• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4695755)   Today's Articles (53)
For: Lakshmanan S, Park JH, Jung H, Kwon O, Rakkiyappan R. A delay partitioning approach to delay-dependent stability analysis for neutral type neural networks with discrete and distributed delays. Neurocomputing 2013. [DOI: 10.1016/j.neucom.2012.12.016] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Number Cited by Other Article(s)
1
Faydasicok O, Arik S. The combined Lyapunov functionals method for stability analysis of neutral Cohen-Grossberg neural networks with multiple delays. Neural Netw 2024;180:106641. [PMID: 39173198 DOI: 10.1016/j.neunet.2024.106641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/14/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024]
2
Finite-Time Passivity Analysis of Neutral-Type Neural Networks with Mixed Time-Varying Delays. MATHEMATICS 2021. [DOI: 10.3390/math9243321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
3
Faydasicok O. New criteria for global stability of neutral-type Cohen-Grossberg neural networks with multiple delays. Neural Netw 2020;125:330-337. [PMID: 32172142 DOI: 10.1016/j.neunet.2020.02.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/13/2020] [Accepted: 02/27/2020] [Indexed: 11/29/2022]
4
Chen J, Park JH, Xu S. Stability Analysis for Delayed Neural Networks With an Improved General Free-Matrix-Based Integral Inequality. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2020;31:675-684. [PMID: 31034424 DOI: 10.1109/tnnls.2019.2909350] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
5
Samli R, Senan S, Yucel E, Orman Z. Some generalized global stability criteria for delayed Cohen-Grossberg neural networks of neutral-type. Neural Netw 2019;116:198-207. [PMID: 31121418 DOI: 10.1016/j.neunet.2019.04.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/01/2019] [Accepted: 04/30/2019] [Indexed: 10/26/2022]
6
A new global robust stability condition for uncertain neural networks with discrete and distributed delays. INT J MACH LEARN CYB 2019. [DOI: 10.1007/s13042-017-0779-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
7
Ozcan N. Stability analysis of Cohen–Grossberg neural networks of neutral-type: Multiple delays case. Neural Netw 2019;113:20-27. [DOI: 10.1016/j.neunet.2019.01.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/22/2019] [Accepted: 01/29/2019] [Indexed: 10/27/2022]
8
Song L, Nguang SK, Huang D. Hierarchical Stability Conditions for a Class of Generalized Neural Networks With Multiple Discrete and Distributed Delays. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2019;30:636-642. [PMID: 30072346 DOI: 10.1109/tnnls.2018.2853658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
9
Xie W, Zhu H, Zhong S, Chen H, Zhang Y. New results for uncertain switched neural networks with mixed delays using hybrid division method. Neurocomputing 2018. [DOI: 10.1016/j.neucom.2018.03.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
10
Zhang G, Wang T, Li T, Fei S. Multiple integral Lyapunov approach to mixed-delay-dependent stability of neutral neural networks. Neurocomputing 2018. [DOI: 10.1016/j.neucom.2017.10.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
11
Zheng M, Li L, Peng H, Xiao J, Yang Y, Zhao H. Finite-time stability analysis for neutral-type neural networks with hybrid time-varying delays without using Lyapunov method. Neurocomputing 2017. [DOI: 10.1016/j.neucom.2017.01.037] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
12
Liu X, Liu X, Tang M, Wang F. Improved exponential stability criterion for neural networks with time-varying delay. Neurocomputing 2017. [DOI: 10.1016/j.neucom.2016.12.057] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
13
Chen H, Zhang Z, Wang H. Robust H state-feedback control for linear systems. Proc Math Phys Eng Sci 2017;473:20160934. [PMID: 28484336 PMCID: PMC5415696 DOI: 10.1098/rspa.2016.0934] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/14/2017] [Indexed: 11/12/2022]  Open
14
Robust stability of hopfield delayed neural networks via an augmented L-K functional. Neurocomputing 2017. [DOI: 10.1016/j.neucom.2017.01.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
15
Lakshmanan S, Lim C, Prakash M, Nahavandi S, Balasubramaniam P. Neutral-type of delayed inertial neural networks and their stability analysis using the LMI Approach. Neurocomputing 2017. [DOI: 10.1016/j.neucom.2016.12.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
16
Delay-partitioning approach design for stochastic stability analysis of uncertain neutral-type neural networks with Markovian jumping parameters. Neurocomputing 2016. [DOI: 10.1016/j.neucom.2016.05.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
17
Jiang M, Mu J, Huang D. Globally exponential stability and dissipativity for nonautonomous neural networks with mixed time-varying delays. Neurocomputing 2016. [DOI: 10.1016/j.neucom.2016.04.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
18
An improved stability criterion for generalized neural networks with additive time-varying delays. Neurocomputing 2016. [DOI: 10.1016/j.neucom.2015.07.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
19
Rakkiyappan R, Dharani S, Cao J. Synchronization of Neural Networks With Control Packet Loss and Time-Varying Delay via Stochastic Sampled-Data Controller. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2015;26:3215-3226. [PMID: 25966486 DOI: 10.1109/tnnls.2015.2425881] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
20
Shi K, Zhong S, Zhu H, Liu X, Zeng Y. New delay-dependent stability criteria for neutral-type neural networks with mixed random time-varying delays. Neurocomputing 2015. [DOI: 10.1016/j.neucom.2015.05.035] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
21
Ding Y, Shi K, Liu H. Improved exponential stability criteria for time-varying delayed neural networks. Neurocomputing 2015. [DOI: 10.1016/j.neucom.2015.05.097] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
22
Wang Z, Liu L, Shan QH, Zhang H. Stability criteria for recurrent neural networks with time-varying delay based on secondary delay partitioning method. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2015;26:2589-2595. [PMID: 25608313 DOI: 10.1109/tnnls.2014.2387434] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
23
Shi K, Zhu H, Zhong S, Zeng Y, Zhang Y, Wang W. Stability analysis of neutral type neural networks with mixed time-varying delays using triple-integral and delay-partitioning methods. ISA TRANSACTIONS 2015;58:85-95. [PMID: 25835437 DOI: 10.1016/j.isatra.2015.03.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 02/18/2014] [Accepted: 03/14/2015] [Indexed: 06/04/2023]
24
Zhang B, Lam J, Xu S. Stability Analysis of Distributed Delay Neural Networks Based on Relaxed Lyapunov-Krasovskii Functionals. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2015;26:1480-1492. [PMID: 25181489 DOI: 10.1109/tnnls.2014.2347290] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
25
Syed Ali M, Arik S, Saravanakumar R. Delay-dependent stability criteria of uncertain Markovian jump neural networks with discrete interval and distributed time-varying delays. Neurocomputing 2015. [DOI: 10.1016/j.neucom.2015.01.056] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
26
Wang JA, Ma XH, Wen XY. Less conservative stability criteria for neural networks with interval time-varying delay based on delay-partitioning approach. Neurocomputing 2015. [DOI: 10.1016/j.neucom.2014.12.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
27
Sufficient conditions for global attractivity of a class of neutral Hopfield-type neural networks. Neurocomputing 2015. [DOI: 10.1016/j.neucom.2014.11.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
28
Arthi G, Park JH, Jung H, Yoo J. Exponential stability criteria for a neutral type stochastic single neuron system with time-varying delays. Neurocomputing 2015. [DOI: 10.1016/j.neucom.2014.11.061] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
29
Xia J, Park JH, Zeng H. Improved Delay-dependent Robust Stability Analysis for Neutral-type Uncertain Neural Networks with Markovian jumping Parameters and Time-varying Delays. Neurocomputing 2015. [DOI: 10.1016/j.neucom.2014.09.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
30
Zeng HB, Park JH, Shen H. Robust passivity analysis of neural networks with discrete and distributed delays. Neurocomputing 2015. [DOI: 10.1016/j.neucom.2014.07.024] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
31
New approach to stability criteria for generalized neural networks with interval time-varying delays. Neurocomputing 2015. [DOI: 10.1016/j.neucom.2014.08.038] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
32
Muralisankar S, Gopalakrishnan N. Robust stability criteria for Takagi–Sugeno fuzzy Cohen–Grossberg neural networks of neutral type. Neurocomputing 2014. [DOI: 10.1016/j.neucom.2014.04.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
33
Zhang X, Li R, Han C, Yao R. Robust stability analysis of uncertain genetic regulatory networks with mixed time delays. INT J MACH LEARN CYB 2014. [DOI: 10.1007/s13042-014-0306-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
34
Less conservative stability criteria for neural networks with discrete and distributed delays using a delay-partitioning approach. Neurocomputing 2014. [DOI: 10.1016/j.neucom.2014.03.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
35
Duan J, Hu M, Yang Y, Guo L. A delay-partitioning projection approach to stability analysis of stochastic Markovian jump neural networks with randomly occurred nonlinearities. Neurocomputing 2014. [DOI: 10.1016/j.neucom.2013.08.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA