University of Utah, Department of Neurosurgery, USA
| | - John D Rolston
- University of Utah, Department of Biomedical Engineering, USA; Brigham & Women's Hospital and Harvard Medical School, Department of Neurosurgery, USA
| |
Collapse
|
27
|
Zamorano AM, Kleber B, Arguissain F, Vuust P, Flor H, Graven-Nielsen T. Extensive sensorimotor training enhances nociceptive cortical responses in healthy individuals. Eur J Pain 2023; 27:257-277. [PMID: 36394423 PMCID: PMC10107321 DOI: 10.1002/ejp.2057] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 11/04/2022] [Accepted: 11/13/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Prolonged and repeated sensorimotor training is a crucial driver for promoting use-dependent plasticity, but also a main risk factor for developing musculoskeletal pain syndromes, yet the neural underpinnings that link repetitive movements to abnormal pain processing are unknown. METHODS Twenty healthy musicians, one of the best in vivo models to study use-dependent plasticity, and 20 healthy non-musicians were recruited. Perceptual thresholds, reaction times (RTs) and event-related potentials (ERPs) were recorded using nociceptive intra-epidermal and non-nociceptive transcutaneous electrical stimulation. RESULTS In response to comparable stimulus intensities, musicians compared to non-musicians showed larger non-nociceptive N140 (associated with higher activation of regions within the salience network), higher nociceptive N200 ERPs (associated with higher activation of regions within the sensorimotor network) and faster RTs to both stimuli. Non-musicians showed larger non-nociceptive P200 ERP. Notably, a similar P200 component prominently emerged during nociceptive stimulation in non-musicians. Across participants, larger N140 and N200 ERPs were associated with RTs, whereas the amount of daily practice in musicians explained non-nociceptive P200 and nociceptive P300 ERPs. CONCLUSIONS These novel findings indicate that the mechanisms by which extensive sensorimotor training promotes use-dependent plasticity in multisensory neural structures may also shape the neural signatures of nociceptive processing in healthy individuals. SIGNIFICANCE Repetitive sensorimotor training may increase the responsiveness of nociceptive evoked potentials. These novel data highlight the importance of repetitive sensorimotor practice as a contributing factor to the interindividual variability of nociceptive-related potentials.
Collapse
Affiliation(s)
- Anna M Zamorano
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Boris Kleber
- Center for Music in the Brain, Dept. of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Aarhus and Aalborg, Denmark
| | - Federico Arguissain
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Peter Vuust
- Center for Music in the Brain, Dept. of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Aarhus and Aalborg, Denmark
| | - Herta Flor
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Thomas Graven-Nielsen
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
28
|
Assessment of C Fibers Evoked Potentials in Healthy Subjects by Nd : YAP Laser. Pain Res Manag 2022; 2022:7737251. [PMID: 36601434 PMCID: PMC9807303 DOI: 10.1155/2022/7737251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/11/2022] [Accepted: 12/03/2022] [Indexed: 12/28/2022]
Abstract
Introduction Although laser stimuli activate both Ad- and C-fibres, the corresponding laser evoked potentials (LEPs) remain restricted to the Ad-fibers input, while the C-fibers related potential is hardly detectable. Aims To evaluate multichannel ultralate LEPs (U-LEPs) by using Nd : Yap laser pulses in healthy volunteers to stimulation of face and lower and upper limbs, in order to estimate the reliability of C-LEPs elicited from both trigeminal and somatic sites. Methods Twenty healthy volunteers participated in two stimulation sessions to record Aδ-LEPs and C-LEPs. We used a Nd : YAP Laser and 62 EEG recording electrodes. Stimuli parameters were set to activate either small myelinated (Aδ), eliciting purely warmth sensations, or unmyelinated (C) afferents, and eliciting pinprick sensations. Results At the trigeminal level, we obtained a negative-positive complex in a time interval compatible with the C fibers activation. In the somatic districts, the averaged responses consisted of an earlier negative-positive complex, followed by a later one. Single trials analysis of U-LEPs showed a maximal positive peak in a time interval in the range of C fibers. Topographical analysis of U-LEPs resembled that of LEPs. All subjects exhibited readable U-LEPs in at least 2 stimulated sites. Discussion. A purely warmth sensation seems to correspond to Aδ and C-fibers coactivation, at least in the somatic districts. While the related cortical waves seem hardly readable, their total absence could be a sign of systemic involvement of warm related C-fibers in specific clinical conditions.
Collapse
|
29
|
Zhang LB, Lu XJ, Huang G, Zhang HJ, Tu YH, Kong YZ, Hu L. Selective and replicable neuroimaging-based indicators of pain discriminability. Cell Rep Med 2022; 3:100846. [PMID: 36473465 PMCID: PMC9798031 DOI: 10.1016/j.xcrm.2022.100846] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/18/2022] [Accepted: 11/09/2022] [Indexed: 12/12/2022]
Abstract
Neural indicators of pain discriminability have far-reaching theoretical and clinical implications but have been largely overlooked previously. Here, to directly identify the neural basis of pain discriminability, we apply signal detection theory to three EEG (Datasets 1-3, total N = 366) and two fMRI (Datasets 4-5, total N = 399) datasets where participants receive transient stimuli of four sensory modalities (pain, touch, audition, and vision) and two intensities (high and low) and report perceptual ratings. Datasets 1 and 4 are used for exploration and others for validation. We find that most pain-evoked EEG and fMRI brain responses robustly encode pain discriminability, which is well replicated in validation datasets. The neural indicators are also pain selective since they cannot track tactile, auditory, or visual discriminability, even though perceptual ratings and sensory discriminability are well matched between modalities. Overall, we provide compelling evidence that pain-evoked brain responses can serve as replicable and selective neural indicators of pain discriminability.
Collapse
Affiliation(s)
- Li-Bo Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China,Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xue-Jing Lu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China,Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gan Huang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China,Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Shenzhen University, Shenzhen 518060, China
| | - Hui-Juan Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China,Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi-Heng Tu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China,Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ya-Zhuo Kong
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China,CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
| | - Li Hu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China,Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China,Corresponding author
| |
Collapse
|
30
|
Sharvit G, Schweinhardt P. The influence of social signals on the self-experience of pain: A neuroimaging review. Front Neurol 2022; 13:856874. [PMID: 36090868 PMCID: PMC9459049 DOI: 10.3389/fneur.2022.856874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Researchers in cognitive neuroscience have investigated extensively how psychological factors shape the processing and perception of pain using behavioral, physiological, and neuroimaging methods. However, social influences of pain, an essential part of biopsychosocial pain models, have received relatively little attention. This is particularly true for the neurobiological mechanisms underlying social modulations on pain. Therefore, this review discusses the findings of recent neuroimaging studies measuring the effects of social manipulations on pain perception (e.g., verbal and non-verbal social signals, social interaction style, conformity, social support, and sociocultural mediators). Finally, a schematic summary of the different social modulatory themes is presented.
Collapse
Affiliation(s)
- Gil Sharvit
- Department of Chiropractic Medicine, Integrative Spinal Research, Balgrist University Hospital, University of Zurich (UZH), Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), University of Zurich (UZH), Zurich, Switzerland
- *Correspondence: Gil Sharvit
| | - Petra Schweinhardt
- Department of Chiropractic Medicine, Integrative Spinal Research, Balgrist University Hospital, University of Zurich (UZH), Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), University of Zurich (UZH), Zurich, Switzerland
| |
Collapse
|
31
|
Ahmed Mahmutoglu M, Rupp A, Naumgärtner U. Simultaneous EEG/MEG yields complementary information of nociceptive evoked responses. Clin Neurophysiol 2022; 143:21-35. [DOI: 10.1016/j.clinph.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 07/31/2022] [Accepted: 08/04/2022] [Indexed: 11/03/2022]
|
32
|
Terzulli C, Melchior M, Goffin L, Faisan S, Gianesini C, Graff D, Dufour A, Laroche E, Chauvin C, Poisbeau P. Effect of Virtual Reality Hypnosis on Pain Threshold and Neurophysiological and Autonomic Biomarkers in Healthy Volunteers: Prospective Randomized Crossover Study. J Med Internet Res 2022; 24:e33255. [PMID: 35904872 PMCID: PMC9377475 DOI: 10.2196/33255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/11/2022] [Accepted: 06/13/2022] [Indexed: 11/22/2022] Open
Abstract
Background Virtual reality hypnosis (VRH) is a promising tool to reduce pain. However, the benefits of VRH on pain perception and on the physiological expression of pain require further investigation. Objective In this study, we characterized the effects of VRH on the heat pain threshold among adult healthy volunteers while monitoring several physiological and autonomic functions. Methods Sixty healthy volunteers were prospectively included to receive nociceptive stimulations. The first set of thermal stimuli consisted of 20 stimulations at 60°C (duration 500 milliseconds) to trigger contact heat evoked potentials (CHEPs). The second set of thermal stimuli consisted of ramps (1°C/second) to determine the heat pain threshold of the participants. Electrocardiogram, skin conductance responses, respiration rate, as well as the analgesia nociception index were also recorded throughout the experiment. Results Data from 58 participants were analyzed. There was a small but significant increase in pain threshold in VRH (50.19°C, SD 1.98°C) compared to that in the control condition (mean 49.45°C, SD 1.87; P<.001, Wilcoxon matched-pairs signed-rank test; Cohen d=0.38). No significant effect of VRH on CHEPs and heart rate variability parameters was observed (all P>0.5; n=22 and n=52, respectively). During VRH, participants exhibited a clear reduction in their autonomic sympathetic tone, as shown by the lower number of nonspecific skin conductance peak responses (P<.001, two-way analysis of variance; n=39) and by an increase in the analgesia nociception index (P<.001, paired t-test; n=40). Conclusions The results obtained in this study support the idea that VRH administration is effective at increasing heat pain thresholds and impacts autonomic functions among healthy volunteers. As a nonpharmacological intervention, VRH has beneficial action on acute experimental heat pain. This beneficial action will need to be evaluated for the treatment of other types of pain, including chronic pain.
Collapse
Affiliation(s)
- Claire Terzulli
- HypnoVR, Strasbourg, France.,Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, University of Strasbourg, Strasbourg, France
| | - Meggane Melchior
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, University of Strasbourg, Strasbourg, France
| | - Laurent Goffin
- ICube Laboratory, University of Strasbourg, Strasbourg, France
| | - Sylvain Faisan
- ICube Laboratory, University of Strasbourg, Strasbourg, France
| | | | - Denis Graff
- HypnoVR, Strasbourg, France.,Anesthesiology, Clinique Rhéna, Strasbourg, France
| | - André Dufour
- Laboratoire de Neurosciences Cognitives et Adaptatives, Centre National de la Recherche Scientifique, University of Strasbourg, Strasbourg, France
| | - Edouard Laroche
- ICube Laboratory, University of Strasbourg, Strasbourg, France
| | - Chloé Chauvin
- HypnoVR, Strasbourg, France.,Department of Anesthesiology and Intensive Care, University Hospital of Strasbourg, Strasbourg, France
| | - Pierrick Poisbeau
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, University of Strasbourg, Strasbourg, France
| |
Collapse
|
33
|
Early life inflammation is associated with spinal cord excitability and nociceptive sensitivity in human infants. Nat Commun 2022; 13:3943. [PMID: 35803920 PMCID: PMC9270448 DOI: 10.1038/s41467-022-31505-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 06/16/2022] [Indexed: 11/08/2022] Open
Abstract
Immune function and sensitivity to pain are closely related, but the association between early life inflammation and sensory nervous system development is poorly understood-especially in humans. Here, in term-born infants, we measure brain activity and reflex withdrawal activity (using EEG and EMG) and behavioural and physiological activity (using the PIPP-R score) to assess the impact of suspected early-onset neonatal infection on tactile- and noxious-evoked responses. We present evidence that neonatal inflammation (assessed by measuring C-reactive protein levels) is associated with increased spinal cord excitability and evoked brain activity following both tactile and noxious stimulation. There are early indications that this hyperalgesia could be maintained post-inflammation, supporting pre-clinical reports of early-life immune dysfunction influencing pain sensitivity in adults.
Collapse
|
34
|
Just Breathe: Improving LEP Outcomes through Long Interval Breathing. CLINICAL AND TRANSLATIONAL NEUROSCIENCE 2022. [DOI: 10.3390/ctn6020013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Laser-evoked potentials (LEPs) constitute an objective clinical diagnostic method used to investigate the functioning of the nociceptor system, including signaling in thin peripheral nerve fibers: Aδ and C fibers. There is preliminary evidence that phase locking LEPs with the breathing cycle can improve the parameters used to evaluate LEPs. Methods: We tested a simple breathing protocol as a low-cost improvement to LEP testing of the hands. Twenty healthy participants all underwent three variants of LEP protocols: following a video-guided twelve-second breathing instruction, watching a nature video, or using the classic LEP method of focusing on the hand being stimulated. Results: The breath protocol produced significantly shorter latencies as compared with the nature or classic protocol. It was also the least prone to artifacts and was deemed most acceptable by the subjects. There was no difference between the protocols regarding LEP amplitudes. Conclusions: Using a breathing video can be a simple, low-cost improvement for LEP testing in research and clinical diagnostics.
Collapse
|
35
|
Abdulhussein MA, An X, Alsakaa AA, Ming D. Lack of habituation in migraine patients and Evoked Potential types: Analysis study from EEG signals. JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES 2022. [DOI: 10.1080/02522667.2022.2095958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Msallam Abbas Abdulhussein
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
- Faculty of Computer Science and Mathematics, Kufa University, Najaf, Iraq
| | - Xingwei An
- Tianjin International Joint Research Centre for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Akeel A. Alsakaa
- Department of Computer Science, University of Kerbala, Karbala, Iraq
| | - Dong Ming
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
36
|
de Tommaso M, La Rocca M, Quitadamo SG, Ricci K, Tancredi G, Clemente L, Gentile E, Ammendola E, Delussi M. Central effects of galcanezumab in migraine: a pilot study on Steady State Visual Evoked Potentials and occipital hemodynamic response in migraine patients. J Headache Pain 2022; 23:52. [PMID: 35484504 PMCID: PMC9052688 DOI: 10.1186/s10194-022-01421-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/11/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The discovery of the prominent action of Calcitonin Gene Related Peptide -CGRP- on trigeminal afferents and meningeal vessels, opened a new era in migraine treatment. However, how the block of nociceptive afferents could act on central mechanisms of migraine is still not clear. In this pilot study we aimed to test the effect of 3 months Galcanezumab (CGA) therapy on occipital visual reactivity in migraine patients, using the Steady State Visual Evoked Potentials-SSVEPs and Functional Near Infrared Spectroscopy -fNIRS. METHOD Thirteen migraine patients underwent clinical and neurophysiological examination in basal condition (T0), 1 h after GCA injection (T1) and after 3 months of GCA treatment (T2). Ten healthy volunteers were also evaluated. RESULTS At T2, there was a reduction of headache frequency and disability. At T2, the EEG power significantly diminished as compared to T0 and T1 at occipital sites, and the topographical analysis confirmed a restoration of SSVEPs within normal values. The Oxyhemoglobin levels in occipital cortex, which were basically increased during visual stimulation in migraine patients, reverted to normal values at T2. CONCLUSIONS The present pilot study indicates that Galcanezumab could act on cortical targets located beyond the pain network, restoring the abnormal occipital reactivity. This effect could indicate the possible disease modifying properties of CGRP related monoclonal antibodies.
Collapse
Affiliation(s)
- Marina de Tommaso
- Applied Neurophysiology and Pain Unit, Bari Aldo Moro UniversityPoliclinico General Hospital, Piazza Giulio Cesare 11, 70124, Bari, Italy.
| | - Marianna La Rocca
- Dipartimento Interateneo di Fisica 'M. Merlin', Università degli Studi di Bari 'A. Moro', Bari, Italy.,Laboratory of Neuro Imaging, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Silvia Giovanna Quitadamo
- Applied Neurophysiology and Pain Unit, Bari Aldo Moro UniversityPoliclinico General Hospital, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Katia Ricci
- Applied Neurophysiology and Pain Unit, Bari Aldo Moro UniversityPoliclinico General Hospital, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Giusy Tancredi
- Applied Neurophysiology and Pain Unit, Bari Aldo Moro UniversityPoliclinico General Hospital, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Livio Clemente
- Applied Neurophysiology and Pain Unit, Bari Aldo Moro UniversityPoliclinico General Hospital, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Eleonora Gentile
- Applied Neurophysiology and Pain Unit, Bari Aldo Moro UniversityPoliclinico General Hospital, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Elena Ammendola
- Applied Neurophysiology and Pain Unit, Bari Aldo Moro UniversityPoliclinico General Hospital, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Marianna Delussi
- Applied Neurophysiology and Pain Unit, Bari Aldo Moro UniversityPoliclinico General Hospital, Piazza Giulio Cesare 11, 70124, Bari, Italy
| |
Collapse
|
37
|
De Pascalis V, Vecchio A. The influence of EEG oscillations, heart rate variability changes, and personality on self-pain and empathy for pain under placebo analgesia. Sci Rep 2022; 12:6041. [PMID: 35410362 PMCID: PMC9001726 DOI: 10.1038/s41598-022-10071-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 04/01/2022] [Indexed: 12/30/2022] Open
Abstract
We induced placebo analgesia (PA), a phenomenon explicitly attenuating the self-pain feeling, to assess whether this resulted in reduced empathy pain when witnessing a confederate undergoing such pain experience. We recorded EEG and electrocardiogram during a painful Control and PA treatment in healthy adults who rated their experienced pain and empathy for pain. We derived HRV changes and, using wavelet analysis of non-phase-locked event-related EEG oscillations, EEG spectral power differences for self-pain and other-pain conditions. First-hand PA reduced self-pain and self-unpleasantness, whereas we observed only a slight decrease in other unpleasantness. We derived linear combinations of HRV and EEG band power changes significantly associated with self-pain and empathy for pain changes using PCAs. Lower Behavioral Inhibition System scores predicted self-pain reduction through the mediating effect of a relative HR-slowing and a decreased midline ϑ-band (4-8 Hz) power factor moderated by lower Fight-Flight-Freeze System trait scores. In the other-pain condition, we detected a direct positive influence of Total Empathic Ability on the other-pain decline with a mediating role of the midline β2-band (22-30 Hz) power reduction. These findings suggest that PA modulation of first-hand versus other pain relies on functionally different physiological processes involving different personality traits.
Collapse
Affiliation(s)
- Vilfredo De Pascalis
- Department of Psychology, Sapienza Foundation, Sapienza University of Rome, Via dei Marsi, 78, 00185, Rome, Italy.
| | - Arianna Vecchio
- Department of Psychology, Sapienza Foundation, Sapienza University of Rome, Via dei Marsi, 78, 00185, Rome, Italy
| |
Collapse
|
38
|
Wicht CA, Mouthon M, Chabwine JN, Gaab J, Spierer L. Experience with opioids does not modify the brain network involved in expectations of placebo analgesia. Eur J Neurosci 2022; 55:1840-1858. [PMID: 35266226 PMCID: PMC9311217 DOI: 10.1111/ejn.15645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/11/2022] [Accepted: 02/24/2022] [Indexed: 12/02/2022]
Abstract
Placebo analgesia (PA) is defined as a psychobiological phenomenon triggered by the information surrounding an analgesic drug instead of its inherent pharmacological properties. PA is hypothesized to be formed through either verbal suggestions or conditioning. The present study aims at disentangling the neural correlates of expectations effects with or without conditioning through prior experience using the model of PA. We addressed this question by recruiting two groups of individuals holding comparable verbally‐induced expectations regarding morphine analgesia but either (i) with or (ii) without prior experience with opioids. We then contrasted the two groups' neurocognitive response to acute heat‐pain induction following the injection of sham morphine using electroencephalography (EEG). Topographic ERP analyses of the N2 and P2 pain evoked potential components allowed to test the hypothesis that PA involves distinct neural networks when induced by expectations with or without prior experience. First, we confirmed that the two groups showed corresponding expectations of morphine analgesia (Hedges' gs < .4 positive control criteria, gs = .37 observed difference), and that our intervention induced a medium‐sized PA (Hedges' gav ≥ .5 positive control, gav = .6 observed PA). We then tested our hypothesis on the recruitment of different PA‐associated brain networks in individuals with versus without prior experience with opioids and found no evidence for a topographic N2 and P2 ERP components difference between the two groups. Our results thus suggest that in the presence of verbally‐induced expectations, modifications in the PA‐associated brain activity by conditioning are either absent or very small.
Collapse
Affiliation(s)
- Corentin A Wicht
- Neurology Unit, Medicine Section, Faculty of Science and Medicine, Fribourg, Switzerland
| | - Michael Mouthon
- Neurology Unit, Medicine Section, Faculty of Science and Medicine, Fribourg, Switzerland
| | - Joelle Nsimire Chabwine
- Neurology Unit, Medicine Section, Faculty of Science and Medicine, Fribourg, Switzerland.,Division of Neurorehabilitation, Fribourg Hospital, Fribourg, Switzerland
| | - Jens Gaab
- Clinical Psychology and Psychotherapy, University of Basel, Basel, Switzerland
| | - Lucas Spierer
- Neurology Unit, Medicine Section, Faculty of Science and Medicine, Fribourg, Switzerland
| |
Collapse
|
39
|
Wang H, Guo Y, Tu Y, Peng W, Lu X, Bi Y, Iannetti GD, Hu L. Neural processes responsible for the translation of sustained nociceptive inputs into subjective pain experience. Cereb Cortex 2022; 33:634-650. [PMID: 35244170 PMCID: PMC9890464 DOI: 10.1093/cercor/bhac090] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/24/2022] [Accepted: 02/11/2022] [Indexed: 02/04/2023] Open
Abstract
Tracking and predicting the temporal structure of nociceptive inputs is crucial to promote survival, as proper and immediate reactions are necessary to avoid actual or potential bodily injury. Neural activities elicited by nociceptive stimuli with different temporal structures have been described, but the neural processes responsible for translating nociception into pain perception are not fully elucidated. To tap into this issue, we recorded electroencephalographic signals from 48 healthy participants receiving thermo-nociceptive stimuli with 3 different durations and 2 different intensities. We observed that pain perception and several brain responses are modulated by stimulus duration and intensity. Crucially, we identified 2 sustained brain responses that were related to the emergence of painful percepts: a low-frequency component (LFC, < 1 Hz) originated from the insula and anterior cingulate cortex, and an alpha-band event-related desynchronization (α-ERD, 8-13 Hz) generated from the sensorimotor cortex. These 2 sustained brain responses were highly coupled, with the α-oscillation amplitude that fluctuated with the LFC phase. Furthermore, the translation of stimulus duration into pain perception was serially mediated by α-ERD and LFC. The present study reveals how brain responses elicited by nociceptive stimulation reflect the complex processes occurring during the translation of nociceptive information into pain perception.
Collapse
Affiliation(s)
- Hailu Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China,Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yifei Guo
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, Rome 30 16163, Italy,Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom
| | - Yiheng Tu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China,Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiwei Peng
- Brain Function and Psychological Science Research Center, Shenzhen University, Shenzhen 518061, China
| | - Xuejing Lu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China,Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanzhi Bi
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China,Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gian Domenico Iannetti
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, Rome 30 16163, Italy,Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom
| | - Li Hu
- Corresponding author: CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
40
|
Wu B, Zhou L, Chen C, Wang J, Hu LI, Wang X. Effects of Exercise-induced Hypoalgesia and Its Neural Mechanisms. Med Sci Sports Exerc 2022; 54:220-231. [PMID: 34468414 DOI: 10.1249/mss.0000000000002781] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Exercise-induced hypoalgesia is frequently documented in the literature. However, the underlying neural mechanism of this phenomenon remains unclear. Here, we explored the effects of different intensities of isometric exercise on pain perception with a randomized controlled design and investigated its neural mechanisms through tracing the dynamic changes of heat-evoked brain responses. METHODS Forty-eight participants were randomly assigned to one of the three groups with different exercise intensities (i.e., high, low, and control). Their subjective pain reports and brain responses elicited by heat stimuli before and after exercise were assessed. RESULTS We observed 1) the increased pressure pain thresholds and heat pain thresholds on the dorsal surface of the hand and the biceps brachii muscle of the exercised limb (closed to the contracting muscle), and the decreased pressure pain ratings at the indexed finger of the unexercised limb; 2) more reduction of pain sensitivity on both the biceps brachii muscle and the dorsal surface of the hand induced by the high-intensity isometric exercise than the low-intensity isometric exercise; and 3) both the high-intensity and the low-intensity isometric exercise induced the reduction of N2 amplitudes and N2-P2 peak-to-peak amplitudes, as well as the reduction of event-related potential magnitudes elicited by the heat stimuli on the exercised limb. CONCLUSIONS The hypoalgesic effects induced by the isometric exercise were not only localized to the moving part of the body but also can be extended to the distal part of the body. The exercise intensities play a vital role in modulating these effects. Exercise-induced hypoalgesia could be related to the modulation of nociceptive information transmission via a spinal gating mechanism and also rely on a top-down descending pain inhibitory mechanism.
Collapse
Affiliation(s)
| | - Lili Zhou
- School of Psychology, Shanghai University of Sport, Shanghai, CHINA
| | - Changcheng Chen
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, CHINA
| | - Juan Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, CHINA
| | | | | |
Collapse
|
41
|
van den Berg B, Manoochehri M, Schouten AC, van der Helm FCT, Buitenweg JR. Nociceptive Intra-epidermal Electric Stimulation Evokes Steady-State Responses in the Secondary Somatosensory Cortex. Brain Topogr 2022; 35:169-181. [PMID: 35050427 PMCID: PMC8860817 DOI: 10.1007/s10548-022-00888-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 01/05/2022] [Indexed: 11/16/2022]
Abstract
Recent studies have established the presence of nociceptive steady-state evoked potentials (SSEPs), generated in response to thermal or intra-epidermal electric stimuli. This study explores cortical sources and generation mechanisms of nociceptive SSEPs in response to intra-epidermal electric stimuli. Our method was to stimulate healthy volunteers (n = 22, all men) with 100 intra-epidermal pulse sequences. Each sequence had a duration of 8.5 s, and consisted of pulses with a pulse rate between 20 and 200 Hz, which was frequency modulated with a multisine waveform of 3, 7 and 13 Hz (n = 10, 1 excluded) or 3 and 7 Hz (n = 12, 1 excluded). As a result, evoked potentials in response to stimulation onset and contralateral SSEPs at 3 and 7 Hz were observed. The SSEPs at 3 and 7 Hz had an average time delay of 137 ms and 143 ms respectively. The evoked potential in response to stimulation onset had a contralateral minimum (N1) at 115 ms and a central maximum (P2) at 300 ms. Sources for the multisine SSEP at 3 and 7 Hz were found through beamforming near the primary and secondary somatosensory cortex. Sources for the N1 were found near the primary and secondary somatosensory cortex. Sources for the N2-P2 were found near the supplementary motor area. Harmonic and intermodulation frequencies in the SSEP power spectrum remained below a detectable level and no evidence for nonlinearity of nociceptive processing, i.e. processing of peripheral firing rate into cortical evoked potentials, was found.
Collapse
Affiliation(s)
- Boudewijn van den Berg
- Biomedical Signals and Systems, Technical Medical Centre, University of Twente, PO Box 217, 7500 AE, Enschede, The Netherlands.
| | - Mana Manoochehri
- Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, The Netherlands
| | - Alfred C Schouten
- Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, The Netherlands.,Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, USA.,Biomechanical Engineering, Technical Medical Centre, University of Twente, Enschede, The Netherlands
| | - Frans C T van der Helm
- Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, The Netherlands.,Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, USA
| | - Jan R Buitenweg
- Biomedical Signals and Systems, Technical Medical Centre, University of Twente, PO Box 217, 7500 AE, Enschede, The Netherlands
| |
Collapse
|
42
|
Temporal–spectral signaling of sensory information and expectations in the cerebral processing of pain. Proc Natl Acad Sci U S A 2022; 119:2116616119. [PMID: 34983852 PMCID: PMC8740684 DOI: 10.1073/pnas.2116616119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2021] [Indexed: 01/14/2023] Open
Abstract
Pain is not only shaped by sensory information but also by an individual’s expectations. Here, we investigated how commonly analyzed electroencephalography (EEG) responses to pain signal sensory information, expectations, and discrepancies thereof (prediction errors) in the processing of pain. Bayesian analysis confirmed that pain perception was shaped by objective sensory information and expectations. In contrast, EEG responses at different latencies (including the N1, N2, and P2 components) and frequencies (including alpha, beta, and gamma oscillations) were shaped by sensory information but not by expectations. Thus, EEG responses to pain are more involved in signaling sensory information than in signaling expectations or prediction errors. Expectation effects are obviously mediated by other brain mechanisms than the effects of sensory information on pain. The perception of pain is shaped by somatosensory information about threat. However, pain is also influenced by an individual’s expectations. Such expectations can result in clinically relevant modulations and abnormalities of pain. In the brain, sensory information, expectations (predictions), and discrepancies thereof (prediction errors) are signaled by an extended network of brain areas which generate evoked potentials and oscillatory responses at different latencies and frequencies. However, a comprehensive picture of how evoked and oscillatory brain responses signal sensory information, predictions, and prediction errors in the processing of pain is lacking so far. Here, we therefore applied brief painful stimuli to 48 healthy human participants and independently modulated sensory information (stimulus intensity) and expectations of pain intensity while measuring brain activity using electroencephalography (EEG). Pain ratings confirmed that pain intensity was shaped by both sensory information and expectations. In contrast, Bayesian analyses revealed that stimulus-induced EEG responses at different latencies (the N1, N2, and P2 components) and frequencies (alpha, beta, and gamma oscillations) were shaped by sensory information but not by expectations. Expectations, however, shaped alpha and beta oscillations before the painful stimuli. These findings indicate that commonly analyzed EEG responses to painful stimuli are more involved in signaling sensory information than in signaling expectations or mismatches of sensory information and expectations. Moreover, they indicate that the effects of expectations on pain are served by brain mechanisms which differ from those conveying effects of sensory information on pain.
Collapse
|
43
|
Cardinale V, Demirakca T, Gradinger T, Sack M, Ruf M, Kleindienst N, Schmitz M, Schmahl C, Baumgärtner U, Ende G. Cerebral processing of sharp mechanical pain measured with arterial spin labeling. Brain Behav 2022; 12:e2442. [PMID: 34878219 PMCID: PMC8785639 DOI: 10.1002/brb3.2442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/27/2021] [Accepted: 11/05/2021] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Arterial spin labeling (ASL) is a functional neuroimaging technique that has been frequently used to investigate acute pain states. A major advantage of ASL as opposed to blood-oxygen-level-dependent functional neuroimaging is its applicability for low-frequency designs. As such, ASL represents an interesting option for studies in which repeating an experimental event would reduce its ecological validity. Whereas most ASL pain studies so far have used thermal stimuli, to our knowledge, no ASL study so far has investigated pain responses to sharp mechanical pain. METHODS As a proof of concept, we investigated whether ASL has the sensitivity to detect brain activation within core areas of the nociceptive network in healthy controls following a single stimulation block based on 96 s of mechanical painful stimulation using a blunt blade. RESULTS We found significant increases in perfusion across many regions of the nociceptive network such as primary and secondary somatosensory cortices, premotor cortex, posterior insula, inferior parietal cortex, parietal operculum, temporal gyrus, temporo-occipital lobe, putamen, and the cerebellum. Contrary to our hypothesis, we did not find any significant increase within ACC, thalamus, or PFC. Moreover, we were able to detect a significant positive correlation between pain intensity ratings and pain-induced perfusion increase in the posterior insula. CONCLUSION We demonstrate that ASL is suited to investigate acute pain in a single event paradigm, although to detect activation within some regions of the nociceptive network, the sensitivity of our paradigm seemed to be limited. Regarding the posterior insula, our paradigm was sensitive enough to detect a correlation between pain intensity ratings and pain-induced perfusion increase. Previous experimental pain studies have proposed that intensity coding in this region may be restricted to thermal stimulation. Our result demonstrates that the posterior insula encodes intensity information for mechanical stimuli as well.
Collapse
Affiliation(s)
- Vita Cardinale
- Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Traute Demirakca
- Department of Neuroimaging and Core Facility ZIPP, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Tobias Gradinger
- Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Markus Sack
- Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Matthias Ruf
- Department of Neuroimaging and Core Facility ZIPP, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Nikolaus Kleindienst
- Institute of Psychiatric and Psychosomatic Psychotherapy, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Marius Schmitz
- Department of General Psychiatry, Center for Psychosocial Medicine, University of Heidelberg, Heidelberg, Germany
| | - Christian Schmahl
- Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Ulf Baumgärtner
- Department of Neurophysiology, Mannheim Center for Translational Neuroscience (MTCN), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Institute of Cognitive and Affective Neuroscience (ICAN), Medical School Hamburg, Hamburg, Germany
| | - Gabriele Ende
- Department of Neuroimaging and Core Facility ZIPP, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
44
|
Verdugo RJ, Matamala JM, Inui K, Kakigi R, Valls-Solé J, Hansson P, Bernhard Nilsen K, Lombardi R, Lauria G, Petropoulos IN, Malik RA, Treede RD, Baumgärtner U, Jara PA, Campero M. Review of techniques useful for the assessment of sensory small fiber neuropathies: Report from an IFCN expert group. Clin Neurophysiol 2022; 136:13-38. [DOI: 10.1016/j.clinph.2022.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 02/09/2023]
|
45
|
Lütolf R, Júlio SU, Schubert M, Hubli M. Intra-epidermal evoked potentials: A promising tool for spinal disorders? Neurophysiol Clin 2021; 52:44-57. [PMID: 34953638 DOI: 10.1016/j.neucli.2021.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 10/19/2022] Open
Abstract
OBJECTIVES To test the robustness and signal-to-noise ratio of pain-related evoked potentials following intra-epidermal electrical stimulation (IES) compared to contact heat stimulation in healthy controls, and to explore the feasibility and potential added value of IES in the diagnosis of spinal disorders. METHODS Pain-related evoked potentials induced by IES (custom-made, non-invasive, concentric triple pin electrode with steel pins protruding 1 mm from the anode, triangularly separated by 7-10 mm respectively) and contact heat stimulation were compared in 30 healthy subjects. Stimuli were applied to four different body sites. Two IES intensities, i.e., high (individually adapted to contact heat painfulness) and low (1.5 times pain threshold), were used. Additionally, a 40-year-old patient with unilateral dissociated sensory loss due to a multi-segmental syringohydromyelia was assessed comparing IES and contact heat stimulation. RESULTS Both IES and contact heat stimulation led to robust pain-related evoked potentials recorded in all healthy subjects. Low intensity IES evoked potentials (14.1-38.0 µV) had similar amplitudes as contact heat evoked potentials (11.8-32.3 µV), while pain ratings on the numeric rating scale were lower for IES (0.8-2.5, compared to 1.5-3.9 for contact heat stimulation). High intensity IES led to evoked potentials with higher signal-to-noise ratio than low intensity IES and contact heat stimulation. The patient case showed impaired pain-related evoked potentials in segments with hypoalgesia for both IES modes. IES evoked potentials were preserved, with delayed latencies, while contact heat evoked potentials were abolished. CONCLUSION IES evoked robust pain-related cortical potentials, while being less painful in healthy controls. The improved signal-to-noise ratio supports the use of IES for objective segmental testing of nociceptive processing. This was highlighted in a spinal syndrome case, where IES as well as contact heat stimulation reliably detected impaired segmental nociception.
Collapse
Affiliation(s)
- Robin Lütolf
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland.
| | - Sara U Júlio
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Martin Schubert
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Michèle Hubli
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| |
Collapse
|
46
|
Ren Q, Yang Y, Wo Y, Lu X, Hu L. Different priming effects of empathy on neural processing associated with firsthand pain and nonpain perception. Ann N Y Acad Sci 2021; 1509:184-202. [PMID: 34877680 DOI: 10.1111/nyas.14723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/30/2021] [Accepted: 10/22/2021] [Indexed: 11/28/2022]
Abstract
The shared-representation model of empathy is still debated. One of the major questions is whether empathy-eliciting stimuli depicting others' pain selectively activate the representations of self-pain. To address this issue, we assessed the priming effects of empathy-eliciting pictures on firsthand pain and nonpain perception, as well as its associated neural processing. In Experiment 1, when compared with nonpainful pictures depicting individuals' body parts with no injury, participants primed by painful pictures showing individuals' body parts with injury reported higher ratings for perceived intensity, unpleasantness, and salience of nociceptive and auditory stimuli, but they only exhibited increased N2 amplitude in response to nociceptive stimuli. In Experiment 2, the results from another group of participants replicated the observations of Experiment 1 and validated the findings in the non-nociceptive somatosensory modality. Importantly, participants' concern ratings for priming pictures predicted their unpleasantness ratings for subsequent nociceptive stimuli, while participants' attention ratings predicted their unpleasantness ratings for subsequent auditory and tactile stimuli. This finding implies that empathy for pain might influence pain and nonpain perception via different psychological mechanisms. In summary, our findings highlight the existence of pain-selective representations in empathy for pain and contribute to a better understanding of the shared-representation model of empathy.
Collapse
Affiliation(s)
- Qiaoyue Ren
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.,General and Experimental Psychology Unit, Department of Psychology, LMU Munich, Munich, Germany
| | - Ye Yang
- Centre for Mental Health Research in School of Management, Zunyi Medical University, Zunyi, China
| | - Ye Wo
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Xuejing Lu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Li Hu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
47
|
Lütolf R, Rosner J, Curt A, Hubli M. Identifying Discomplete Spinal Lesions: New Evidence from Pain-Autonomic Interaction in Spinal Cord Injury. J Neurotrauma 2021; 38:3456-3466. [PMID: 34806429 DOI: 10.1089/neu.2021.0280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The clinical evaluation of spinal afferents is an important diagnostic and prognostic marker for neurological and functional recovery after spinal cord injury (SCI). Particularly important regarding neuropathic pain following SCI is the function of the spinothalamic tract (STT) conveying nociceptive and temperature information. Here, we investigated the added value of neurophysiological methods revealing discomplete STT lesions; that is, residual axonal sparing in clinically complete STT lesions. Specifically, clinical pinprick testing and thermal thresholds were compared with objective contact heat-evoked potentials (CHEPs) and a novel measure of pain-autonomic interaction employing heat-induced sympathetic skin responses (SSR). The test stimuli (i.e., contact heat, pinprick) were applied below the lesion level in 32 subjects with thoracic SCI while corresponding heat-evoked responses (i.e., CHEPs and SSR) were recorded above the lesion (i.e., scalp and hand, respectively). Readouts of STT function were related to neuropathic pain characteristics. In subjects with abolished pinprick sensation, measures of thermosensation (10%), CHEPs (33%), and SSR (48%) revealed residual STT function. Importantly, SSRs can be used as an objective readout and when abolished, no other proxy indicated residual STT function. No relationship was found between STT function readouts and spontaneous neuropathic pain intensity and extent. However, subjects with clinically preserved STT function presented more often with allodynia (54%) than subjects with discomplete (13%) or complete STT lesions (18%). In individuals with absent pinprick sensation, discomplete STT lesions can be revealed employing pain-autonomic measures. The improved sensitivity to discerning STT lesion completeness might support the investigation of its association with neuropathic pain following SCI.
Collapse
Affiliation(s)
- Robin Lütolf
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Jan Rosner
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland.,Department of Neurology, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
| | - Armin Curt
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Michèle Hubli
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| |
Collapse
|
48
|
Morgalla MH, Zhang Y, de Barros Filho MF, Lepski G, Chander BS. Laser-evoked potentials recover gradually when using dorsal root ganglion stimulation, and this influences nociceptive pathways in neuropathic pain patients. Pain Pract 2021; 22:372-380. [PMID: 34787959 DOI: 10.1111/papr.13094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/06/2021] [Accepted: 11/08/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Dorsal root ganglion stimulation (DRGS) is able to relieve chronic neuropathic pain. There seems evidence that DRGS might achieve this by gradually influencing pain pathways. We used laser-evoked potentials (LEP) to verify our hypothesis that the recovery of the LEP may reflect DRGS-induced changes within the nociceptive system. METHODS Nine patients (mean age 56.8 years, range 36-77 years, two females) diagnosed with chronic neuropathic pain in the knee or groin were enrolled in the study. We measured each patient's LEP at the painful limb and contralateral control limb on the first, fourth, and seventh day after implantation of the DRGS system. We used the numeric rating scale (NRS) for the simultaneous pain assessment. RESULTS The LEP amplitude of the N2-P2 complex showed a significant increase on day 7 when compared to day 1 (Z = -2.666, p = 0.008) and to day 4 (Z = -2.547, p = 0.011), respectively. There was no significant difference in the N2-P2 complex amplitude between ON and OFF states during DRGS. The patients' NRS significantly decreased after 1 day (p = 0.007), 4 days (p = 0.007), and 7 days (p = 0.007) when compared to the baseline. CONCLUSIONS The results show that with DRGS, the LEP recovered gradually within 7 days in neuropathic pain patients. Therefore, reduction of the NRS in patients with chronic neuropathic pain might be due to DRGS-induced processes within the nociceptive system. These processes might indicate neuroplasticity mediated recovery of the LEP.
Collapse
Affiliation(s)
| | - Yi Zhang
- Department of Neurosurgery, Eberhard-Karls University, Tübingen, Germany
| | | | - Guilherme Lepski
- Department of Neurosurgery, Eberhard-Karls University, Tübingen, Germany.,Department of Psychiatry, School of Medicine, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
49
|
Northon S, Deldar Z, Piché M. Effects of spatial attention and limb position on the cortical interaction of bilateral noxious inputs. Psychophysiology 2021; 59:e13966. [PMID: 34783035 DOI: 10.1111/psyp.13966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/20/2021] [Accepted: 10/26/2021] [Indexed: 11/29/2022]
Abstract
Bilateral noxious inputs interact in the brain to provide a better representation of physical threat. In the present study, we investigated the effects of spatial attention and limb position on this interaction. Painful laser stimuli were applied randomly on the right hand or on both hands, while varying spatial attention (focal or overall) and limb position (hands near or far from each other). Pain perception and laser-evoked potentials (N1, N2, P2) were compared between conditions in 27 healthy volunteers. Compared with unilateral stimulation, bilateral stimulation increased pain (p = .004), the N2 (p = .0015) and P2 (p < .001) amplitude. The effects on pain and the P2 were greater when hands were in the near compared with the far position (p < .05). The effect on pain was also greater for overall compared with focal pain rating (p = .003). In addition, the N1 amplitude was greater for bilateral stimulation when hands were in the far compared with the near position (p = .01). These results show that increased brain responses and pain for bilateral compared with unilateral noxious stimulation are modulated differentially by spatial attention and limb position. This suggests that the integration of noxious inputs occurs through partially independent pain-related processes, that it is modulated by limb position, and that it is partially independent of pain perception. We propose that this is necessary to produce coordinated, flexible and adapted defensive responses.
Collapse
Affiliation(s)
- Stéphane Northon
- Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, Quebec, Canada.,CogNAC Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, Quebec, Canada
| | - Zoha Deldar
- Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, Quebec, Canada.,CogNAC Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, Quebec, Canada
| | - Mathieu Piché
- Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, Quebec, Canada.,CogNAC Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, Quebec, Canada
| |
Collapse
|
50
|
Zheng K, Chen C, Yang S, Wang X. Aerobic Exercise Attenuates Pain Sensitivity: An Event-Related Potential Study. Front Neurosci 2021; 15:735470. [PMID: 34630022 PMCID: PMC8494006 DOI: 10.3389/fnins.2021.735470] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/27/2021] [Indexed: 11/13/2022] Open
Abstract
In this study, electroencephalography (EEG) was utilized to explore the neurophysiological mechanisms of aerobic exercise-induced hypoalgesia (EIH) and provide a theoretical basis for the application of aerobic exercise in pain assessment and treatment. Forty-five healthy subjects were randomly divided into moderate-intensity aerobic exercise [70% heart rate reserve (HRR)], low-intensity aerobic exercise (50% HRR), or control groups (sitting). Aerobic exercise was performed with cycling. Pressure pain threshold (PPT), heat pain threshold (HPT), event-related potential (ERP) induced by contact heat stimulus and pain scoring were measured before and after the intervention. We found that moderate-intensity aerobic exercise can increase the PPT (rectus femoris: t = -2.71, p = 0.017; tibialis anterior muscle: t = -2.36, p = 0.033) and HPT (tibialis anterior muscle: t = -2.219, p = 0.044) of proximal intervention sites rather than distal sites, and decreased pain scorings of contact heat stimulus. After moderate-intensity aerobic exercise, alpha oscillation power reflecting the central descending inhibitory function was enhanced (t = -2.31, p < 0.05). Low-intensity aerobic exercise mainly reduced the pain unpleasantness rating (Block 1: t = 2.415, p = 0.030; Block 2: t = 3.287, p = 0.005; Block 4: t = 2.646, p = 0.019; Block 5: t = 2.567, p = 0.022). Aerobic exercise had an overall EIH effect. Its hypoalgesic effect was related to exercise intensity and affected by the site and type of pain stimulus. Moderate-intensity aerobic exercise effectively reduced the sensitivity to various painful stimuli, and low-intensity aerobic exercise selectively inhibited the negative emotional pain response. The hypoalgesic mechanism of aerobic exercise involves the enhancement of the central descending inhibitory function.
Collapse
Affiliation(s)
- Kangyong Zheng
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Changcheng Chen
- Department of Rehabilitation Medicine, Qingtian People's Hospital, Zhejiang, China
| | - Suyong Yang
- School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Xueqiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China.,Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China
| |
Collapse
|