Guo X, Zhang H, Sun J, Zhou Y. Preassigned Time Adaptive Neural Tracking Control for Stochastic Nonlinear Multiagent Systems With Deferred Constraints.
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024;
35:12409-12418. [PMID:
37018094 DOI:
10.1109/tnnls.2023.3262799]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
This article studies a preassigned time adaptive tracking control problem for stochastic multiagent systems (MASs) with deferred full state constraints and deferred prescribed performance. A modified nonlinear mapping is designed, which incorporates a class of shift functions, to eliminate the constraints on the initial value conditions. By virtue of this nonlinear mapping, the feasibility conditions of the full state constraints for stochastic MASs can also be circumvented. In addition, the Lyapunov function codesigned by the shift function and the fixed-time prescribed performance function is constructed. The unknown nonlinear terms of the converted systems are handled based on the approximation property of the neural networks. Furthermore, a preassigned time adaptive tracking controller is established, which can achieve deferred prescribed performance for stochastic MASs that provide only local information. Finally, a numerical example is given to demonstrate the effectiveness of the proposed scheme.
Collapse