1
|
Salkanovic A, Sušanj D, Batistić L, Ljubic S. Beyond Signatures: Leveraging Sensor Fusion for Contextual Handwriting Recognition. SENSORS (BASEL, SWITZERLAND) 2025; 25:2290. [PMID: 40218801 PMCID: PMC11991618 DOI: 10.3390/s25072290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/01/2025] [Accepted: 04/03/2025] [Indexed: 04/14/2025]
Abstract
This paper deals with biometric identification based on unique patterns and characteristics of an individual's handwriting, focusing on the dynamic writing process on a touchscreen device. Related work in this domain indicates the dominance of specific research approaches. Namely, in most cases, only the signature is analyzed, verification methods are more prevalent than recognition methods, and the provided solutions are mainly based on using a particular device or specific sensor for collecting biometric data. In this context, our work aims to fill the identified research gap by introducing a new handwriting-based user recognition technique. The proposed approach implements the concept of sensor fusion and does not rely exclusively on signatures for recognition but also includes other forms of handwriting, such as short sentences, words, or individual letters. Additionally, two different ways of handwriting input, using a stylus and a finger, are introduced into the analysis. In order to collect data on the dynamics of handwriting and signing, a specially designed apparatus was used with various sensors integrated into common smart devices, along with additional external sensors and accessories. A total of 60 participants took part in a controlled experiment to form a handwriting biometrics dataset for further analysis. To classify participants' handwriting, custom architecture CNN models were utilized for feature extraction and classification tasks. The obtained results showed that the proposed handwriting recognition system achieves accuracies of 0.982, 0.927, 0.884, and 0.661 for signatures, words, short sentences, and individual letters, respectively. We further investigated the main effects of the input modality and the train set's size on the system's accuracy. Finally, an ablation study was carried out to analyze the impact of individual sensors within the fusion-based setup.
Collapse
Affiliation(s)
- Alen Salkanovic
- University of Rijeka, Faculty of Engineering, Vukovarska 58, HR-51000 Rijeka, Croatia;
- Center for Artificial Intelligence and Cybersecurity, University of Rijeka, R. Matejcic 2, HR-51000 Rijeka, Croatia
| | - Diego Sušanj
- Faculty of Engineering, Juraj Dobrila University of Pula, Alga Negrija 6, HR-52100 Pula, Croatia;
| | - Luka Batistić
- University of Rijeka, Faculty of Engineering, Vukovarska 58, HR-51000 Rijeka, Croatia;
- Center for Artificial Intelligence and Cybersecurity, University of Rijeka, R. Matejcic 2, HR-51000 Rijeka, Croatia
| | - Sandi Ljubic
- University of Rijeka, Faculty of Engineering, Vukovarska 58, HR-51000 Rijeka, Croatia;
- Center for Artificial Intelligence and Cybersecurity, University of Rijeka, R. Matejcic 2, HR-51000 Rijeka, Croatia
| |
Collapse
|
2
|
Cao Y, Zhou Y, Zhang Z, Yao E. Representation Learning Method for Circular Seal Based on Modified MLP-Mixer. ENTROPY (BASEL, SWITZERLAND) 2023; 25:1521. [PMID: 37998213 PMCID: PMC10670150 DOI: 10.3390/e25111521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/29/2023] [Accepted: 11/03/2023] [Indexed: 11/25/2023]
Abstract
This study proposes Stamp-MLP, an enhanced seal impression representation learning technique based on MLP-Mixer. Instead of using the patch linear mapping preprocessing method, this technique uses circular seal remapping, which reserves the seals' underlying pixel-level information. In the proposed Stamp-MLP, the average pooling is replaced by a global pooling of attention to extract the information more comprehensively. There were three classification tasks in our proposed method: categorizing the seal surface, identifying the product type, and distinguishing individual seals. The three tasks shared an identical dataset comprising 81 seals, encompassing 16 distinct seal surfaces, with each surface featuring six diverse product types. The experiment results showed that, in comparison to MLP-Mixer, VGG16, and ResNet50, the proposed Stamp-MLP achieved the highest classification accuracy (89.61%) in seal surface classification tasks with fewer training samples. Meanwhile, Stamp-MLP outperformed the others with accuracy rates of 90.68% and 91.96% in the product type and seal impression classification tasks, respectively. Moreover, Stamp-MLP had the fewest model parameters (2.67 M).
Collapse
Affiliation(s)
- Yuan Cao
- College of Information Science and Engineering, Hohai University, Changzhou 213022, China; (Y.C.); (Y.Z.); (Z.Z.)
| | - You Zhou
- College of Information Science and Engineering, Hohai University, Changzhou 213022, China; (Y.C.); (Y.Z.); (Z.Z.)
| | - Zhiwen Zhang
- College of Information Science and Engineering, Hohai University, Changzhou 213022, China; (Y.C.); (Y.Z.); (Z.Z.)
| | - Enyi Yao
- School of Microelectronics, South China University of Technology, Guangzhou 511442, China
| |
Collapse
|
3
|
Jiang J, Lai S, Jin L, Zhu Y, Zhang J, Chen B. Forgery-free Signature Verification with Stroke-aware Cycle-consistent Generative Adversarial Network. Neurocomputing 2022. [DOI: 10.1016/j.neucom.2022.08.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Djoudjai MA, Chibani Y. Open writer identification from offline handwritten signatures by jointing the one-class symbolic data analysis classifier and feature-dissimilarities. INT J DOC ANAL RECOG 2022. [DOI: 10.1007/s10032-022-00403-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Elzeki OM, Shams M, Sarhan S, Abd Elfattah M, Hassanien AE. COVID-19: a new deep learning computer-aided model for classification. PeerJ Comput Sci 2021; 7:e358. [PMID: 33817008 PMCID: PMC7959596 DOI: 10.7717/peerj-cs.358] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 12/19/2020] [Indexed: 05/09/2023]
Abstract
Chest X-ray (CXR) imaging is one of the most feasible diagnosis modalities for early detection of the infection of COVID-19 viruses, which is classified as a pandemic according to the World Health Organization (WHO) report in December 2019. COVID-19 is a rapid natural mutual virus that belongs to the coronavirus family. CXR scans are one of the vital tools to early detect COVID-19 to monitor further and control its virus spread. Classification of COVID-19 aims to detect whether a subject is infected or not. In this article, a model is proposed for analyzing and evaluating grayscale CXR images called Chest X-Ray COVID Network (CXRVN) based on three different COVID-19 X-Ray datasets. The proposed CXRVN model is a lightweight architecture that depends on a single fully connected layer representing the essential features and thus reducing the total memory usage and processing time verse pre-trained models and others. The CXRVN adopts two optimizers: mini-batch gradient descent and Adam optimizer, and the model has almost the same performance. Besides, CXRVN accepts CXR images in grayscale that are a perfect image representation for CXR and consume less memory storage and processing time. Hence, CXRVN can analyze the CXR image with high accuracy in a few milliseconds. The consequences of the learning process focus on decision making using a scoring function called SoftMax that leads to high rate true-positive classification. The CXRVN model is trained using three different datasets and compared to the pre-trained models: GoogleNet, ResNet and AlexNet, using the fine-tuning and transfer learning technologies for the evaluation process. To verify the effectiveness of the CXRVN model, it was evaluated in terms of the well-known performance measures such as precision, sensitivity, F1-score and accuracy. The evaluation results based on sensitivity, precision, recall, accuracy, and F1 score demonstrated that, after GAN augmentation, the accuracy reached 96.7% in experiment 2 (Dataset-2) for two classes and 93.07% in experiment-3 (Dataset-3) for three classes, while the average accuracy of the proposed CXRVN model is 94.5%.
Collapse
Affiliation(s)
- Omar M. Elzeki
- Faculty of Computers and Information, Mansoura University, Mansoura, Egypt
| | - Mahmoud Shams
- Faculty of Artificial Intelligence, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Shahenda Sarhan
- Faculty of Computers and Information, Mansoura University, Mansoura, Egypt
| | | | - Aboul Ella Hassanien
- Faculty of Computers and Artificial Intelligence, Cairo University, Egypt, Cairo, Egypt
- Scientific Research Group in Egypt (SRGE), Cairo, Egypt
| |
Collapse
|
6
|
Cong H, Liu H, Chen Y, Cao Y. Self-evoluting framework of deep convolutional neural network for multilocus protein subcellular localization. Med Biol Eng Comput 2020; 58:3017-3038. [PMID: 33078303 DOI: 10.1007/s11517-020-02275-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 10/14/2020] [Indexed: 12/12/2022]
Abstract
In the present paper, deep convolutional neural network (DCNN) is applied to multilocus protein subcellular localization as it is more suitable for multi-class classification. There are two main problems with this application. First, the appropriate features for correlation between multiple sites are hard to find. Second, the classifier structure is difficult to determine as it is greatly affected by the distribution of classified data. To solve these problems, a self-evoluting framework using DCNNs for multilocus protein subcellular localization is proposed. It has three characteristics that the previous algorithms do not. The first is that it combines the ant colony algorithm with the DCNN to form a self-evoluting algorithm for multilocus protein subcellular localization. The second is that it randomly groups subcellular sites using a limited random k-labelsets multi-label classification method. It also solves complex problems in a divide-and-conquer approach and proposes a flexible expansion model. The third is that it realizes the random selection feature extraction method in the positioning process and avoids the defects in individual feature extraction methods. The algorithm in the present paper is tested on the human database, and the overall correct rate is 67.17%, which is higher than that for the stacked self-encoder (SAE), support vector machine (SVM), random forest classifier (RF), or single deep convolutional neural network.Graphical abstract The algorithm mentioned in the present paper mainly includes four parts. They are protein sequence data preprocessing, integrated DCNN model construction, finding optimal DCNN combination by ant colony optimization, and protein subcellular localization for sequences. These parts are sequential relationships and the data obtained in the previous part is the basis for the latter part of the function. In the part of data preprocessing, the limited RAkEL multi-label classification method is used to randomly group subcellular sites. At the same time, the feature fusion of protein sequences is carried out by using multiple feature extraction methods. Each combination including features and sites information corresponds to a DCNN model. In the part of finding optimal DCNN combination by ant colony optimization, the main purpose is to find the best combination of DCNN models through the global optimization ability of the ant colony algorithm. The positioning of sequences is mainly to obtain multilocus subcellular localization by the optimal model combination.
Collapse
Affiliation(s)
- Hanhan Cong
- School of Information Science and Engineering, Shandong Normal University, No. 88, Wenhua East Road, Jinan City, China.,Shandong Provincial Key Laboratory for Novel Distributed Computer Software Technology, Shandong Normal University, Jinan, China
| | - Hong Liu
- School of Information Science and Engineering, Shandong Normal University, No. 88, Wenhua East Road, Jinan City, China. .,Shandong Provincial Key Laboratory for Novel Distributed Computer Software Technology, Shandong Normal University, Jinan, China.
| | - Yuehui Chen
- School of Information Science and Engineering, University of Jinan, Jinan, China.,Shandong Provincial Key Laboratory of Network Based Intelligent Computing, University of Jinan, Jinan, China
| | - Yi Cao
- School of Information Science and Engineering, University of Jinan, Jinan, China.,Shandong Provincial Key Laboratory of Network Based Intelligent Computing, University of Jinan, Jinan, China
| |
Collapse
|
7
|
Power Quality Disturbances Classification via Fully-Convolutional Siamese Network and k-Nearest Neighbor. ENERGIES 2019. [DOI: 10.3390/en12244732] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The classification of disturbance signals is of great significance for improving power quality. The existing methods for power quality disturbance classification require a large number of samples to train the model. For small sample learning, their accuracy is relatively limited. In this paper, a hybrid algorithm of k-nearest neighbor and fully-convolutional Siamese network is proposed to classify power quality disturbances by learning small samples. Multiple convolutional layers and full connection layers are used to construct the Siamese network, and the output result of the Siamese network is used to judges the category of the signal. The simulation results show that: For small sample sizes, the accuracy of the proposed approach is significantly higher than that of the existing methods. In addition, it has a strong anti-noise ability.
Collapse
|