1
|
Wang Z, Meng J, Li H, Dai Q, Lin X, Luan Y. Attention-augmented multi-domain cooperative graph representation learning for molecular interaction prediction. Neural Netw 2025; 186:107265. [PMID: 39987715 DOI: 10.1016/j.neunet.2025.107265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 01/23/2025] [Accepted: 02/07/2025] [Indexed: 02/25/2025]
Abstract
Accurate identification of molecular interactions is crucial for biological network analysis, which can provide valuable insights into fundamental regulatory mechanisms. Despite considerable progress driven by computational advancements, existing methods often rely on task-specific prior knowledge or inherent structural properties of molecules, which limits their generalizability and applicability. Recently, graph-based methods have emerged as a promising approach for predicting links in molecular networks. However, most of these methods focus primarily on aggregating topological information within individual domains, leading to an inadequate characterization of molecular interactions. To mitigate these challenges, we propose AMCGRL, a generalized multi-domain cooperative graph representation learning framework for multifarious molecular interaction prediction tasks. Concretely, AMCGRL incorporates multiple graph encoders to simultaneously learn molecular representations from both intra-domain and inter-domain graphs in a comprehensive manner. Then, the cross-domain decoder is employed to bridge these graph encoders to facilitate the extraction of task-relevant information across different domains. Furthermore, a hierarchical mutual attention mechanism is developed to capture complex pairwise interaction patterns between distinct types of molecules through inter-molecule communicative learning. Extensive experiments conducted on the various datasets demonstrate the superior representation learning capability of AMCGRL compared to the state-of-the-art methods, proving its effectiveness in advancing the prediction of molecular interactions.
Collapse
Affiliation(s)
- Zhaowei Wang
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Jun Meng
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Haibin Li
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Qiguo Dai
- School of Computer Science and Engineering, Dalian Minzu University, Dalian 116600, China.
| | - Xiaohui Lin
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Yushi Luan
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
2
|
Xu B, Chen J, Wang Y, Fu Q, Lu Y. Reinforced Metapath Optimization in Heterogeneous Information Networks for Drug-Target Interaction Prediction. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:2315-2329. [PMID: 39316496 DOI: 10.1109/tcbb.2024.3467135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Graph neural networks offer an effective avenue for predicting drug-target interactions. In this domain, researchers have found that constructing heterogeneous information networks based on metapaths using diverse biological datasets enhances prediction performance. However, the performance of such methods is closely tied to the selection of metapaths and the compatibility between metapath subgraphs and graph neural networks. Most existing approaches still rely on fixed strategies for selecting metapaths and often fail to fully exploit node information along the metapaths, limiting the improvement in model performance. This paper introduces a novel method for predicting drug-target interactions by optimizing metapaths in heterogeneous information networks. On one hand, the method formulates the metapath optimization problem as a Markov decision process, using the enhancement of downstream network performance as a reward signal. Through iterative training of a reinforcement learning agent, a high-quality set of metapaths is learned. On the other hand, to fully leverage node information along the metapaths, the paper constructs subgraphs based on nodes along the metapaths. Different depths of subgraphs are processed using different graph convolutional neural network. The proposed method is validated using standard heterogeneous biological benchmark datasets. Experimental results on standard datasets show significant advantages over traditional methods.
Collapse
|
3
|
Chen M, Zou Q, Qi R, Ding Y. PseU-KeMRF: A Novel Method for Identifying RNA Pseudouridine Sites. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:1423-1435. [PMID: 38625768 DOI: 10.1109/tcbb.2024.3389094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Pseudouridine is a type of abundant RNA modification that is seen in many different animals and is crucial for a variety of biological functions. Accurately identifying pseudouridine sites within the RNA sequence is vital for the subsequent study of various biological mechanisms of pseudouridine. However, the use of traditional experimental methods faces certain challenges. The development of fast and convenient computational methods is necessary to accurately identify pseudouridine sites from RNA sequence information. To address this, we introduce a novel pseudouridine site prediction model called PseU-KeMRF, which can identify pseudouridine sites in three species, H. sapiens, S. cerevisiae, and M. musculus. Through comprehensive analysis, we selected four RNA coding schemes, including binary feature, position-specific trinucleotide propensity based on single strand (PSTNPss), nucleotide chemical property (NCP) and pseudo k-tuple composition (PseKNC). Then the support vector machine-recursive feature elimination (SVM-RFE) method was used for feature selection and the feature subset was optimized. Finally, the best feature subsets are input into the kernel based on multinomial random forests (KeMRF) classifier for cross-validation and independent testing. As a new classification method, compared with the traditional random forest, KeMRF not only improves the node splitting process of decision tree construction based on multinomial distribution, but also combines the easy to interpret kernel method for prediction, which makes the classification performance better. Our results indicate superior predictive performance of PseU-KeMRF over other existing models, which can prove that PseU-KeMRF is a highly competitive predictive model that can successfully identify pseudouridine sites in RNA sequences.
Collapse
|
4
|
Wu H, Liu J, Zhang R, Lu Y, Cui G, Cui Z, Ding Y. A review of deep learning methods for ligand based drug virtual screening. FUNDAMENTAL RESEARCH 2024; 4:715-737. [PMID: 39156568 PMCID: PMC11330120 DOI: 10.1016/j.fmre.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/10/2024] [Accepted: 02/18/2024] [Indexed: 08/20/2024] Open
Abstract
Drug discovery is costly and time consuming, and modern drug discovery endeavors are progressively reliant on computational methodologies, aiming to mitigate temporal and financial expenditures associated with the process. In particular, the time required for vaccine and drug discovery is prolonged during emergency situations such as the coronavirus 2019 pandemic. Recently, the performance of deep learning methods in drug virtual screening has been particularly prominent. It has become a concern for researchers how to summarize the existing deep learning in drug virtual screening, select different models for different drug screening problems, exploit the advantages of deep learning models, and further improve the capability of deep learning in drug virtual screening. This review first introduces the basic concepts of drug virtual screening, common datasets, and data representation methods. Then, large numbers of common deep learning methods for drug virtual screening are compared and analyzed. In addition, a dataset of different sizes is constructed independently to evaluate the performance of each deep learning model for the difficult problem of large-scale ligand virtual screening. Finally, the existing challenges and future directions in the field of virtual screening are presented.
Collapse
Affiliation(s)
- Hongjie Wu
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Junkai Liu
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Runhua Zhang
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yaoyao Lu
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Guozeng Cui
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zhiming Cui
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yijie Ding
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou 324000, China
| |
Collapse
|
5
|
Ke J, Zhao J, Li H, Yuan L, Dong G, Wang G. Prediction of protein N-terminal acetylation modification sites based on CNN-BiLSTM-attention model. Comput Biol Med 2024; 174:108330. [PMID: 38588617 DOI: 10.1016/j.compbiomed.2024.108330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/06/2024] [Accepted: 03/17/2024] [Indexed: 04/10/2024]
Abstract
N-terminal acetylation is one of the most common and important post-translational modifications (PTM) of eukaryotic proteins. PTM plays a crucial role in various cellular processes and disease pathogenesis. Thus, the accurate identification of N-terminal acetylation modifications is important to gain insight into cellular processes and other possible functional mechanisms. Although some algorithmic models have been proposed, most have been developed based on traditional machine learning algorithms and small training datasets. Their practical applications are limited. Nevertheless, deep learning algorithmic models are better at handling high-throughput and complex data. In this study, DeepCBA, a model based on the hybrid framework of convolutional neural network (CNN), bidirectional long short-term memory network (BiLSTM), and attention mechanism deep learning, was constructed to detect the N-terminal acetylation sites. The DeepCBA was built as follows: First, a benchmark dataset was generated by selecting low-redundant protein sequences from the Uniport database and further reducing the redundancy of the protein sequences using the CD-HIT tool. Subsequently, based on the skip-gram model in the word2vec algorithm, tripeptide word vector features were generated on the benchmark dataset. Finally, the CNN, BiLSTM, and attention mechanism were combined, and the tripeptide word vector features were fed into the stacked model for multiple rounds of training. The model performed excellently on independent dataset test, with accuracy and area under the curve of 80.51% and 87.36%, respectively. Altogether, DeepCBA achieved superior performance compared with the baseline model, and significantly outperformed most existing predictors. Additionally, our model can be used to identify disease loci and drug targets.
Collapse
Affiliation(s)
- Jinsong Ke
- College of Computer and Control Engineering, Northeast Forestry University, Harbin, 150040, China
| | - Jianmei Zhao
- College of Computer and Control Engineering, Northeast Forestry University, Harbin, 150040, China; College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Hongfei Li
- College of Computer and Control Engineering, Northeast Forestry University, Harbin, 150040, China; College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Lei Yuan
- Department of Hepatobiliary Surgery, Quzhou People's Hospital, Quzhou, 324000, China
| | - Guanghui Dong
- College of Computer and Control Engineering, Northeast Forestry University, Harbin, 150040, China
| | - Guohua Wang
- College of Computer and Control Engineering, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
6
|
Chen M, Sun M, Su X, Tiwari P, Ding Y. Fuzzy kernel evidence Random Forest for identifying pseudouridine sites. Brief Bioinform 2024; 25:bbae169. [PMID: 38622357 PMCID: PMC11018548 DOI: 10.1093/bib/bbae169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/27/2024] [Accepted: 03/31/2024] [Indexed: 04/17/2024] Open
Abstract
Pseudouridine is an RNA modification that is widely distributed in both prokaryotes and eukaryotes, and plays a critical role in numerous biological activities. Despite its importance, the precise identification of pseudouridine sites through experimental approaches poses significant challenges, requiring substantial time and resources.Therefore, there is a growing need for computational techniques that can reliably and quickly identify pseudouridine sites from vast amounts of RNA sequencing data. In this study, we propose fuzzy kernel evidence Random Forest (FKeERF) to identify pseudouridine sites. This method is called PseU-FKeERF, which demonstrates high accuracy in identifying pseudouridine sites from RNA sequencing data. The PseU-FKeERF model selected four RNA feature coding schemes with relatively good performance for feature combination, and then input them into the newly proposed FKeERF method for category prediction. FKeERF not only uses fuzzy logic to expand the original feature space, but also combines kernel methods that are easy to interpret in general for category prediction. Both cross-validation tests and independent tests on benchmark datasets have shown that PseU-FKeERF has better predictive performance than several state-of-the-art methods. This new method not only improves the accuracy of pseudouridine site identification, but also provides a certain reference for disease control and related drug development in the future.
Collapse
Affiliation(s)
- Mingshuai Chen
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou 324003, China
| | - Mingai Sun
- Beidahuang Industry Group General Hospital, Harbin 150001, China
| | - Xi Su
- Foshan Women and Children Hospital, Foshan 528000, China
| | - Prayag Tiwari
- School of Information Technology, Halmstad University, Sweden
| | - Yijie Ding
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou 324003, China
| |
Collapse
|
7
|
Gu X, Liu J, Yu Y, Xiao P, Ding Y. MFD-GDrug: multimodal feature fusion-based deep learning for GPCR-drug interaction prediction. Methods 2024; 223:75-82. [PMID: 38286333 DOI: 10.1016/j.ymeth.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/14/2024] [Accepted: 01/26/2024] [Indexed: 01/31/2024] Open
Abstract
The accurate identification of drug-protein interactions (DPIs) is crucial in drug development, especially concerning G protein-coupled receptors (GPCRs), which are vital targets in drug discovery. However, experimental validation of GPCR-drug pairings is costly, prompting the need for accurate predictive methods. To address this, we propose MFD-GDrug, a multimodal deep learning model. Leveraging the ESM pretrained model, we extract protein features and employ a CNN for protein feature representation. For drugs, we integrated multimodal features of drug molecular structures, including three-dimensional features derived from Mol2vec and the topological information of drug graph structures extracted through Graph Convolutional Neural Networks (GCN). By combining structural characterizations and pretrained embeddings, our model effectively captures GPCR-drug interactions. Our tests on leading GPCR-drug interaction datasets show that MFD-GDrug outperforms other methods, demonstrating superior predictive accuracy.
Collapse
Affiliation(s)
- Xingyue Gu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Junkai Liu
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yue Yu
- School of Computer and Artificial Intelligence, Zhengzhou University, Zhengzhou 450001, China
| | - Pengfeng Xiao
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Yijie Ding
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, Zhejiang 324003, China; Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611730, China.
| |
Collapse
|
8
|
Tian C, Wang L, Cui Z, Wu H. GTAMP-DTA: Graph transformer combined with attention mechanism for drug-target binding affinity prediction. Comput Biol Chem 2024; 108:107982. [PMID: 38039800 DOI: 10.1016/j.compbiolchem.2023.107982] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/21/2023] [Accepted: 11/07/2023] [Indexed: 12/03/2023]
Abstract
Drug target affinity prediction (DTA) is critical to the success of drug development. While numerous machine learning methods have been developed for this task, there remains a necessity to further enhance the accuracy and reliability of predictions. Considerable bias in drug target binding prediction may result due to missing structural information or missing information. In addition, current methods focus only on simulating individual non-covalent interactions between drugs and proteins, thereby neglecting the intricate interplay among different drugs and their interactions with proteins. GTAMP-DTA combines special Attention mechanisms, assigning each atom or amino acid an attention vector. Interactions between drug forms and protein forms were considered to capture information about their interactions. And fusion transformer was used to learn protein characterization from raw amino acid sequences, which were then merged with molecular map features extracted from SMILES. A self-supervised pre-trained embedding that uses pre-trained transformers to encode drug and protein attributes is introduced in order to address the lack of labeled data. Experimental results demonstrate that our model outperforms state-of-the-art methods on both the Davis and KIBA datasets. Additionally, the model's performance undergoes evaluation using three distinct pooling layers (max-pooling, mean-pooling, sum-pooling) along with variations of the attention mechanism. GTAMP-DTA shows significant performance improvements compared to other methods.
Collapse
Affiliation(s)
- Chuangchuang Tian
- College of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Luping Wang
- College of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zhiming Cui
- College of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Hongjie Wu
- College of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou 215009, China; Suzhou Smart City Research Institute, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
9
|
Wu H, Liu J, Jiang T, Zou Q, Qi S, Cui Z, Tiwari P, Ding Y. AttentionMGT-DTA: A multi-modal drug-target affinity prediction using graph transformer and attention mechanism. Neural Netw 2024; 169:623-636. [PMID: 37976593 DOI: 10.1016/j.neunet.2023.11.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/29/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
The accurate prediction of drug-target affinity (DTA) is a crucial step in drug discovery and design. Traditional experiments are very expensive and time-consuming. Recently, deep learning methods have achieved notable performance improvements in DTA prediction. However, one challenge for deep learning-based models is appropriate and accurate representations of drugs and targets, especially the lack of effective exploration of target representations. Another challenge is how to comprehensively capture the interaction information between different instances, which is also important for predicting DTA. In this study, we propose AttentionMGT-DTA, a multi-modal attention-based model for DTA prediction. AttentionMGT-DTA represents drugs and targets by a molecular graph and binding pocket graph, respectively. Two attention mechanisms are adopted to integrate and interact information between different protein modalities and drug-target pairs. The experimental results showed that our proposed model outperformed state-of-the-art baselines on two benchmark datasets. In addition, AttentionMGT-DTA also had high interpretability by modeling the interaction strength between drug atoms and protein residues. Our code is available at https://github.com/JK-Liu7/AttentionMGT-DTA.
Collapse
Affiliation(s)
- Hongjie Wu
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Junkai Liu
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; Yangtze Delta Region Institute(Quzhou), University of Electronic Science and Technology of China, Quzhou, 324003, China.
| | - Tengsheng Jiang
- Gusu School, Nanjing Medical University, Suzhou, 215009, China.
| | - Quan Zou
- Yangtze Delta Region Institute(Quzhou), University of Electronic Science and Technology of China, Quzhou, 324003, China.
| | - Shujie Qi
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Zhiming Cui
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Prayag Tiwari
- School of Information Technology, Halmstad University, Sweden.
| | - Yijie Ding
- Yangtze Delta Region Institute(Quzhou), University of Electronic Science and Technology of China, Quzhou, 324003, China.
| |
Collapse
|
10
|
Zhao H, Li H, Liu Q, Dong G, Hou C, Li Y, Zhao Y. Using TransR to enhance drug repurposing knowledge graph for COVID-19 and its complications. Methods 2024; 221:82-90. [PMID: 38104883 DOI: 10.1016/j.ymeth.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/14/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023] Open
Abstract
MOTIVATION The COVID-19 pandemic has been spreading globally for four years, yet specific drugs that effectively suppress the virus remain elusive. Furthermore, the emergence of complications associated with COVID-19 presents significant challenges, making the development of therapeutics for COVID-19 and its complications an urgent task. However, traditional drug development processes are time-consuming. Drug repurposing, which involves identifying new therapeutic applications for existing drugs, presents a viable alternative. RESULT In this study, we construct a knowledge graph by retrieving information on genes, drugs, and diseases from databases such as DRUGBANK and GNBR. Next, we employ the TransR knowledge representation learning approach to embed entities and relationships into the knowledge graph. Subsequently, we train the knowledge graph using a graph neural network model based on TransR scoring. This trained knowledge graph is then utilized to predict drugs for the treatment of COVID-19 and its complications. Based on experimental results, we have identified 15 drugs out of the top 30 with the highest success rates associated with treating COVID-19 and its complications. Notably, out of these 15 drugs, 10 specifically aimed at treating COVID-19, such as Torcetrapib and Tocopherol, has not been previously identified in the knowledge graph. This finding highlights the potential of our model in aiding healthcare professionals in drug development and research related to this disease.
Collapse
Affiliation(s)
- Hongxi Zhao
- College of Computer and Control Engineering, Northeast Forestry University, 150040, Harbin, HeiLongJiang, China
| | - Hongfei Li
- College of Computer and Control Engineering, Northeast Forestry University, 150040, Harbin, HeiLongJiang, China; College of Life Science, Northeast Forestry University, 150040, Harbin, HeiLongJiang, China
| | - Qiaoming Liu
- School of Medicine and Health, Harbin Institute of Technology, 150001, Harbin, HeiLongJiang, China; Zhengzhou Research Institute, Harbin Institute of Technology, 450000, Zhengzhou, Henan, China
| | - Guanghui Dong
- College of Computer and Control Engineering, Northeast Forestry University, 150040, Harbin, HeiLongJiang, China
| | - Chang Hou
- College of Computer and Control Engineering, Northeast Forestry University, 150040, Harbin, HeiLongJiang, China
| | - Yang Li
- College of Computer and Control Engineering, Northeast Forestry University, 150040, Harbin, HeiLongJiang, China.
| | - Yuming Zhao
- College of Computer and Control Engineering, Northeast Forestry University, 150040, Harbin, HeiLongJiang, China; College of Life Science, Northeast Forestry University, 150040, Harbin, HeiLongJiang, China.
| |
Collapse
|
11
|
Wang Y, Zhang J, Jin J, Wei L. MolCAP: Molecular Chemical reActivity Pretraining and prompted-finetuning enhanced molecular representation learning. Comput Biol Med 2023; 167:107666. [PMID: 37956623 DOI: 10.1016/j.compbiomed.2023.107666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/19/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023]
Abstract
Molecular representation learning (MRL) is a fundamental task for drug discovery. However, previous deep-learning (DL) methods focus excessively on learning robust inner-molecular representations by mask-dominated pretraining frameworks, neglecting abundant chemical reactivity molecular relationships that have been demonstrated as the determining factor for various molecular property prediction tasks. Here, we present MolCAP to promote MRL, a graph-pretraining Transformer based on chemical reactivity (IMR) knowledge with prompted finetuning. Results show that MolCAP outperforms comparative methods based on traditional molecular pretraining frameworks, in 13 publicly available molecular datasets across a diversity of biomedical tasks. Prompted by MolCAP, even basic graph neural networks are capable of achieving surprising performance that outperforms previous models, indicating the promising prospect of applying reactivity information to MRL. In addition, manually designed molecular templets are potential to uncover the dataset bias. All in all, we expect our MolCAP to gain more chemical meaningful insights for the entire process of drug discovery.
Collapse
Affiliation(s)
- Yu Wang
- School of Software, Shandong University, Jinan, 250101, China; Joint SDU-NTU Centre for Artificial Intelligence Research (C-FAIR), Shandong University, Jinan, 250101, China
| | - Jingjie Zhang
- School of Software, Shandong University, Jinan, 250101, China; Joint SDU-NTU Centre for Artificial Intelligence Research (C-FAIR), Shandong University, Jinan, 250101, China
| | - Junru Jin
- School of Software, Shandong University, Jinan, 250101, China; Joint SDU-NTU Centre for Artificial Intelligence Research (C-FAIR), Shandong University, Jinan, 250101, China
| | - Leyi Wei
- School of Software, Shandong University, Jinan, 250101, China; Joint SDU-NTU Centre for Artificial Intelligence Research (C-FAIR), Shandong University, Jinan, 250101, China.
| |
Collapse
|
12
|
Meng Q, Guo F, Wang E, Tang J. ComDock: A novel approach for protein-protein docking with an efficient fusing strategy. Comput Biol Med 2023; 167:107660. [PMID: 37944303 DOI: 10.1016/j.compbiomed.2023.107660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/08/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
Protein-protein interaction plays an important role in studying the mechanism of protein functions from the structural perspective. Molecular docking is a powerful approach to detect protein-protein complexes using computational tools, due to the high cost and time-consuming of the traditional experimental methods. Among existing technologies, the template-based method utilizes the structural information of known homologous 3D complexes as available and reliable templates to achieve high accuracy and low computational complexity. However, the performance of the template-based method depends on the quality and quantity of templates. When insufficient or even no templates, the ab initio docking method is necessary and largely enriches the docking conformations. Therefore, it's a feasible strategy to fuse the effectivity of the template-based model and the universality of ab initio model to improve the docking performance. In this study, we construct a new, diverse, comprehensive template library derived from PDB, containing 77,685 complexes. We propose a template-based method (named TemDock), which retrieves the evolutionary relationship between the target sequence and samples in the template library and transfers similar structural information. Then, the target structure is built by superposing on the homologous template complex with TM-align. Moreover, we develop a consensus-based method (named ComDock) to integrate our TemDock and an existing ab initio method (ZDOCK). On 105 targets with templates from Benchmark 5.0, the TemDock and ComDock achieve a success rate of 68.57 % and 71.43 % in the top 10 conformations, respectively. Compared with the HDOCK, ComDock obtains better I-RMSD of hit configurations on 9 targets and more hit models in the top 100 conformations. As an efficient method for protein-protein docking, the ComDock is expected to study protein-protein recognition and reveal the various biological passways that are critical for developing drug discovery. The final results are stored at https://github.com/guofei-tju/mqz_ComDock_docking.
Collapse
Affiliation(s)
- Qiaozhen Meng
- College of Intelligence and Computing, Tianjin University, Tianjin, China
| | - Fei Guo
- School of Computer Science and Engineering, Central South University, Changsha, China.
| | - Ercheng Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Laboratory, Hangzhou, Zhejiang, China.
| | - Jijun Tang
- Shenzhen Institute of Advanced Technology of Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
13
|
Ding Y, Zhou H, Zou Q, Yuan L. Identification of drug-side effect association via correntropy-loss based matrix factorization with neural tangent kernel. Methods 2023; 219:73-81. [PMID: 37783242 DOI: 10.1016/j.ymeth.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/04/2023] Open
Abstract
Adverse drug reactions include side effects, allergic reactions, and secondary infections. Severe adverse reactions can cause cancer, deformity, or mutation. The monitoring of drug side effects is an important support for post marketing safety supervision of drugs, and an important basis for revising drug instructions. Its purpose is to timely detect and control drug safety risks. Traditional methods are time-consuming. To accelerate the discovery of side effects, we propose a machine learning based method, called correntropy-loss based matrix factorization with neural tangent kernel (CLMF-NTK), to solve the prediction of drug side effects. Our method and other computational methods are tested on three benchmark datasets, and the results show that our method achieves the best predictive performance.
Collapse
Affiliation(s)
- Yijie Ding
- Key Laboratory of Computational Science and Application of Hainan Province, Hainan Normal University, Haikou 571158, China; Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou 324000, China; School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Hongmei Zhou
- Beidahuang Industry Group General Hospital, Harbin 150001, China
| | - Quan Zou
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou 324000, China.
| | - Lei Yuan
- Department of Hepatobiliary Surgery, Quzhou People's Hospital, 100# Minjiang Main Road, Quzhou 324000, China.
| |
Collapse
|
14
|
Liu X, Yang H, Ai C, Ding Y, Guo F, Tang J. MVML-MPI: Multi-View Multi-Label Learning for Metabolic Pathway Inference. Brief Bioinform 2023; 24:bbad393. [PMID: 37930024 DOI: 10.1093/bib/bbad393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/20/2023] [Accepted: 10/11/2023] [Indexed: 11/07/2023] Open
Abstract
Development of robust and effective strategies for synthesizing new compounds, drug targeting and constructing GEnome-scale Metabolic models (GEMs) requires a deep understanding of the underlying biological processes. A critical step in achieving this goal is accurately identifying the categories of pathways in which a compound participated. However, current machine learning-based methods often overlook the multifaceted nature of compounds, resulting in inaccurate pathway predictions. Therefore, we present a novel framework on Multi-View Multi-Label Learning for Metabolic Pathway Inference, hereby named MVML-MPI. First, MVML-MPI learns the distinct compound representations in parallel with corresponding compound encoders to fully extract features. Subsequently, we propose an attention-based mechanism that offers a fusion module to complement these multi-view representations. As a result, MVML-MPI accurately represents and effectively captures the complex relationship between compounds and metabolic pathways and distinguishes itself from current machine learning-based methods. In experiments conducted on the Kyoto Encyclopedia of Genes and Genomes pathways dataset, MVML-MPI outperformed state-of-the-art methods, demonstrating the superiority of MVML-MPI and its potential to utilize the field of metabolic pathway design, which can aid in optimizing drug-like compounds and facilitating the development of GEMs. The code and data underlying this article are freely available at https://github.com/guofei-tju/MVML-MPI. Contact: jtang@cse.sc.edu, guofei@csu.edu.com or wuxi_dyj@csj.uestc.edu.cn.
Collapse
Affiliation(s)
- Xiaoyi Liu
- Computer Science and Engineering, University of South Carolina, Columbia 29208, USA
| | - Hongpeng Yang
- Computer Science and Engineering, University of South Carolina, Columbia 29208, USA
| | - Chengwei Ai
- Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Yijie Ding
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou 324000, China
| | - Fei Guo
- Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Jijun Tang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Nanshan 518055, China
| |
Collapse
|
15
|
Liu Y, Guan S, Jiang T, Fu Q, Ma J, Cui Z, Ding Y, Wu H. DNA protein binding recognition based on lifelong learning. Comput Biol Med 2023; 164:107094. [PMID: 37459792 DOI: 10.1016/j.compbiomed.2023.107094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/09/2023] [Accepted: 05/27/2023] [Indexed: 09/09/2023]
Abstract
In recent years, research in the field of bioinformatics has focused on predicting the raw sequences of proteins, and some scholars consider DNA-binding protein prediction as a classification task. Many statistical and machine learning-based methods have been widely used in DNA-binding proteins research. The aforementioned methods are indeed more efficient than those based on manual classification, but there is still room for improvement in terms of prediction accuracy and speed. In this study, researchers used Average Blocks, Discrete Cosine Transform, Discrete Wavelet Transform, Global encoding, Normalized Moreau-Broto Autocorrelation and Pseudo position-specific scoring matrix to extract evolutionary features. A dynamic deep network based on lifelong learning architecture was then proposed in order to fuse six features and thus allow for more efficient classification of DNA-binding proteins. The multi-feature fusion allows for a more accurate description of the desired protein information than single features. This model offers a fresh perspective on the dichotomous classification problem in bioinformatics and broadens the application field of lifelong learning. The researchers ran trials on three datasets and contrasted them with other classification techniques to show the model's effectiveness in this study. The findings demonstrated that the model used in this research was superior to other approaches in terms of single-sample specificity (81.0%, 83.0%) and single-sample sensitivity (82.4%, 90.7%), and achieves high accuracy on the benchmark dataset (88.4%, 80.0%, and 76.6%).
Collapse
Affiliation(s)
- Yongsan Liu
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - ShiXuan Guan
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - TengSheng Jiang
- Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Qiming Fu
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Jieming Ma
- School of Intelligent Engineering, Xijiao Liverpool University, Suzhou, 215123, China
| | - Zhiming Cui
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yijie Ding
- Yangtze Delta Region Institute, University of Electronic Science and Technology of China, Quzhou, Zhejiang, China
| | - Hongjie Wu
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
16
|
Guan S, Qian Y, Jiang T, Jiang M, Ding Y, Wu H. MV-H-RKM: A Multiple View-Based Hypergraph Regularized Restricted Kernel Machine for Predicting DNA-Binding Proteins. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:1246-1256. [PMID: 35731758 DOI: 10.1109/tcbb.2022.3183191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
DNA-binding proteins (DBPs) have a significant impact on many life activities, so identification of DBPs is a crucial issue. And it is greatly helpful to understand the mechanism of protein-DNA interactions. In traditional experimental methods, it is significant time-consuming and labor-consuming to identify DBPs. In recent years, many researchers have proposed lots of different DBP identification methods based on machine learning algorithm to overcome shortcomings mentioned above. However, most existing methods cannot get satisfactory results. In this paper, we focus on developing a new predictor of DBPs, called Multi-View Hypergraph Restricted Kernel Machines (MV-H-RKM). In this method, we extract five features from the three views of the proteins. To fuse these features, we couple them by means of the shared hidden vector. Besides, we employ the hypergraph regularization to enforce the structure consistency between original features and the hidden vector. Experimental results show that the accuracy of MV-H-RKM is 84.09% and 85.48% on PDB1075 and PDB186 data set respectively, and demonstrate that our proposed method performs better than other state-of-the-art approaches. The code is publicly available at https://github.com/ShixuanGG/MV-H-RKM.
Collapse
|
17
|
Ding Y, He W, Tang J, Zou Q, Guo F. Laplacian Regularized Sparse Representation Based Classifier for Identifying DNA N4-Methylcytosine Sites via L 2,1/2-Matrix Norm. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:500-511. [PMID: 34882559 DOI: 10.1109/tcbb.2021.3133309] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
N4-methylcytosine (4mC) is one of important epigenetic modifications in DNA sequences. Detecting 4mC sites is time-consuming. The computational method based on machine learning has provided effective help for identifying 4mC. To further improve the performance of prediction, we propose a Laplacian Regularized Sparse Representation based Classifier with L2,1/2-matrix norm (LapRSRC). We also utilize kernel trick to derive the kernel LapRSRC for nonlinear modeling. Matrix factorization technology is employed to solve the sparse representation coefficients of all test samples in the training set. And an efficient iterative algorithm is proposed to solve the objective function. We implement our model on six benchmark datasets of 4mC and eight UCI datasets to evaluate performance. The results show that the performance of our method is better or comparable.
Collapse
|
18
|
Dong R, Yang H, Ai C, Duan G, Wang J, Guo F. DeepBLI: A Transferable Multichannel Model for Detecting β-Lactamase-Inhibitor Interaction. J Chem Inf Model 2022; 62:5830-5840. [PMID: 36245217 DOI: 10.1021/acs.jcim.2c01008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pathogens producing β-lactamase pose a great challenge to antibiotic-resistant infection treatment; thus, it is urgent to discover novel β-lactamase inhibitors for drug development. Conventional high-throughput screening is very costly, and structure-based virtual screening is limited with mechanisms. In this study, we construct a novel multichannel deep neural network (DeepBLI) for β-lactamase inhibitor screening, pretrained with a label reversal KIBA data set and fine-tuned on β-lactamase-inhibitor pairs from BindingDB. First, the pairs of encoders (Conv and Att) fuse the information spatially and sequentially for both enzymes and inhibitors. Then, a co-attention module creates the connection between the inhibitor and enzyme embeddings. Finally, multichannel outputs fuse with an element-wise product and then are fed into 3-layer fully connected networks to predict interactions. Comparing the state-of-the-art methods, DeepBLI yields an AUROC of 0.9240 and an AUPRC of 0.9715, which indicates that it can identify new β-lactamase-inhibitor interactions. To demonstrate its prediction ability, an application of DeepBLI is described to screen potential inhibitor compounds for metallo-β-lactamase AIM-1 and repurpose rottlerin for four classes of β-lactamase targets, showing the possibility of being a broad-spectrum inhibitor. DeepBLI provides an effective way for antibacterial drug development, contributing to antibiotic-resistant therapeutics.
Collapse
Affiliation(s)
- Ruihan Dong
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing100871, China
| | - Hongpeng Yang
- Department of Computer Science and Engineering, University of South Carolina, Columbia, South Carolina29208, United States
| | - Chengwei Ai
- College of Intelligence and Computing, Tianjin University, Tianjin300350, China
| | - Guihua Duan
- School of Computer Science and Engineering, Central South University, Changsha410083, China
| | - Jianxin Wang
- School of Computer Science and Engineering, Central South University, Changsha410083, China
| | - Fei Guo
- School of Computer Science and Engineering, Central South University, Changsha410083, China
| |
Collapse
|
19
|
Nag S, Baidya ATK, Mandal A, Mathew AT, Das B, Devi B, Kumar R. Deep learning tools for advancing drug discovery and development. 3 Biotech 2022; 12:110. [PMID: 35433167 PMCID: PMC8994527 DOI: 10.1007/s13205-022-03165-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 03/18/2022] [Indexed: 12/26/2022] Open
Abstract
A few decades ago, drug discovery and development were limited to a bunch of medicinal chemists working in a lab with enormous amount of testing, validations, and synthetic procedures, all contributing to considerable investments in time and wealth to get one drug out into the clinics. The advancements in computational techniques combined with a boom in multi-omics data led to the development of various bioinformatics/pharmacoinformatics/cheminformatics tools that have helped speed up the drug development process. But with the advent of artificial intelligence (AI), machine learning (ML) and deep learning (DL), the conventional drug discovery process has been further rationalized. Extensive biological data in the form of big data present in various databases across the globe acts as the raw materials for the ML/DL-based approaches and helps in accurate identifications of patterns and models which can be used to identify therapeutically active molecules with much fewer investments on time, workforce and wealth. In this review, we have begun by introducing the general concepts in the drug discovery pipeline, followed by an outline of the fields in the drug discovery process where ML/DL can be utilized. We have also introduced ML and DL along with their applications, various learning methods, and training models used to develop the ML/DL-based algorithms. Furthermore, we have summarized various DL-based tools existing in the public domain with their application in the drug discovery paradigm which includes DL tools for identification of drug targets and drug-target interaction such as DeepCPI, DeepDTA, WideDTA, PADME DeepAffinity, and DeepPocket. Additionally, we have discussed various DL-based models used in protein structure prediction, de novo design of new chemical scaffolds, virtual screening of chemical libraries for hit identification, absorption, distribution, metabolism, excretion, and toxicity (ADMET) prediction, metabolite prediction, clinical trial design, and oral bioavailability prediction. In the end, we have tried to shed light on some of the successful ML/DL-based models used in the drug discovery and development pipeline while also discussing the current challenges and prospects of the application of DL tools in drug discovery and development. We believe that this review will be useful for medicinal and computational chemists searching for DL tools for use in their drug discovery projects.
Collapse
Affiliation(s)
- Sagorika Nag
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (B.H.U.), Varanasi, UP 221005 India
| | - Anurag T. K. Baidya
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (B.H.U.), Varanasi, UP 221005 India
| | - Abhimanyu Mandal
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (B.H.U.), Varanasi, UP 221005 India
| | - Alen T. Mathew
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (B.H.U.), Varanasi, UP 221005 India
| | - Bhanuranjan Das
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (B.H.U.), Varanasi, UP 221005 India
| | - Bharti Devi
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (B.H.U.), Varanasi, UP 221005 India
| | - Rajnish Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (B.H.U.), Varanasi, UP 221005 India
| |
Collapse
|
20
|
Lu W, Shen J, Zhang Y, Wu H, Qian Y, Chen X, Fu Q. Identifying Membrane Protein Types Based on Lifelong Learning With Dynamically Scalable Networks. Front Genet 2022; 12:834488. [PMID: 35371189 PMCID: PMC8964460 DOI: 10.3389/fgene.2021.834488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 12/21/2021] [Indexed: 11/13/2022] Open
Abstract
Membrane proteins are an essential part of the body's ability to maintain normal life activities. Further research into membrane proteins, which are present in all aspects of life science research, will help to advance the development of cells and drugs. The current methods for predicting proteins are usually based on machine learning, but further improvements in prediction effectiveness and accuracy are needed. In this paper, we propose a dynamic deep network architecture based on lifelong learning in order to use computers to classify membrane proteins more effectively. The model extends the application area of lifelong learning and provides new ideas for multiple classification problems in bioinformatics. To demonstrate the performance of our model, we conducted experiments on top of two datasets and compared them with other classification methods. The results show that our model achieves high accuracy (95.3 and 93.5%) on benchmark datasets and is more effective compared to other methods.
Collapse
Affiliation(s)
- Weizhong Lu
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, China.,Suzhou Key Laboratory of Virtual Reality Intelligent Interaction and Application Technology, Suzhou University of Science and Technology, Suzhou, China.,Provincial Key Laboratory for Computer Information Processing Technology, Soochow University, Suzhou, China
| | - Jiawei Shen
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Yu Zhang
- Suzhou Industrial Park Institute of Services Outsourcing, Suzhou, China
| | - Hongjie Wu
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, China.,Suzhou Key Laboratory of Virtual Reality Intelligent Interaction and Application Technology, Suzhou University of Science and Technology, Suzhou, China
| | - Yuqing Qian
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Xiaoyi Chen
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Qiming Fu
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, China
| |
Collapse
|
21
|
HKAM-MKM: A hybrid kernel alignment maximization-based multiple kernel model for identifying DNA-binding proteins. Comput Biol Med 2022; 145:105395. [PMID: 35334314 DOI: 10.1016/j.compbiomed.2022.105395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/08/2022] [Accepted: 03/08/2022] [Indexed: 12/24/2022]
Abstract
The identification of DNA-binding proteins (DBPs) has always been a hot issue in the field of sequence classification. However, considering that the experimental identification method is very resource-intensive, the construction of a computational prediction model is worthwhile. This study developed and evaluated a hybrid kernel alignment maximization-based multiple kernel model (HKAM-MKM) for predicting DBPs. First, we collected two datasets and performed feature extraction on the sequences to obtain six feature groups, and then constructed the corresponding kernels. To ensure the effective utilisation of the base kernel and avoid ignoring the difference between the sample and its neighbours, we proposed local kernel alignment to calculate the kernel between the sample and its neighbours, with each sample as the centre. We combined the global and local kernel alignments to develop a hybrid kernel alignment model, and balance the relationship between the two through parameters. By maximising the hybrid kernel alignment value, we obtained the weight of each kernel and then linearly combined the kernels in the form of weights. Finally, the fused kernel was input into a support vector machine for training and prediction. Finally, in the independent test sets PDB186 and PDB2272, we obtained the highest Matthew's correlation coefficient (MCC) (0.768 and 0.5962, respectively) and the highest accuracy (87.1% and 78.43%, respectively), which were superior to the other predictors. Therefore, HKAM-MKM is an efficient prediction tool for DBPs.
Collapse
|
22
|
Sun J, Lu Y, Cui L, Fu Q, Wu H, Chen J. A Method of Optimizing Weight Allocation in Data Integration Based on Q-Learning for Drug-Target Interaction Prediction. Front Cell Dev Biol 2022; 10:794413. [PMID: 35356288 PMCID: PMC8959213 DOI: 10.3389/fcell.2022.794413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 02/14/2022] [Indexed: 11/26/2022] Open
Abstract
Calculating and predicting drug-target interactions (DTIs) is a crucial step in the field of novel drug discovery. Nowadays, many models have improved the prediction performance of DTIs by fusing heterogeneous information, such as drug chemical structure and target protein sequence and so on. However, in the process of fusion, how to allocate the weight of heterogeneous information reasonably is a huge challenge. In this paper, we propose a model based on Q-learning algorithm and Neighborhood Regularized Logistic Matrix Factorization (QLNRLMF) to predict DTIs. First, we obtain three different drug-drug similarity matrices and three different target-target similarity matrices by using different similarity calculation methods based on heterogeneous data, including drug chemical structure, target protein sequence and drug-target interactions. Then, we initialize a set of weights for the drug-drug similarity matrices and target-target similarity matrices respectively, and optimize them through Q-learning algorithm. When the optimal weights are obtained, a new drug-drug similarity matrix and a new drug-drug similarity matrix are obtained by linear combination. Finally, the drug target interaction matrix, the new drug-drug similarity matrices and the target-target similarity matrices are used as inputs to the Neighborhood Regularized Logistic Matrix Factorization (NRLMF) model for DTIs. Compared with the existing six methods of NetLapRLS, BLM-NII, WNN-GIP, KBMF2K, CMF, and NRLMF, our proposed method has achieved better effect in the four benchmark datasets, including enzymes(E), nuclear receptors (NR), ion channels (IC) and G protein coupled receptors (GPCR).
Collapse
Affiliation(s)
- Jiacheng Sun
- School of Electronic and Information Engineering, SuZhou University of Science and Technology, Suzhou, China
- Jiangsu Province Key Laboratory of Intelligent Building Energy Efficiency, Suzhou University of Science and Technology, Suzhou, China
- Suzhou Key Laboratory of Mobile Network Technology and Application, Suzhou University of Science and Technology, Suzhou, China
| | - You Lu
- School of Electronic and Information Engineering, SuZhou University of Science and Technology, Suzhou, China
- Jiangsu Province Key Laboratory of Intelligent Building Energy Efficiency, Suzhou University of Science and Technology, Suzhou, China
- Suzhou Key Laboratory of Mobile Network Technology and Application, Suzhou University of Science and Technology, Suzhou, China
- *Correspondence: You Lu, ; Jianping Chen,
| | - Linqian Cui
- School of Electronic and Information Engineering, SuZhou University of Science and Technology, Suzhou, China
- Jiangsu Province Key Laboratory of Intelligent Building Energy Efficiency, Suzhou University of Science and Technology, Suzhou, China
- Suzhou Key Laboratory of Mobile Network Technology and Application, Suzhou University of Science and Technology, Suzhou, China
| | - Qiming Fu
- School of Electronic and Information Engineering, SuZhou University of Science and Technology, Suzhou, China
- Jiangsu Province Key Laboratory of Intelligent Building Energy Efficiency, Suzhou University of Science and Technology, Suzhou, China
- Suzhou Key Laboratory of Mobile Network Technology and Application, Suzhou University of Science and Technology, Suzhou, China
| | - Hongjie Wu
- School of Electronic and Information Engineering, SuZhou University of Science and Technology, Suzhou, China
| | - Jianping Chen
- Jiangsu Province Key Laboratory of Intelligent Building Energy Efficiency, Suzhou University of Science and Technology, Suzhou, China
- School of Architecture and Urban Planning, Suzhou University of Science and Technology, Suzhou, China
- *Correspondence: You Lu, ; Jianping Chen,
| |
Collapse
|
23
|
Jiang L, Sun J, Wang Y, Ning Q, Luo N, Yin M. Identifying drug-target interactions via heterogeneous graph attention networks combined with cross-modal similarities. Brief Bioinform 2022; 23:6537345. [PMID: 35224614 DOI: 10.1093/bib/bbac016] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/04/2022] [Accepted: 01/13/2022] [Indexed: 11/12/2022] Open
Abstract
Accurate identification of drug-target interactions (DTIs) plays a crucial role in drug discovery. Compared with traditional experimental methods that are labor-intensive and time-consuming, computational methods are more and more popular in recent years. Conventional computational methods almost simply view heterogeneous networks which integrate diverse drug-related and target-related dataset instead of fully exploring drug and target similarities. In this paper, we propose a new method, named DTIHNC, for $\mathbf{D}$rug-$\mathbf{T}$arget $\mathbf{I}$nteraction identification, which integrates $\mathbf{H}$eterogeneous $\mathbf{N}$etworks and $\mathbf{C}$ross-modal similarities calculated by relations between drugs, proteins, diseases and side effects. Firstly, the low-dimensional features of drugs, proteins, diseases and side effects are obtained from original features by a denoising autoencoder. Then, we construct a heterogeneous network across drug, protein, disease and side-effect nodes. In heterogeneous network, we exploit the heterogeneous graph attention operations to update the embedding of a node based on information in its 1-hop neighbors, and for multi-hop neighbor information, we propose random walk with restart aware graph attention to integrate more information through a larger neighborhood region. Next, we calculate cross-modal drug and protein similarities from cross-scale relations between drugs, proteins, diseases and side effects. Finally, a multiple-layer convolutional neural network deeply integrates similarity information of drugs and proteins with the embedding features obtained from heterogeneous graph attention network. Experiments have demonstrated its effectiveness and better performance than state-of-the-art methods. Datasets and a stand-alone package are provided on Github with website https://github.com/ningq669/DTIHNC.
Collapse
Affiliation(s)
- Lu Jiang
- School of Information Science and Technology, Northeast Normal University, Jingyue Street, 130117, Changchun, China
| | - Jiahao Sun
- School of Information Science and Technology, Northeast Normal University, Jingyue Street, 130117, Changchun, China
| | - Yue Wang
- Department of Information Science and Technology, Dalian Maritime University, Lingshui Street, 116026, Dalian, China
| | - Qiao Ning
- Department of Information Science and Technology, Dalian Maritime University, Lingshui Street, 116026, Dalian, China
| | - Na Luo
- School of Information Science and Technology, Northeast Normal University, Jingyue Street, 130117, Changchun, China
| | - Minghao Yin
- School of Information Science and Technology, Northeast Normal University, Jingyue Street, 130117, Changchun, China
| |
Collapse
|
24
|
Guo X, Zhou W, Yu Y, Cai Y, Zhang Y, Du A, Lu Q, Ding Y, Li C. Multiple Laplacian Regularized RBF Neural Network for Assessing Dry Weight of Patients With End-Stage Renal Disease. Front Physiol 2021; 12:790086. [PMID: 34966294 PMCID: PMC8711098 DOI: 10.3389/fphys.2021.790086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/17/2021] [Indexed: 11/28/2022] Open
Abstract
Dry weight (DW) is an important dialysis index for patients with end-stage renal disease. It can guide clinical hemodialysis. Brain natriuretic peptide, chest computed tomography image, ultrasound, and bioelectrical impedance analysis are key indicators (multisource information) for assessing DW. By these approaches, a trial-and-error method (traditional measurement method) is employed to assess DW. The assessment of clinician is time-consuming. In this study, we developed a method based on artificial intelligence technology to estimate patient DW. Based on the conventional radial basis function neural (RBFN) network, we propose a multiple Laplacian-regularized RBFN (MLapRBFN) model to predict DW of patient. Compared with other model and body composition monitor, our method achieves the lowest value (1.3226) of root mean square error. In Bland-Altman analysis of MLapRBFN, the number of out agreement interval is least (17 samples). MLapRBFN integrates multiple Laplace regularization terms, and employs an efficient iterative algorithm to solve the model. The ratio of out agreement interval is 3.57%, which is lower than 5%. Therefore, our method can be tentatively applied for clinical evaluation of DW in hemodialysis patients.
Collapse
Affiliation(s)
- Xiaoyi Guo
- Hemodialysis Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China.,Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Wei Zhou
- Hemodialysis Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Yan Yu
- Hemodialysis Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Yinghua Cai
- Department of Nursing, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Yuan Zhang
- Hemodialysis Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Aiyan Du
- Hemodialysis Center, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Qun Lu
- Department of Nursing, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Yijie Ding
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
| | - Chao Li
- General Hospital of Heilongjiang Province Land Reclamation Bureau, Harbin, China
| |
Collapse
|
25
|
RFLMDA: A Novel Reinforcement Learning-Based Computational Model for Human MicroRNA-Disease Association Prediction. Biomolecules 2021; 11:biom11121835. [PMID: 34944479 PMCID: PMC8699433 DOI: 10.3390/biom11121835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 11/23/2022] Open
Abstract
Numerous studies have confirmed that microRNAs play a crucial role in the research of complex human diseases. Identifying the relationship between miRNAs and diseases is important for improving the treatment of complex diseases. However, traditional biological experiments are not without restrictions. It is an urgent necessity for computational simulation to predict unknown miRNA-disease associations. In this work, we combine Q-learning algorithm of reinforcement learning to propose a RFLMDA model, three submodels CMF, NRLMF, and LapRLS are fused via Q-learning algorithm to obtain the optimal weight S. The performance of RFLMDA was evaluated through five-fold cross-validation and local validation. As a result, the optimal weight is obtained as S (0.1735, 0.2913, 0.5352), and the AUC is 0.9416. By comparing the experiments with other methods, it is proved that RFLMDA model has better performance. For better validate the predictive performance of RFLMDA, we use eight diseases for local verification and carry out case study on three common human diseases. Consequently, all the top 50 miRNAs related to Colorectal Neoplasms and Breast Neoplasms have been confirmed. Among the top 50 miRNAs related to Colon Neoplasms, Gastric Neoplasms, Pancreatic Neoplasms, Kidney Neoplasms, Esophageal Neoplasms, and Lymphoma, we confirm 47, 41, 49, 46, 46 and 48 miRNAs respectively.
Collapse
|
26
|
Ding Y, Yang C, Tang J, Guo F. Identification of protein-nucleotide binding residues via graph regularized k-local hyperplane distance nearest neighbor model. APPL INTELL 2021. [DOI: 10.1007/s10489-021-02737-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|