Wan L, Liu Z. Multimode function multistability for Cohen-Grossberg neural networks with mixed time delays.
ISA TRANSACTIONS 2022;
129:179-192. [PMID:
34991879 DOI:
10.1016/j.isatra.2021.11.046]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 06/14/2023]
Abstract
In this paper, we are concerned with the multimode function multistability for Cohen-Grossberg neural networks (CGNNs) with mixed time delays. It is introduced the multimode function multistability as well as its specific mathematical expression, which is a generalization of multiple exponential stability, multiple polynomial stability, multiple logarithmic stability, and asymptotic stability. Also, according to the neural network (NN) model and the maximum and minimum values of activation functions, n pairs of upper and lower boundary functions are obtained. Via the locations of the zeros of the n pairs of upper and lower boundary functions, the state space is divided into ∏i=1n(2Hi+1) parts correspondingly. By virtue of the reduction to absurdity, continuity of function, Brouwer's fixed point theorem and Lyapunov stability theorem, the criteria for multimode function multistability are acquired. Multiple types of multistability, including multiple exponential stability, multiple polynomial stability, multiple logarithmic stability, and multiple asymptotic stability, can be achieved by selecting different types of function P(t). Two numerical examples are offered to substantiate the generality of the obtained criteria over the existing results.
Collapse