1
|
Verma A, Yadav AK. Brain tumor segmentation with deep learning: Current approaches and future perspectives. J Neurosci Methods 2025; 418:110424. [PMID: 40122469 DOI: 10.1016/j.jneumeth.2025.110424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/21/2025] [Accepted: 03/09/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND Accurate brain tumor segmentation from MRI images is critical in the medical industry, directly impacts the efficacy of diagnostic and treatment plans. Accurate segmentation of tumor region can be challenging, especially when noise and abnormalities are present. METHOD This research provides a systematic review of automatic brain tumor segmentation techniques, with a specific focus on the design of network architectures. The review categorizes existing methods into unsupervised and supervised learning techniques, as well as machine learning and deep learning approaches within supervised techniques. Deep learning techniques are thoroughly reviewed, with a particular focus on CNN-based, U-Net-based, transfer learning-based, transformer-based, and hybrid transformer-based methods. SCOPE AND COVERAGE This survey encompasses a broad spectrum of automatic segmentation methodologies, from traditional machine learning approaches to advanced deep learning frameworks. It provides an in-depth comparison of performance metrics, model efficiency, and robustness across multiple datasets, particularly the BraTS dataset. The study further examines multi-modal MRI imaging and its influence on segmentation accuracy, addressing domain adaptation, class imbalance, and generalization challenges. COMPARISON WITH EXISTING METHODS The analysis highlights the current challenges in Computer-aided Diagnostic (CAD) systems, examining how different models and imaging sequences impact performance. Recent advancements in deep learning, especially the widespread use of U-Net architectures, have significantly enhanced medical image segmentation. This review critically evaluates these developments, focusing the iterative improvements in U-Net models that have driven progress in brain tumor segmentation. Furthermore, it explores various techniques for improving U-Net performance for medical applications, focussing on its potential for improving diagnostic and treatment planning procedures. CONCLUSION The efficiency of these automated segmentation approaches is rigorously evaluated using the BraTS dataset, a benchmark dataset, part of the annual Multimodal Brain Tumor Segmentation Challenge (MICCAI). This evaluation provides insights into the current state-of-the-art and identifies key areas for future research and development.
Collapse
Affiliation(s)
- Akash Verma
- Department of Computer Science & Engineering, NIT Hamirpur (HP), India.
| | - Arun Kumar Yadav
- Department of Computer Science & Engineering, NIT Hamirpur (HP), India.
| |
Collapse
|
2
|
Rohilla S, Jain S. Detection of Brain Tumor Employing Residual Network-based Optimized Deep Learning. Curr Comput Aided Drug Des 2025; 21:15-27. [PMID: 37587819 DOI: 10.2174/1573409920666230816090626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 05/19/2023] [Accepted: 05/30/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND Diagnosis and treatment planning play a very vital role in improving the survival of oncological patients. However, there is high variability in the shape, size, and structure of the tumor, making automatic segmentation difficult. The automatic and accurate detection and segmentation methods for brain tumors are proposed in this paper. METHODS A modified ResNet50 model was used for tumor detection, and a ResUNetmodel-based convolutional neural network for segmentation is proposed in this paper. The detection and segmentation were performed on the same dataset consisting of pre-contrast, FLAIR, and postcontrast MRI images of 110 patients collected from the cancer imaging archive. Due to the use of residual networks, the authors observed improvement in evaluation parameters, such as accuracy for tumor detection and dice similarity coefficient for tumor segmentation. RESULTS The accuracy of tumor detection and dice similarity coefficient achieved by the segmentation model were 96.77% and 0.893, respectively, for the TCIA dataset. The results were compared based on manual segmentation and existing segmentation techniques. The tumor mask was also individually compared to the ground truth using the SSIM value. The proposed detection and segmentation models were validated on BraTS2015 and BraTS2017 datasets, and the results were consensus. CONCLUSION The use of residual networks in both the detection and the segmentation model resulted in improved accuracy and DSC score. DSC score was increased by 5.9% compared to the UNet model, and the accuracy of the model was increased from 92% to 96.77% for the test set.
Collapse
Affiliation(s)
- Saransh Rohilla
- Department of Electronics and Communication Engineering, Jaypee University of Information Technology, Solan, Himachal Pradesh, India
| | - Shruti Jain
- Department of Electronics and Communication Engineering, Jaypee University of Information Technology, Solan, Himachal Pradesh, India
| |
Collapse
|
3
|
Zhang X, Tian L, Guo S, Liu Y. STF-Net: sparsification transformer coding guided network for subcortical brain structure segmentation. BIOMED ENG-BIOMED TE 2024; 69:465-480. [PMID: 38712825 DOI: 10.1515/bmt-2023-0121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/15/2024] [Indexed: 05/08/2024]
Abstract
Subcortical brain structure segmentation plays an important role in the diagnosis of neuroimaging and has become the basis of computer-aided diagnosis. Due to the blurred boundaries and complex shapes of subcortical brain structures, labeling these structures by hand becomes a time-consuming and subjective task, greatly limiting their potential for clinical applications. Thus, this paper proposes the sparsification transformer (STF) module for accurate brain structure segmentation. The self-attention mechanism is used to establish global dependencies to efficiently extract the global information of the feature map with low computational complexity. Also, the shallow network is used to compensate for low-level detail information through the localization of convolutional operations to promote the representation capability of the network. In addition, a hybrid residual dilated convolution (HRDC) module is introduced at the bottom layer of the network to extend the receptive field and extract multi-scale contextual information. Meanwhile, the octave convolution edge feature extraction (OCT) module is applied at the skip connections of the network to pay more attention to the edge features of brain structures. The proposed network is trained with a hybrid loss function. The experimental evaluation on two public datasets: IBSR and MALC, shows outstanding performance in terms of objective and subjective quality.
Collapse
Affiliation(s)
- Xiufeng Zhang
- School of Mechanical and Electrical Engineering, 66455 Dalian Minzu University , Dalian, Liaoning, China
| | - Lingzhuo Tian
- School of Mechanical and Electrical Engineering, 66455 Dalian Minzu University , Dalian, Liaoning, China
| | - Shengjin Guo
- School of Mechanical and Electrical Engineering, 66455 Dalian Minzu University , Dalian, Liaoning, China
| | - Yansong Liu
- School of Mechanical and Electrical Engineering, 66455 Dalian Minzu University , Dalian, Liaoning, China
| |
Collapse
|
4
|
Byeon H, Al-Kubaisi M, Dutta AK, Alghayadh F, Soni M, Bhende M, Chunduri V, Suresh Babu K, Jeet R. Brain tumor segmentation using neuro-technology enabled intelligence-cascaded U-Net model. Front Comput Neurosci 2024; 18:1391025. [PMID: 38634017 PMCID: PMC11021780 DOI: 10.3389/fncom.2024.1391025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 03/21/2024] [Indexed: 04/19/2024] Open
Abstract
According to experts in neurology, brain tumours pose a serious risk to human health. The clinical identification and treatment of brain tumours rely heavily on accurate segmentation. The varied sizes, forms, and locations of brain tumours make accurate automated segmentation a formidable obstacle in the field of neuroscience. U-Net, with its computational intelligence and concise design, has lately been the go-to model for fixing medical picture segmentation issues. Problems with restricted local receptive fields, lost spatial information, and inadequate contextual information are still plaguing artificial intelligence. A convolutional neural network (CNN) and a Mel-spectrogram are the basis of this cough recognition technique. First, we combine the voice in a variety of intricate settings and improve the audio data. After that, we preprocess the data to make sure its length is consistent and create a Mel-spectrogram out of it. A novel model for brain tumor segmentation (BTS), Intelligence Cascade U-Net (ICU-Net), is proposed to address these issues. It is built on dynamic convolution and uses a non-local attention mechanism. In order to reconstruct more detailed spatial information on brain tumours, the principal design is a two-stage cascade of 3DU-Net. The paper's objective is to identify the best learnable parameters that will maximize the likelihood of the data. After the network's ability to gather long-distance dependencies for AI, Expectation-Maximization is applied to the cascade network's lateral connections, enabling it to leverage contextual data more effectively. Lastly, to enhance the network's ability to capture local characteristics, dynamic convolutions with local adaptive capabilities are used in place of the cascade network's standard convolutions. We compared our results to those of other typical methods and ran extensive testing utilising the publicly available BraTS 2019/2020 datasets. The suggested method performs well on tasks involving BTS, according to the experimental data. The Dice scores for tumor core (TC), complete tumor, and enhanced tumor segmentation BraTS 2019/2020 validation sets are 0.897/0.903, 0.826/0.828, and 0.781/0.786, respectively, indicating high performance in BTS.
Collapse
Affiliation(s)
- Haewon Byeon
- Department of Digital Anti-Aging Healthcare, Inje University, Gimhae, Republic of Korea
| | - Mohannad Al-Kubaisi
- Department of Computer Science, Al-Maarif University College, Al-Anbar Governorate, Iraq
| | - Ashit Kumar Dutta
- Department of Computer Science and Information Systems, College of Applied Sciences, AlMaarefa University, Riyadh, Saudi Arabia
| | - Faisal Alghayadh
- Department of Computer Science and Information Systems, College of Applied Sciences, AlMaarefa University, Riyadh, Saudi Arabia
| | - Mukesh Soni
- Department of CSE, University Centre for Research and Development, Chandigarh University, Mohali, Punjab, India
| | - Manisha Bhende
- Dr. D. Y. Patil Vidyapeeth, Pune, Dr. D. Y. Patil School of Science & Technology, Tathawade, Pune, India
| | - Venkata Chunduri
- Department of Mathematics and Computer Science, Indiana State University, Terre Haute, IN, United States
| | - K. Suresh Babu
- Department of Biochemistry, Symbiosis Medical College for Women, Symbiosis International (Deemed University), Pune, India
| | - Rubal Jeet
- Chandigarh Engineering College, Jhanjeri, Mohali, India
| |
Collapse
|
5
|
Ilesanmi AE, Ilesanmi TO, Ajayi BO. Reviewing 3D convolutional neural network approaches for medical image segmentation. Heliyon 2024; 10:e27398. [PMID: 38496891 PMCID: PMC10944240 DOI: 10.1016/j.heliyon.2024.e27398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/19/2024] Open
Abstract
Background Convolutional neural networks (CNNs) assume pivotal roles in aiding clinicians in diagnosis and treatment decisions. The rapid evolution of imaging technology has established three-dimensional (3D) CNNs as a formidable framework for delineating organs and anomalies in medical images. The prominence of 3D CNN frameworks is steadily growing within medical image segmentation and classification. Thus, our proposition entails a comprehensive review, encapsulating diverse 3D CNN algorithms for the segmentation of medical image anomalies and organs. Methods This study systematically presents an exhaustive review of recent 3D CNN methodologies. Rigorous screening of abstracts and titles were carried out to establish their relevance. Research papers disseminated across academic repositories were meticulously chosen, analyzed, and appraised against specific criteria. Insights into the realm of anomalies and organ segmentation were derived, encompassing details such as network architecture and achieved accuracies. Results This paper offers an all-encompassing analysis, unveiling the prevailing trends in 3D CNN segmentation. In-depth elucidations encompass essential insights, constraints, observations, and avenues for future exploration. A discerning examination indicates the preponderance of the encoder-decoder network in segmentation tasks. The encoder-decoder framework affords a coherent methodology for the segmentation of medical images. Conclusion The findings of this study are poised to find application in clinical diagnosis and therapeutic interventions. Despite inherent limitations, CNN algorithms showcase commendable accuracy levels, solidifying their potential in medical image segmentation and classification endeavors.
Collapse
Affiliation(s)
- Ademola E. Ilesanmi
- University of Pennsylvania, 3710 Hamilton Walk, 6th Floor, Philadelphia, PA, 19104, United States
| | | | - Babatunde O. Ajayi
- National Astronomical Research Institute of Thailand, Chiang Mai 50180, Thailand
| |
Collapse
|
6
|
Wu J, Guo D, Wang L, Yang S, Zheng Y, Shapey J, Vercauteren T, Bisdas S, Bradford R, Saeed S, Kitchen N, Ourselin S, Zhang S, Wang G. TISS-net: Brain tumor image synthesis and segmentation using cascaded dual-task networks and error-prediction consistency. Neurocomputing 2023; 544:None. [PMID: 37528990 PMCID: PMC10243514 DOI: 10.1016/j.neucom.2023.126295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/15/2023] [Accepted: 04/30/2023] [Indexed: 08/03/2023]
Abstract
Accurate segmentation of brain tumors from medical images is important for diagnosis and treatment planning, and it often requires multi-modal or contrast-enhanced images. However, in practice some modalities of a patient may be absent. Synthesizing the missing modality has a potential for filling this gap and achieving high segmentation performance. Existing methods often treat the synthesis and segmentation tasks separately or consider them jointly but without effective regularization of the complex joint model, leading to limited performance. We propose a novel brain Tumor Image Synthesis and Segmentation network (TISS-Net) that obtains the synthesized target modality and segmentation of brain tumors end-to-end with high performance. First, we propose a dual-task-regularized generator that simultaneously obtains a synthesized target modality and a coarse segmentation, which leverages a tumor-aware synthesis loss with perceptibility regularization to minimize the high-level semantic domain gap between synthesized and real target modalities. Based on the synthesized image and the coarse segmentation, we further propose a dual-task segmentor that predicts a refined segmentation and error in the coarse segmentation simultaneously, where a consistency between these two predictions is introduced for regularization. Our TISS-Net was validated with two applications: synthesizing FLAIR images for whole glioma segmentation, and synthesizing contrast-enhanced T1 images for Vestibular Schwannoma segmentation. Experimental results showed that our TISS-Net largely improved the segmentation accuracy compared with direct segmentation from the available modalities, and it outperformed state-of-the-art image synthesis-based segmentation methods.
Collapse
Affiliation(s)
- Jianghao Wu
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Dong Guo
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Lu Wang
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Shuojue Yang
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuanjie Zheng
- School of Information Science and Engineering, Shandong Normal University, Jinan, China
| | - Jonathan Shapey
- School of Biomedical Engineering & Imaging Sciences, King’s College London, London, UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London, UK
- Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London, UK
| | - Tom Vercauteren
- School of Biomedical Engineering & Imaging Sciences, King’s College London, London, UK
| | - Sotirios Bisdas
- Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Robert Bradford
- Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London, UK
| | - Shakeel Saeed
- Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London, UK
| | - Neil Kitchen
- Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London, UK
| | - Sebastien Ourselin
- School of Biomedical Engineering & Imaging Sciences, King’s College London, London, UK
| | - Shaoting Zhang
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, China
- SenseTime Research, Shanghai, China
| | - Guotai Wang
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, China
- Shanghai Artificial Intelligence Laboratory, Shanghai, China
| |
Collapse
|
7
|
Qureshi I, Yan J, Abbas Q, Shaheed K, Riaz AB, Wahid A, Khan MWJ, Szczuko P. Medical image segmentation using deep semantic-based methods: A review of techniques, applications and emerging trends. INFORMATION FUSION 2023. [DOI: 10.1016/j.inffus.2022.09.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
|
8
|
Chang Y, Zheng Z, Sun Y, Zhao M, Lu Y, Zhang Y. DPAFNet: A Residual Dual-Path Attention-Fusion Convolutional Neural Network for Multimodal Brain Tumor Segmentation. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
9
|
Liu Z, Zhao C, Lu Y, Jiang Y, Yan J. Multi-scale graph learning for ovarian tumor segmentation from CT images. Neurocomputing 2022. [DOI: 10.1016/j.neucom.2022.09.093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Liu J, Zheng J, Jiao G. Transition Net: 2D backbone to segment 3D brain tumor. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
11
|
Biratu ES, Schwenker F, Ayano YM, Debelee TG. A Survey of Brain Tumor Segmentation and Classification Algorithms. J Imaging 2021; 7:jimaging7090179. [PMID: 34564105 PMCID: PMC8465364 DOI: 10.3390/jimaging7090179] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/25/2021] [Accepted: 08/28/2021] [Indexed: 01/16/2023] Open
Abstract
A brain Magnetic resonance imaging (MRI) scan of a single individual consists of several slices across the 3D anatomical view. Therefore, manual segmentation of brain tumors from magnetic resonance (MR) images is a challenging and time-consuming task. In addition, an automated brain tumor classification from an MRI scan is non-invasive so that it avoids biopsy and make the diagnosis process safer. Since the beginning of this millennia and late nineties, the effort of the research community to come-up with automatic brain tumor segmentation and classification method has been tremendous. As a result, there are ample literature on the area focusing on segmentation using region growing, traditional machine learning and deep learning methods. Similarly, a number of tasks have been performed in the area of brain tumor classification into their respective histological type, and an impressive performance results have been obtained. Considering state of-the-art methods and their performance, the purpose of this paper is to provide a comprehensive survey of three, recently proposed, major brain tumor segmentation and classification model techniques, namely, region growing, shallow machine learning and deep learning. The established works included in this survey also covers technical aspects such as the strengths and weaknesses of different approaches, pre- and post-processing techniques, feature extraction, datasets, and models' performance evaluation metrics.
Collapse
Affiliation(s)
- Erena Siyoum Biratu
- College of Electrical and Mechanical Engineering, Addis Ababa Science and Technology University, Addis Ababa 120611, Ethiopia; (E.S.B.); (T.G.D.)
| | - Friedhelm Schwenker
- Institute of Neural Information Processing, Ulm University, 89081 Ulm, Germany
- Correspondence:
| | | | - Taye Girma Debelee
- College of Electrical and Mechanical Engineering, Addis Ababa Science and Technology University, Addis Ababa 120611, Ethiopia; (E.S.B.); (T.G.D.)
- Ethiopian Artificial Intelligence Center, Addis Ababa 40782, Ethiopia;
| |
Collapse
|