1
|
Abdelaziz HA, Hamed MF, Ghoniem HA, Nader MA, Suddek GM. Empagliflozin Mitigates PTZ-Induced Seizures in Rats: Modulating Npas4 and CREB-BDNF Signaling Pathway. J Neuroimmune Pharmacol 2025; 20:5. [PMID: 39776284 PMCID: PMC11706855 DOI: 10.1007/s11481-024-10162-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025]
Abstract
Empagliflozin (EMPA) is one of the sodium/glucose cotransporter 2 (SGLT2) inhibitors that has been recently approved for the treatment of diabetes mellitus type II. Recently, EMPA has shown protective effects in different neurological disorders, besides its antidiabetic activity. Kindling is a relevant model to study epilepsy and neuroplasticity. This study aimed to investigate the potential protective effects of EMPA (1 and 3 mg/kg orally) against convulsant effects induced by pentylenetetrazole (PTZ) using a modified window- (win-) PTZ kindling protocol. The biochemical dysfunction and hippocampal damage induced by PTZ were profoundly reversed by EMPA treatment in a dose-dependent manner, as evidenced by the significant increase in reduced glutathione (GSH) and decrease in malondialdehyde (MDA) hippocampal contents. Furthermore, EMPA counteracted PTZ-induced neuronal damage in the hippocampal region, as confirmed by histopathological examination of the hippocampal tissues. EMPA impaired astrocytosis and showed an antiapoptotic effect through a significant reduction of glial fibrillary acidic protein (GFAP) and BCL2-Associated X Protein (BAX) expressions, respectively. Interestingly, EMPA exhibited an antiepileptic effect against PTZ-induced seizures through significantly reducing neuronal PAS domain Protein 4 (Npas4), cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) hippocampal expressions, and enhancing the brain-derived neurotrophic factor (BDNF)-tropomyosin receptor kinase B (TrkB) pathway, which are found to be involved in epileptogenesis, eventually leading to significant improvement of behavioral impairments induced by PTZ. Hence, these results showed further prospective insights for EMPA as a neuroprotective agent.
Collapse
Affiliation(s)
- Heba A Abdelaziz
- Pharmacology and Biochemistry Department, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, 35712, Egypt
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Mohamed F Hamed
- Pathology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Hamdy A Ghoniem
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Manar A Nader
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Mansoura National University, Gamasa, 7731168, Egypt
| | - Ghada M Suddek
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
2
|
Zhou C, Satpute V, Yip KL, Anderson LL, Hawkins N, Kearney J, Arnold JC. A high seizure burden increases several prostaglandin species in the hippocampus of a Scn1a +/- mouse model of Dravet syndrome. Prostaglandins Other Lipid Mediat 2024; 172:106836. [PMID: 38599513 DOI: 10.1016/j.prostaglandins.2024.106836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
Dravet syndrome is an intractable epilepsy with a high seizure burden that is resistant to current anti-seizure medications. There is evidence that neuroinflammation plays a role in epilepsy and seizures, however few studies have specifically examined neuroinflammation in Dravet syndrome under conditions of a higher seizure burden. Here we used an established genetic mouse model of Dravet syndrome (Scn1a+/- mice), to examine whether a higher seizure burden impacts the number and morphology of microglia in the hippocampus. Moreover, we examined whether a high seizure burden influences classical inflammatory mediators in this brain region. Scn1a+/- mice with a high seizure burden induced by thermal priming displayed a localised reduction in microglial cell density in the granule cell layer and subgranular zone of the dentate gyrus, regions important to postnatal neurogenesis. However, microglial cell number and morphology remained unchanged in other hippocampal subfields. The high seizure burden in Scn1a+/- mice did not affect hippocampal mRNA expression of classical inflammatory mediators such as interleukin 1β and tumour necrosis factor α, but increased cyclooxygenase 2 (COX-2) expression. We then quantified hippocampal levels of prostanoids that arise from COX-2 mediated metabolism of fatty acids and found that Scn1a+/- mice with a high seizure burden displayed increased hippocampal concentrations of numerous prostaglandins, notably PGF2α, PGE2, PGD2, and 6-K-PGF1A, compared to Scn1a+/- mice with a low seizure burden. In conclusion, a high seizure burden increased hippocampal concentrations of various prostaglandin mediators in a mouse model of Dravet syndrome. Future studies could interrogate the prostaglandin pathways to further better understand their role in the pathophysiology of Dravet syndrome.
Collapse
Affiliation(s)
- Cilla Zhou
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, NSW 2050, Australia; Discipline of Pharmacology, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia; Department of Pharmacology, Feinberg School of Medicine, Northwestern University, IL 60611, USA
| | - Vaishali Satpute
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, NSW 2050, Australia; Discipline of Pharmacology, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
| | - Ka Lai Yip
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, NSW 2050, Australia; Discipline of Pharmacology, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
| | - Lyndsey L Anderson
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, NSW 2050, Australia; Discipline of Pharmacology, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia
| | - Nicole Hawkins
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, IL 60611, USA
| | - Jennifer Kearney
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, IL 60611, USA
| | - Jonathon C Arnold
- Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, NSW 2050, Australia; Discipline of Pharmacology, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia.
| |
Collapse
|
3
|
Tukacs V, Mittli D, Hunyadi-Gulyás É, Darula Z, Juhász G, Kardos J, Kékesi KA. Comparative analysis of hippocampal extracellular space uncovers widely altered peptidome upon epileptic seizure in urethane-anaesthetized rats. Fluids Barriers CNS 2024; 21:6. [PMID: 38212833 PMCID: PMC10782730 DOI: 10.1186/s12987-024-00508-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/31/2023] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND The brain extracellular fluid (ECF), composed of secreted neurotransmitters, metabolites, peptides, and proteins, may reflect brain processes. Analysis of brain ECF may provide new potential markers for synaptic activity or brain damage and reveal additional information on pathological alterations. Epileptic seizure induction is an acute and harsh intervention in brain functions, and it can activate extra- and intracellular proteases, which implies an altered brain secretome. Thus, we applied a 4-aminopyridine (4-AP) epilepsy model to study the hippocampal ECF peptidome alterations upon treatment in rats. METHODS We performed in vivo microdialysis in the hippocampus for 3-3 h of control and 4-AP treatment phase in parallel with electrophysiology measurement. Then, we analyzed the microdialysate peptidome of control and treated samples from the same subject by liquid chromatography-coupled tandem mass spectrometry. We analyzed electrophysiological and peptidomic alterations upon epileptic seizure induction by two-tailed, paired t-test. RESULTS We detected 2540 peptides in microdialysate samples by mass spectrometry analysis; and 866 peptides-derived from 229 proteins-were found in more than half of the samples. In addition, the abundance of 322 peptides significantly altered upon epileptic seizure induction. Several proteins of significantly altered peptides are neuropeptides (Chgb) or have synapse- or brain-related functions such as the regulation of synaptic vesicle cycle (Atp6v1a, Napa), astrocyte morphology (Vim), and glutamate homeostasis (Slc3a2). CONCLUSIONS We have detected several consequences of epileptic seizures at the peptidomic level, as altered peptide abundances of proteins that regulate epilepsy-related cellular processes. Thus, our results indicate that analyzing brain ECF by in vivo microdialysis and omics techniques is useful for monitoring brain processes, and it can be an alternative method in the discovery and analysis of CNS disease markers besides peripheral fluid analysis.
Collapse
Affiliation(s)
- Vanda Tukacs
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest, 1117, Hungary
- Laboratory of Proteomics, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest, 1117, Hungary
| | - Dániel Mittli
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest, 1117, Hungary
- Laboratory of Proteomics, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest, 1117, Hungary
| | - Éva Hunyadi-Gulyás
- Laboratory of Proteomics Research, Biological Research Centre, Hungarian Research Network (HUN-REN), Temesvári Körút 62, Szeged, 6726, Hungary
| | - Zsuzsanna Darula
- Laboratory of Proteomics Research, Biological Research Centre, Hungarian Research Network (HUN-REN), Temesvári Körút 62, Szeged, 6726, Hungary
- Single Cell Omics Advanced Core Facility, Hungarian Centre of Excellence for Molecular Medicine, Temesvári Körút 62, Szeged, 6726, Hungary
| | - Gábor Juhász
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest, 1117, Hungary
- Laboratory of Proteomics, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest, 1117, Hungary
- InnoScience Hungary Ltd., Bátori Út 9, Mátranovák, 3142, Hungary
| | - József Kardos
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest, 1117, Hungary
| | - Katalin Adrienna Kékesi
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest, 1117, Hungary.
- Laboratory of Proteomics, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest, 1117, Hungary.
- InnoScience Hungary Ltd., Bátori Út 9, Mátranovák, 3142, Hungary.
- Department of Physiology and Neurobiology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, Budapest, 1117, Hungary.
| |
Collapse
|
4
|
Tsai CM, Chang SF, Chang H. Transcranial photobiomodulation add-on therapy to valproic acid for pentylenetetrazole-induced seizures in peripubertal rats. BMC Complement Med Ther 2022; 22:81. [PMID: 35313886 PMCID: PMC8935768 DOI: 10.1186/s12906-022-03562-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 03/09/2022] [Indexed: 12/15/2022] Open
Abstract
Background Convulsive status epilepticus (CSE) prevention is critical for pediatric patients with epilepsy. Immediate intervention before CSE reduce severity. Despite its wide usage as an anticonvulsant, valproic acid (VPA) results in harmful side effects such as dose-dependent hepatotoxicity. Hence, reducing VPA dosage to minimize side effects while maintaining its efficacy is necessary, and transcranial photobiomodulation (tPBM) add-on therapy could facilitate this. We recently demonstrated for the first time that tPBM at a wavelength of 808 nm attenuated CSE in peripubertal rats. However, the effects of VPA with the add-on therapy of tPBM prior to seizures have not yet been explored. This study investigated whether adding tPBM to VPA exerts synergistic effect for CSE prevention in peripubertal rats. Methods A gallium-aluminum-arsenide laser (wavelength of 808 nm with an exposure duration of 100 s and irradiance of 1.333 W/cm2 at the target) was applied transcranially 30 min after VPA injection in Sprague Dawley rats. All the rats received 90 mg/kg of pentylenetetrazole (PTZ). Except for the saline (n = 3), tPBM + saline (n = 3), and PTZ group (n = 6), all the rats received a PTZ injection 30 min after VPA injection. The rats received add-on tPBM with PTZ immediately after tPBM. In the VPA + PTZ group, the rats received low-dose (100 mg/kg, n = 6), medium-dose (200 mg/kg, n = 6), and high-dose (400 mg/kg, n = 7) VPA. In the VPA + tPBM + PTZ group, the rats received low (100 mg/kg, n = 5), medium (200 mg/kg, n = 6), and high (400 mg/kg, n = 3) doses of VPA. Seizures were evaluated according to the revised Racine’s scale in a non-blinded manner. Results Adding tPBM to low-dose VPA reduced the incidence of severe status epilepticus and significantly delayed the latency to stage 2 seizures. However, adding tPBM to high-dose VPA increased the maximum seizure stage, prolonged the duration of stage 4–7 seizures, and shortened the latency to stage 6 seizures. Conclusions Adding tPBM to low-dose VPA exerted a synergistic prevention effect on PTZ-induced seizures, whereas adding tPBM to high-dose VPA offset the attenuation effect.
Collapse
Affiliation(s)
- Chung-Min Tsai
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Pediatrics, MacKay Children's Hospital, Taipei, Taiwan
| | - Shwu-Fen Chang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsi Chang
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan. .,Department of Pediatrics, Taipei Medical University Hospital, 250 Wuxing St., Taipei, 11031, Taiwan.
| |
Collapse
|
5
|
Soubh AA, El-Gazar AA, Mohamed EA, Awad AS, El-Abhar HS. Further insights for the role of Morin in mRTBI: Implication of non-canonical Wnt/PKC-α and JAK-2/STAT-3 signaling pathways. Int Immunopharmacol 2021; 100:108123. [PMID: 34560511 DOI: 10.1016/j.intimp.2021.108123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 08/01/2021] [Accepted: 08/01/2021] [Indexed: 12/24/2022]
Abstract
The slightly available data about the pathogenesis process of mild repetitive traumatic brain injury (mRTBI) indicates to the necessity of further exploration of mRTBI consequences. Several cellular changes are believed to contribute to the cognitive disabilities, and neurodegenerative changes observed later in persons subjected to mRTBI. We investigated glial fibrillary acidic protein (GFAP), the important severity related biomarker, where it showed further increase after multiple trauma compared to single one. To authenticate our aim, Morin (10 mg/kg loading dose, then twice daily 5 mg/kg for 7 days), MK-801 (1 mg/kg; i.p) and their combination were used. The results obtained has shown that all the chosen regimens opposed the upregulated dementia markers (Aβ1-40,p(Thr231)Tau) and inflammatory protein contents/expression of p(Ser53s6)NF-κBp65, TNF-α, IL-6,and IL-1β and the elevated GFAP in immune stained cortex sections. Additionally, they exerted anti-apoptotic activity by decreasing caspase-3 activity and increasing Bcl-2 contents. Saving brain tissues was evident after these therapeutic agents via upregulating the non-canonical Wnt-1/PKC-α cue and IL-10/p(Tyr(1007/1008))JAK-2/p(Tyr705)STAT-3 signaling pathway to confirm enhancement of survival pathways on the molecular level. Such results were imitated by correcting the injury dependent deviated behavior, where Morin alone or in combination enhanced behavior outcome. On one side, our study refers to the implication of two survival signaling pathways; viz.,the non-canonical Wnt-1/PKC-α and p(Tyr(1007/1008))JAK-2/p(Tyr705)STAT-3 in single and repetitive mRTBI along with distorted dementia markers, inflammation and apoptotic process that finally disrupted behavior. On the other side, intervention through affecting all these targets by Morin alone or with MK-801 affords a promising neuroprotective effect.
Collapse
Affiliation(s)
- Ayman A Soubh
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Amira A El-Gazar
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Eman A Mohamed
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Azza S Awad
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Hanan S El-Abhar
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| |
Collapse
|
6
|
Dafe EA, Rahimi N, Javadian N, Dejban P, Komeili M, Modabberi S, Ghasemi M, Dehpour AR. Effect of Lenalidomide on Pentylenetetrazole-Induced Clonic Seizure Threshold in Mice: A Role for N-Methyl-D-Aspartic Acid Receptor/Nitric Oxide Pathway. J Epilepsy Res 2021; 11:6-13. [PMID: 34395218 PMCID: PMC8357552 DOI: 10.14581/jer.21002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 11/24/2022] Open
Abstract
Background and Purpose Accumulating evidence suggest that lenalidomide, a structural analog of thalidomide, has neuro-modulatory and neuroprotective properties. In the present study, we investigated effects of acute administration of lenalidomide on clonic seizure threshold in mice induced by pentylenetetrazole (PTZ) and possible role of N-methyl-D-aspartic acid receptor (NMDAR) and nitric oxide (NO) pathway. Methods We have utilized a clonic model of seizure in NMRI mice induced by PTZ to evaluate the potential effect of lenalidomide on seizure threshold. Different doses of lenalidomide (5, 10, 20, and 50 mg/kg, intraperitoneal [i.p.]) were administered 1 hour before PTZ. To evaluate probable role of NMDAR/NO signaling, the non-selective NO synthase inhibitor L-NG-nitroarginine methyl ester (L-NAME; 10 mg/kg, i.p.), neuronal NOS (nNOS) inhibitor 7-nitroindazole (7-NI; 30 mg/kg, i.p.), selective inducible NOS inhibitor aminoguanidine (AG; 100 mg/kg, i.p.), selective NMDAR antagonist MK-801 (0.01 mg/kg, i.p.), and selective NMDAR agonist D-serine (30 mg/kg, i.p.) were injected 15 minutes before lenalidomide. Results Lenalidomide at 10 and 20 mg/kg significantly elevated the PTZ-induced seizure thresholds. Interestingly, L-NAME (10 mg/kg, i.p), 7-NI (30 mg/kg, i.p), and AG (100 mg/kg, i.p) reversed the anticonvulsive effect of lenalidomide (10 mg/kg). Moreover, treatment with the NMDAR agonist D-serine (30 mg/kg, i.p.) did not alter the anticonvulsive properties of lenalidomide (10 mg/kg, i.p). However, the NMDAR antagonist MK-801 (0.01 mg/kg, i.p) significantly reversed the anticonvulsive effects of lenalidomide (10 mg/kg). Conclusions Our study demonstrated a role for the NMDAR/NO pathway in the anticonvulsive effects of lenalidomide on the PTZ-induced clonic seizures in mice.
Collapse
Affiliation(s)
- Elaheh Asgari Dafe
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, Tehran University of Medical Sciences, Tehran, Iran
| | - Nastaran Rahimi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, Tehran University of Medical Sciences, Tehran, Iran
| | - Nina Javadian
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, Tehran University of Medical Sciences, Tehran, Iran
| | - Pegah Dejban
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, NY, USA
| | - Monika Komeili
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Modabberi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Ghasemi
- Department of Neurology, University of Massachusetts School of Medicine, Worcester, MA, USA
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Gholizadeh R, Abdolmaleki Z, Bahremand T, Ghasemi M, Gharghabi M, Dehpour AR. Involvement of N-Methyl-D-Aspartate Receptors in the Anticonvulsive Effects of Licofelone on Pentylenetetrazole-Induced Clonic Seizure in Mice. J Epilepsy Res 2021; 11:14-21. [PMID: 34395219 PMCID: PMC8357553 DOI: 10.14581/jer.21003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/03/2021] [Accepted: 06/06/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Licofelone is a dual 5-lipoxygenase/cyclooxygenase inhibitor, with well-documented anti-inflammatory and analgesic effects, which is used for treatment of osteoarthritis. Recent preclinical studies have also suggested neuroprotective and anti-oxidative properties of this drug in some neurological conditions such as seizure and epilepsy. We have recently demonstrated a role for nitric oxide (NO) signaling in the anti-epileptic activity of licofelone in two seizure models in rodents. Given the important role of N-methyl-D-aspartate receptors (NMDARs) activation in the NO production and its function in the nervous system, in the present study, we further investigated the involvement of NMDAR in the effects of licofelone (1, 3, 5, 10, and 20 mg/kg, intraperitoneal [i.p.]) in an in vivo model of seizure in mice. METHODS Clonic seizures were induced in male NMRI mice by intravenous administration of pentylenetetrazol (PTZ). RESULTS Acute administration of licofelone exerted anticonvulsant effects at 10 (p<0.01) and 20 mg/kg (p<0.001). A combined treatment with sub-effective doses of the selective NMDAR antagonist MK-801 (0.05 mg/kg, i.p.) and licofelone (5 mg/kg, i.p.) significantly (p<0.001) exerted an anticonvulsant effect on the PTZ-induced clonic seizures in mice. Notably, pre-treatment with the NMDAR co-agonist D-serine (30 mg/kg, i.p.) partially hindered the anticonvulsant effects of licofelone (20 mg/kg). CONCLUSIONS Our data suggest a possible role for the NMDAR in the anticonvulsant effects of licofelone on the clonic seizures induced by PTZ in mice.
Collapse
Affiliation(s)
- Ramtin Gholizadeh
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, College of Veterinary Medicine, Islamic Azad University, Karaj, Iran
| | - Zohreh Abdolmaleki
- Department of Pharmacology, College of Veterinary Medicine, Islamic Azad University, Karaj, Iran
| | - Taraneh Bahremand
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Ghasemi
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Mehdi Gharghabi
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Campos-Rodriguez C, Fredrick E, Ramirez-San Juan E, Olsson R. Enantiomeric N-substituted phthalimides with excitatory amino acids protect zebrafish larvae against PTZ-induced seizures. Eur J Pharmacol 2020; 888:173489. [DOI: 10.1016/j.ejphar.2020.173489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 10/23/2022]
|
9
|
Zamanian G, Shayan M, Rahimi N, Bahremand T, Shafaroodi H, Ejtemaei-Mehr S, Aghaei I, Dehpour AR. Interaction of morphine tolerance with pentylenetetrazole-induced seizure threshold in mice: The role of NMDA-receptor/NO pathway. Epilepsy Behav 2020; 112:107343. [PMID: 32755816 DOI: 10.1016/j.yebeh.2020.107343] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/06/2020] [Accepted: 07/11/2020] [Indexed: 10/23/2022]
Abstract
N-methyl-d-aspartate receptor (NMDA-R)/nitric oxide (NO) pathway is involved in the intensification of the analgesic effect of opioids and the reduction of the intensity of opioids tolerance and dependence. In the current study, we investigated the involvement of NMDA-R/NO pathway in chronic morphine-treated mice in both the development of tolerance to the analgesic effect of morphine and in pentylenetetrazole (PTZ)-induced seizure threshold. Chronic treatment with morphine (30 mg/kg) exhibited increased seizure resistance in morphine-induced tolerant mice. The development of morphine tolerance was withdrawn when used concomitantly with NOS inhibitors and NMDA-R antagonist, suggesting that the development of tolerance to the anticonvulsant effect of morphine (30 mg/kg) is mediated through the NMDA-R/NO pathway. A dose-dependent biphasic seizure modulation of morphine was demonstrated in the acute treatment with morphine; acute treatment at a dose of 0.5 mg/kg shows the anticonvulsant effect and at a dose of 30 mg/kg shows proconvulsant effect. However, a different pattern was observed in the mice treated chronically with morphine: they demonstrated tolerance in the tail-flick test; five consecutive days of chronic treatment with a high dose of morphine (30 mg/kg) showed anticonvulsant effect while a low dose of morphine (0.5 mg/kg) showed a proconvulsant effect. The anticonvulsant effect of morphine was inhibited completely by the concomitant administration of NO synthase (NOS) inhibitors including nonspecific NOS inhibitor (L-NAME, 10 mg/kg), inducible NOS inhibitor (aminoguanidine, 50 mg/kg), and neuronal NOS inhibitor (7-nitroindazole (7-NI), 15 mg/kg) for five consecutive days. Besides, five days injection of NMDA-R antagonist (MK-801, 0.05 mg/kg) significantly inhibited the anticonvulsant effect of morphine on the PTZ-induced clonic seizures. The results revealed that chronic treatment with morphine leads to the development of tolerance in mice, which in turn may cause an anticonvulsant effect in a high dose of morphine via the NMDA-R/NO pathway.
Collapse
Affiliation(s)
- Golnaz Zamanian
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Shayan
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nastaran Rahimi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Taraneh Bahremand
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Shafaroodi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahram Ejtemaei-Mehr
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Iraj Aghaei
- Department of Neuroscience, Neuroscience Research Center, Poursina Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Ali I, Van Eetveldt A, Van Elzen R, Kalathil Raju T, Van Der Veken P, Lambeir A, Dedeurwaerdere S. Spatiotemporal expression and inhibition of prolyl oligopeptidase contradict its involvement in key pathologic mechanisms of kainic acid-induced temporal lobe epilepsy in rats. Epilepsia Open 2019; 4:92-101. [PMID: 30868119 PMCID: PMC6398098 DOI: 10.1002/epi4.12293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 12/04/2018] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVE Prolyl oligopeptidase (PREP) has been implicated in neuroinflammatory processes and neuroplasticity and has been suggested as a target for the treatment of neurodegenerative disease. The aim of this investigation was to explore the involvement of PREP in the neuropathologic mechanisms relevant to temporal lobe epilepsy (TLE) using a PREP inhibitor in a well-established rat model. METHODS PREP activity and expression was studied in Sprague-Dawley rats 2 and 12 weeks following kainic acid-induced status epilepticus (KASE). Continuous video-electroencephalography monitoring was performed for 2 weeks in the 12-week cohort to identify a relationship of PREP expression/activity with epileptic seizures. In addition, the animals included in the 2-week time point were treated with a specific inhibitor of PREP, KYP-2047, or saline continuously, starting immediately after SE. PREP activity and its expression were analyzed in rat brain by using enzyme kinetics and western blot. In addition, markers for microglial activation, astrogliosis, cell loss, and cell proliferation were evaluated. RESULTS Enzymatic activity of PREP was unchanged following induction of SE after 2 and 12 weeks in rats. PREP activity in epileptic rats did not relate to the number of seizures/day at the 12-week time point. Moreover, continuous inhibition of PREP for 2 weeks after KASE did not alter the SE-mediated neuroinflammatory response, cell loss, or cell proliferation in the hippocampal subgranule zone measured at the 2-week time point. SIGNIFICANCE PREP inhibition does not affect key pathologic mechanisms, including activation of glial cells, cell loss, and neural progenitor cell proliferation, in this KASE model of TLE. The results do not support a direct role of PREP in seizure burden during the chronic epilepsy period in this model.
Collapse
Affiliation(s)
- Idrish Ali
- Department of Translational NeurosciencesUniversity of AntwerpWilrijkBelgium
- Present address:
Department of MedicineUniversity of MelbourneMelbourneAustralia
| | | | - Roos Van Elzen
- Laboratory of Medical BiochemistryUniversity of AntwerpWilrijkBelgium
| | - Tom Kalathil Raju
- Laboratory of Medical BiochemistryUniversity of AntwerpWilrijkBelgium
| | | | | | - Stefanie Dedeurwaerdere
- Laboratory of Experimental Hematology, VaxinfectioUniversity of AntwerpAntwerpBelgium
- Present address:
UCB PharmaBraine‐l'AlleudBelgium
| |
Collapse
|
11
|
Venditti M, Minucci S. Subcellular Localization of Prolyl Endopeptidase During the First Wave of Rat Spermatogenesis and in Rat and Human Sperm. J Histochem Cytochem 2018; 67:229-243. [PMID: 30380361 DOI: 10.1369/0022155418810064] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Prolyl endopeptidase (PREP) is an enzyme which cleaves several peptide hormones and neuropeptides on the carboxyl side of proline residues and is involved in many biological processes, including cell proliferation and differentiation, glucose metabolism, learning, memory, and cognitive disorders. PREP has also been identified as a binding partner of tubulin, suggesting the involvement of endopeptidase in microtubule-associate processes, independent of its peptidase activity. Furthermore, several reports have implied PREP participation in both male and female reproduction-associated mechanism. We herein assess a potential association of PREP to the morphogenesis of rat testis, profiling its localization versus tubulin, during the first wave of spermatogenesis and in the adult gonad (from 7 to 60 dpp). We show that, in mitotic phases, PREP shares its localization with tubulin in Sertoli cells, gonocytes, and spermatogonia. Later, during meiosis, both proteins are found in spermatocytes, and in the cytoplasm of Sertoli cells protrusions, surrounding the germ cells, while, during spermiogenesis, they both localize in the cytoplasm of round and elongating spermatids. We also found that this enzyme has a peculiar nuclear localization, in the proliferating cells in all phases of analysis. Finally, they are expressed in the flagellum of mature gametes, as corroborated by additional immunolocalization analysis on both rat and human sperm. Our data support the hypothesis of the fundamental role of PREP in reproduction and in cytoskeletal organization during mammalian testis morphogenesis and gamete progression.
Collapse
Affiliation(s)
- Massimo Venditti
- Dipartimento di Medicina Sperimentale, Sez. Fisiologia Umana e Funzioni Biologiche Integrate "F. Bottazzi," Università degli Studi della Campania "Luigi Vanvitelli," Napoli, Italy
| | - Sergio Minucci
- Dipartimento di Medicina Sperimentale, Sez. Fisiologia Umana e Funzioni Biologiche Integrate "F. Bottazzi," Università degli Studi della Campania "Luigi Vanvitelli," Napoli, Italy
| |
Collapse
|
12
|
Sitagliptin enhances the neuroprotective effect of pregabalin against pentylenetetrazole-induced acute epileptogenesis in mice: Implication of oxidative, inflammatory, apoptotic and autophagy pathways. Neurochem Int 2018; 115:11-23. [DOI: 10.1016/j.neuint.2017.10.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/27/2017] [Accepted: 10/10/2017] [Indexed: 12/16/2022]
|
13
|
Adongo DW, Mante PK, Kukuia KKE, Biney RP, Boakye-Gyasi E, Benneh CK, Ameyaw EO, Woode E. Anticonvulsant activity of Pseudospondias microcarpa (A. Rich) Engl. hydroethanolic leaf extract in mice: The role of excitatory/inhibitory neurotransmission and nitric oxide pathway. JOURNAL OF ETHNOPHARMACOLOGY 2017; 206:78-91. [PMID: 28528187 DOI: 10.1016/j.jep.2017.05.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 05/09/2017] [Accepted: 05/10/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pseudospondias microcarpa (A. Rich) Engl. is a plant used for managing various diseases including central nervous system disorders. AIM OF THE STUDY This study explored the anticonvulsant activity of P. microcarpa hydroethanolic leaf extract (PME) as well as possible mechanism(s) of action in animal models. METHODS Effects of PME was assessed in electroconvulsive (the maximal electroshock and 6-Hz seizures) and chemoconvulsive (pentylenetetrazole-, picrotoxin-, isoniazid-, 4-aminopyridine-, and strychnine-induced seizures) models of epilepsy. In addition, effect of the extract on the nitric oxide pathway and GABAA receptor complex was evaluated. RESULTS The extract (30, 100 and 300mgkg-1, p.o.) significantly delayed the onset as well as decreased the duration and frequency of pentylenetetrazole-, picrotoxin- and strychnine-induced seizures. In addition, PME pre-treatment significantly improved survival in the 4-aminopyridine- and isoniazid-induced seizure tests. Furthermore, the extract protected against 6-Hz psychomotor seizures but had no effect in the maximal electroshock test. The anticonvulsant effect of PME (100mgkg-1, p.o.) was also reversed by pre-treatment with flumazenil, L-arginine or sildenafil. However, L-NAME or methylene blue (MB) augmented its effect. CONCLUSION Results show that PME has anticonvulsant activity and may probably be affecting GABAergic, glycinergic, NMDA, K+ channels and nitric oxide-cGMP pathways to exert its effect.
Collapse
Affiliation(s)
- Donatus W Adongo
- Department of Pharmacology, School of Medicine, University of Health and Allied Sciences, Ho, Ghana.
| | - Priscilla K Mante
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
| | - Kennedy K E Kukuia
- Department of Pharmacology and Toxicology, University of Ghana School of Pharmacy, University of Ghana, Accra, Ghana.
| | - Robert P Biney
- Department of Pharmacology, School of Medical Sciences, University of Cape Coast, Cape Coast, Ghana.
| | - Eric Boakye-Gyasi
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
| | - Charles K Benneh
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
| | - Elvis O Ameyaw
- Department of Biomedical and Forensic Sciences, School of Biological Science, University of Cape Coast, Cape Coast, Ghana.
| | - Eric Woode
- Department of Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
| |
Collapse
|
14
|
Postnikova TY, Zubareva OE, Kovalenko AA, Kim KK, Magazanik LG, Zaitsev AV. Status epilepticus impairs synaptic plasticity in rat hippocampus and is followed by changes in expression of NMDA receptors. BIOCHEMISTRY (MOSCOW) 2017; 82:282-290. [DOI: 10.1134/s0006297917030063] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
15
|
Dotolo R, Kim JD, Pariante P, Minucci S, Diano S. Prolyl Endopeptidase (PREP) is Associated With Male Reproductive Functions and Gamete Physiology in Mice. J Cell Physiol 2015; 231:551-7. [PMID: 26332268 DOI: 10.1002/jcp.25178] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 08/31/2015] [Indexed: 12/13/2022]
Abstract
Prolyl endopeptidase (PREP) is a serine protease which has been implicated in many biological processes, such as the maturation and degradation of peptide hormones and neuropeptides, learning and memory, cell proliferation and differentiation, and glucose metabolism. A small number of reports have also suggested PREP participation in both male and female reproduction-associated processes. In the present work, we examined PREP distribution in male germ cells and studied the effects of its knockdown (Prep(gt/gt)) on testis and sperm in adult mice. The protein is expressed and localized in elongating spermatids and luminal spermatozoa of wild type (wt) mice, as well as Sertoli, Leydig, and peritubular cells. PREP is also expressed in the head and midpiece of epididymal spermatozoa, whereas the remaining tail region shows a weaker signal. Furthermore, testis weight, histology of seminiferous tubules, and epididymal sperm parameters were assessed in wt and Prep(gt/gt) mice: wild type testes have larger average tubule and lumen diameter; in addition, lumenal composition of seminiferous tubules is dissimilar between wt and Prep(gt/gt), as the percentage of spermiated tubules is much higher in wt. Finally, total sperm count, sperm motility, and normal morphology are also higher in wt than in Prep(gt/gt). These results show for the first time that the expression of PREP could be necessary for a correct reproductive function, and suggest that the enzyme may play a role in mouse spermatogenesis and sperm physiology.
Collapse
Affiliation(s)
- Raffaele Dotolo
- Dipartimento di Medicina Sperimentale, Sez. Fisiologia Umana e Funzioni Biologiche Integrate "F. Bottazzi", Seconda Università di Napoli, Napoli, Italy.,Departments of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, Yale University, New Haven, Connecticut
| | - Jung Dae Kim
- Departments of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, Yale University, New Haven, Connecticut
| | - Paolo Pariante
- Dipartimento di Medicina Sperimentale, Sez. Fisiologia Umana e Funzioni Biologiche Integrate "F. Bottazzi", Seconda Università di Napoli, Napoli, Italy
| | - Sergio Minucci
- Dipartimento di Medicina Sperimentale, Sez. Fisiologia Umana e Funzioni Biologiche Integrate "F. Bottazzi", Seconda Università di Napoli, Napoli, Italy
| | - Sabrina Diano
- Departments of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, Yale University, New Haven, Connecticut
| |
Collapse
|
16
|
Vasil’ev DS, Tumanova NL, Zhuravin IA, Kim KK, Lukomskaya NY, Magazanik LG, Zaitsev AV. Morphofunctional changes in field CA1 of the rat hippocampus after pentylenetetrazole and lithium-pilocarpine induced seizures. J EVOL BIOCHEM PHYS+ 2015. [DOI: 10.1134/s0022093014060088] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Zaitsev AV, Kim KK, Vasilev DS, Lukomskaya NY, Lavrentyeva VV, Tumanova NL, Zhuravin IA, Magazanik LG. N-methyl-D-aspartate receptor channel blockers prevent pentylenetetrazole-induced convulsions and morphological changes in rat brain neurons. J Neurosci Res 2014; 93:454-65. [DOI: 10.1002/jnr.23500] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Revised: 09/18/2014] [Accepted: 09/19/2014] [Indexed: 12/25/2022]
Affiliation(s)
- Aleksey V. Zaitsev
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences; Saint Petersburg Russia
| | - Kira Kh. Kim
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences; Saint Petersburg Russia
| | - Dmitry S. Vasilev
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences; Saint Petersburg Russia
| | - Nera Ya. Lukomskaya
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences; Saint Petersburg Russia
| | - Valeria V. Lavrentyeva
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences; Saint Petersburg Russia
| | - Natalia L. Tumanova
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences; Saint Petersburg Russia
| | - Igor A. Zhuravin
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences; Saint Petersburg Russia
| | - Lev G. Magazanik
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences; Saint Petersburg Russia
- Saint Petersburg State University; Saint Petersburg Russia
| |
Collapse
|
18
|
Rahimi N, Sadeghzadeh M, Javadi-Paydar M, Heidary MR, Jazaeri F, Dehpour AR. Effects of D-penicillamine on pentylenetetrazole-induced seizures in mice: involvement of nitric oxide/NMDA pathways. Epilepsy Behav 2014; 39:42-47. [PMID: 25173990 DOI: 10.1016/j.yebeh.2014.07.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 07/01/2014] [Accepted: 07/15/2014] [Indexed: 10/24/2022]
Abstract
Besides the clinical applications of penicillamine, some reports show that use of D-penicillamine (D-pen) has been associated with adverse effects such as seizures. So, the purpose of this study was to evaluate the effects of D-pen on pentylenetetrazole (PTZ)-induced seizures in male NMRI mice. It also examined whether N-methyl-D-aspartate (NMDA) receptor/nitrergic system blockage was able to alter the probable effects of D-pen. Different doses of D-pen (0.1, 0.5, 1, 10, 100, 150, and 250 mg/kg) were administered intraperitoneally (i.p.) 90 min prior to induction of seizures. D-Penicillamine at a low dose (0.5 mg/kg, i.p.) had anticonvulsant effects, whereas at a high dose (250 mg/kg, i.p.), it was proconvulsant. Both anti- and proconvulsant effects of D-pen were blocked by a single dose of a nonspecific inhibitor of nitric oxide synthase (NOS), L-NAME (10 mg/kg, i.p.), and a single dose of a specific inhibitor of neuronal nitric oxide synthase (nNOS), 7-nitroindazole (30 mg/kg, i.p.). A selective inhibitor of iNOS, aminoguanidine (100 mg/kg, i.p.), had no effect on these activities. An NMDA receptor antagonist, MK-801 (0.05 mg/kg, i.p.), alters the anti- and proconvulsant effects of D-pen. The results of the present study showed that the nitric oxide system and NMDA receptors may contribute to the biphasic effects of D-pen, which remain to be clarified further.
Collapse
Affiliation(s)
- Nastaran Rahimi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, Tehran University of Medical Sciences, Tehran, Iran
| | - Mitra Sadeghzadeh
- Neuroscience Research Center, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Mahmoud Reza Heidary
- Neuroscience Research Center, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran; Pharmaceutics, Neuroscience and Physiology Research Centers, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Farahnaz Jazaeri
- Department of Pharmacology, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad R Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
Monoterpenoid terpinen-4-ol exhibits anticonvulsant activity in behavioural and electrophysiological studies. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:703848. [PMID: 25180069 PMCID: PMC4142302 DOI: 10.1155/2014/703848] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 07/08/2014] [Accepted: 07/08/2014] [Indexed: 11/18/2022]
Abstract
Terpinen-4-ol (4TRP) is a monoterpenoid alcoholic component of essential oils obtained from several aromatic plants. We investigated the psychopharmacological and electrophysiological activities of 4TRP in male Swiss mice and Wistar rats. 4TRP was administered intraperitoneally (i.p.) at doses of 25 to 200 mg/kg and intracerebroventricularly (i.c.v.) at concentrations of 10, 20, and 40 ng/2 μL. For in vitro experiments, 4TRP concentrations were 0.1 mM and 1.0 mM. 4TRP (i.p.) inhibited pentylenetetrazol- (PTZ-) induced seizures, indicating anticonvulsant effects. Electroencephalographic recordings showed that 4TRP (i.c.v.) protected against PTZ-induced seizures, corroborating the behavioural results. To determine whether 4TRP exerts anticonvulsant effects via regulation of GABAergic neurotransmission, we measured convulsions induced by 3-mercapto-propionic acid (3-MP). The obtained results showed involvement of the GABAergic system in the anticonvulsant action exerted by 4TRP, but flumazenil, a selective antagonist of the benzodiazepine site of the GABAA receptor, did not reverse the anticonvulsant effect, demonstrating that 4TRP does not bind to the benzodiazepine-binding site. Furthermore, 4TRP decreased the sodium current through voltage-dependent sodium channels, and thus its anticonvulsant effect may be related to changes in neuronal excitability because of modulation of these channels.
Collapse
|
20
|
Lee KN, Jackson KW, Christiansen VJ, Dolence EK, McKee PA. Enhancement of fibrinolysis by inhibiting enzymatic cleavage of precursor α2-antiplasmin. J Thromb Haemost 2011; 9:987-96. [PMID: 21251197 PMCID: PMC4711262 DOI: 10.1111/j.1538-7836.2011.04195.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND OBJECTIVE Resistance of thrombi to plasmin digestion depends primarily on the amount of α(2)-antiplasmin (α(2)AP) incorporated within fibrin. Circulating prolyl-specific serine proteinase, antiplasmin-cleaving enzyme (APCE), a homologue of fibroblast activation protein (FAP), cleaves precursor Met-α(2)AP between -Pro12-Asn13- to yield Asn-α(2)AP, which is crosslinked to fibrin approximately 13× more rapidly than Met-α(2)AP and confers resistance to plasmin. We reasoned that an APCE inhibitor might decrease conversion of Met-α(2)AP to Asn-α(2)AP and thereby enhance endogenous fibrinolysis. METHODS AND RESULTS We designed and synthesized several APCE inhibitors and assessed each vs. plasma dipeptidyl peptidase IV (DPPIV) and prolyl oligopeptidase (POP), which have amino acid sequence similarity with APCE. Acetyl-Arg-(8-amino-3,6-dioxaoctanoic acid)-D-Ala-L-boroPro selectively inhibited APCE vs. DPPIV, with an apparent K(i) of 5.7 nm vs. 6.1 μm, indicating that an approximately 1000-fold greater inhibitor concentration is required for DPPIV than for APCE. An apparent K(i) of 7.4 nm was found for POP inhibition, which is similar to 5.7 nm for APCE; however, the potential problem of overlapping FAP/APCE and POP inhibition was negated by our finding that normal human plasma lacks POP activity. The inhibitor construct caused a dose-dependent decrease of APCE-mediated Met-α(2)AP cleavage, which ultimately shortened plasminogen activator-induced plasma clot lysis times. Incubation of the inhibitor with human plasma for 22 h did not lessen its APCE inhibitory activity, with its IC(50) value in plasma remaining comparable to that in phosphate buffer. CONCLUSION These data establish that inhibition of APCE might represent a therapeutic approach for enhancing thrombolytic activity.
Collapse
Affiliation(s)
- K N Lee
- William K. Warren Medical Research Center and Department of Medicine, University of Oklahoma College of Medicine, Oklahoma City, OK 73126, USA.
| | | | | | | | | |
Collapse
|
21
|
Ghasemi A, Saberi M, Ghasemi M, Shafaroodi H, Moezi L, Bahremand A, Montaser-Kouhsari L, Ziai P, Dehpour AR. Administration of lithium and magnesium chloride inhibited tolerance to the anticonvulsant effect of morphine on pentylenetetrazole-induced seizures in mice. Epilepsy Behav 2010; 19:568-574. [PMID: 20920846 DOI: 10.1016/j.yebeh.2010.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 09/04/2010] [Indexed: 10/19/2022]
Abstract
Although morphine has an anticonvulsant effect in several animal models of seizures, its potential clinical application in epilepsy may be hindered by its adverse effects like opioid tolerance. The present study evaluated the development of tolerance to the anticonvulsant effect of morphine in a model of clonic seizures induced with pentylenetetrazole (PTZ) in male Swiss mice. We also examined whether administration of either lithium chloride (LiCl) or magnesium chloride (MgCl(2)) was able to prevent the probable tolerance. Our data demonstrated that the anticonvulsant effect of a potent dose of morphine (1mg/kg) was abolished in chronic morphine-treated mice (mice administered the same dose of morphine intraperitoneally twice daily for 4 days). Four days of pretreatment with low and noneffective doses of MgCl(2) (2 and 5mg/kg) and LiCl (5mg/kg) inhibited the development of tolerance to the anticonvulsant effect of morphine (1mg/kg, ip). Moreover, a single acute injection of the aforementioned agents at the same doses reversed the expression of tolerance to the anticonvulsant effects of morphine (1mg/kg, ip). Chronic 17-day treatment with LiCl (600 mg/L in drinking water) also inhibited the development of tolerance to the anticonvulsant effects of 1mg/kg morphine. These results demonstrate that the anticonvulsant effect of morphine is subject to tolerance after repeated administration. Both development and expression of tolerance are inhibited by either LiCl or MgCl(2). As both LiCl and MgCl(2) can modulate the function of N-methyl-d-aspartate (NMDA) receptors, we discuss how NMDA receptor functioning might be involved in the effects of LiCl and MgCl(2) on the development of tolerance to the anticonvulsant effect of morphine.
Collapse
Affiliation(s)
- Abbas Ghasemi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Ghasemi M, Shafaroodi H, Nazarbeiki S, Meskar H, Ghasemi A, Bahremand A, Ziai P, Dehpour AR. Inhibition of NMDA receptor/NO signaling blocked tolerance to the anticonvulsant effect of morphine on pentylenetetrazole-induced seizures in mice. Epilepsy Res 2010; 91:39-48. [DOI: 10.1016/j.eplepsyres.2010.06.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2009] [Revised: 05/31/2010] [Accepted: 06/23/2010] [Indexed: 11/17/2022]
|
23
|
Ghasemi M, Shafaroodi H, Nazarbeiki S, Meskar H, Heydarpour P, Ghasemi A, Talab SS, Ziai P, Bahremand A, Dehpour AR. Voltage-dependent calcium channel and NMDA receptor antagonists augment anticonvulsant effects of lithium chloride on pentylenetetrazole-induced clonic seizures in mice. Epilepsy Behav 2010; 18:171-178. [PMID: 20605531 DOI: 10.1016/j.yebeh.2010.04.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 03/29/2010] [Accepted: 04/02/2010] [Indexed: 01/18/2023]
Abstract
Although lithium is still a mainstay in the treatment of bipolar disorder, its underlying mechanisms of action have not been completely elucidated. Several studies have shown that lithium can also modulate seizure susceptibility in a variety of models. In the present study, using a model of clonic seizures induced with pentylenetetrazole (PTZ) in male Swiss mice, we investigated whether there is any interaction between lithium and either calcium channel blockers (CCBs: nifedipine, verapamil, and diltiazem) or N-methyl-D-aspartate (NMDA) receptor antagonists (ketamine and MK-801) in modulating seizure threshold. Acute lithium administration (5-100mg/kg, ip) significantly (P<0.01) increased seizure threshold. CCBs and NMDA receptor antagonists also exerted dose-dependent anticonvulsant effects on PTZ-induced seizures. Noneffective doses of CCBs (5mg/kg, ip), when combined with a noneffective dose of lithium (5mg/kg, ip), exerted significant anticonvulsant effects. Moreover, co-administration of a noneffective dose of either MK-801 (0.05mg/kg, ip) or ketamine (5mg/kg, ip) with a noneffective dose of lithium (5mg/kg, ip) significantly increased seizure threshold. Our findings demonstrate that lithium increases the clonic seizure threshold induced by PTZ in mice and interacts with either CCBs or NMDA receptor antagonists in exerting this effect, suggesting a role for Ca(2+) signaling in the anticonvulsant effects of lithium in the PTZ model of clonic seizures in mice.
Collapse
Affiliation(s)
- Mehdi Ghasemi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Increased prolyl endopeptidase activity in human neoplasia. ACTA ACUST UNITED AC 2010; 163:102-6. [PMID: 20362629 DOI: 10.1016/j.regpep.2010.03.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 03/22/2010] [Accepted: 03/25/2010] [Indexed: 01/21/2023]
Abstract
Prolyl endopeptidase (EC 3.4.21.26) (PEP) is a serine peptidase that converts several biologically active peptides. This enzyme has been linked to several neurological, digestive, cardiovascular and infectous disorders. However, little is known about its involvement in neoplastic processes. This study analyzes fluorimetrically cytosolic and membrane-bound PEP activity in a large series (n=122) of normal and neoplastic tissues from the kidney, colon, oral cavity, larynx, thyroid gland and testis. Cytosolic PEP activity significantly increased in clear cell renal cell carcinoma, urothelial carcinoma of the renal pelvis and head and neck squamous cell carcinoma. Both cytosolic and membrane-bound PEP activity were also increased in colorectal adenomatous polyps. These data suggest the involvement of PEP in some mechanisms that underlie neoplastic processes.
Collapse
|
25
|
Cano-Europa E, González-Trujano ME, Reyes-Ramírez A, Hernández-García A, Blas-Valdivia V, Ortiz-Butrón R. Palmitone prevents pentylenetetrazole-caused neuronal damage in the CA3 hippocampal region of prepubertal rats. Neurosci Lett 2009; 470:111-4. [PMID: 20045039 DOI: 10.1016/j.neulet.2009.12.066] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Revised: 12/16/2009] [Accepted: 12/24/2009] [Indexed: 11/19/2022]
Abstract
Palmitone is a secondary metabolite of polyketide origin extracted from leaves of Annona diversifolia Saff. (Annonaceae). We found that palmitone possesses anticonvulsant properties against penicillin-, 4-AP-, and pentylenetetrazole (PTZ)-caused seizure in adult animals. Some convulsants as PTZ cause neuronal damage in different brain regions such as the CA3 hippocampal region. Our objective was to evaluate if palmitone protects against PTZ-caused seizures and hippocampal neuronal damage in prepubertal rats. We used 32 prepubertal Wistar rats (30-35 days old) divided into four groups of 8 animals; group I was the control group, group II received a single PTZ dose of 50mg/kg ip, group III received a single palmitone dose of 50mg/kg ip, and group IV received a palmitone dose of 50mg/kg ip plus a PTZ dose of 50mg/kg ip. Ten days after administration, the animals were killed using pentobarbital anesthesia (35 mg/kg). The brains were removed and were embedded in paraffin. Coronal cuts of 7 microm were obtained from -2.8 to -3.3 from Bregma. Each section was stained with cresyl violet-eosin. We evaluated the number of normal and abnormal neurons in the CA3 hippocampal region in a 10,000 microm(2) section. It was observed that palmitone did not prevent the PTZ-caused seizure but palmitone prevents the PTZ-caused neuronal damage in the CA3 hippocampal region.
Collapse
Affiliation(s)
- E Cano-Europa
- Departamento de Fisiología Mauricio Russek Berman, Escuela Nacional de Ciencias Biológicas, I.P.N., Carpio y Plan de Ayala, México, D.F., C.P.11340, Mexico
| | | | | | | | | | | |
Collapse
|
26
|
Myöhänen TT, García-Horsman JA, Tenorio-Laranga J, Männistö PT. Issues about the physiological functions of prolyl oligopeptidase based on its discordant spatial association with substrates and inconsistencies among mRNA, protein levels, and enzymatic activity. J Histochem Cytochem 2009; 57:831-48. [PMID: 19687473 DOI: 10.1369/jhc.2009.953711] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Prolyl oligopeptidase (POP) is a serine endopeptidase that hydrolyses proline-containing peptides shorter than 30 amino acids. POP may be associated with cognitive functions, possibly via the cleavage of neuropeptides. Recent studies have also suggested novel non-hydrolytic and non-catalytic functions for POP. Moreover, POP has also been proposed as a regulator of inositol 1,4,5-triphosphate signaling and several other functions such as cell proliferation and differentiation, as well as signal transduction in the central nervous system, and it is suspected to be involved in pathological conditions such as Parkinson's and Alzheimer's diseases and cancer. POP inhibitors have been developed to restore the depleted neuropeptide levels encountered in aging or in neurodegenerative disorders. These compounds have shown some antiamnesic effects in animal models. However, the mechanisms of these hypothesized actions are still far from clear. Moreover, the physiological role of POP has remained unknown, and a lack of basic studies, including its distribution, is obvious. The aim of this review is to gather information about POP and to propose some novel roles for this enzyme based on its distribution and its discordant spatial association with its best known substrates.
Collapse
Affiliation(s)
- Timo T Myöhänen
- Department of Pharmacology and Toxicology, University of Kuopio, PO Box 1627, FI-70211 Kuopio, Finland.
| | | | | | | |
Collapse
|
27
|
Myöhänen TT, Venäläinen JI, Garcia-Horsman JA, Piltonen M, Männistö PT. Cellular and subcellular distribution of rat brain prolyl oligopeptidase and its association with specific neuronal neurotransmitters. J Comp Neurol 2008; 507:1694-708. [PMID: 18253937 DOI: 10.1002/cne.21642] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Prolyl oligopeptidase (POP) is a serine endopeptidase that hydrolyzes proline-containing peptides shorter than 30-mer. It has been suggested that POP is associated with cognitive functions and inositol 1,4,5-triphosphate (IP(3)) signaling. However, little is known about the distribution and physiological role of POP in the brain. We used immunohistochemistry to determine the cellular and subcellular distribution of POP in the rat brain. POP was specifically expressed in the glutamatergic pyramidal neurons of the cerebral cortex, particularly in the primary motor and somatosensory cortices, and also in the CA1 field of hippocampus. Purkinje cells of the cerebellum were also intensively immunostained for POP. Double immunofluorescence indicated that POP was present in the gamma-aminobutyric acid (GABA)ergic and cholinergic interneurons of the thalamus and cortex but not in the nigrostriatal dopaminergic neurons. POP did not colocalize with astrocytic markers in any part of the rat brain. We used postembedding immunoelectron microscopy to determine the distribution of POP at the subcellular level. POP was mainly present in neuronal cytosol and membranes, hardly at all in neuronal plasma membrane, but more extensively in intracellular membranes such as the rough endoplasmic reticulum and Golgi apparatus. Our findings point to a role for POP--evidently modifying neuropeptide levels--in excitatory and inhibitory neurotransmission in the central nervous system via glutamatergic, GABAergic, and cholinergic neurotransmission systems. Furthermore, according to our results, POP may be involved in thalamocortical neurotransmission, memory and learning functions of the hippocampal formation, and GABAergic regulation of voluntary movements. Subcellular distribution of POP points to a role in protein processing and secretion.
Collapse
Affiliation(s)
- Timo T Myöhänen
- Department of Pharmacology and Toxicology, University of Kuopio, FI-70211 Kuopio, Finland.
| | | | | | | | | |
Collapse
|
28
|
Inan SY, Aksu F. Influence of sex on the interaction between dizocilpine (MK-801) pretreatment and acute cold-restraint stress in epilepsy susceptibility in an animal study. ACTA ACUST UNITED AC 2008; 5:136-46. [DOI: 10.1016/j.genm.2008.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2007] [Indexed: 10/21/2022]
|
29
|
Iores-Marçal LM, Viel TA, Buck HS, Nunes VA, Gozzo AJ, Cruz-Silva I, Miranda A, Shimamoto K, Ura N, Araujo MS. Bradykinin release and inactivation in brain of rats submitted to an experimental model of Alzheimer's disease. Peptides 2006; 27:3363-9. [PMID: 17030465 DOI: 10.1016/j.peptides.2006.08.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Revised: 07/12/2006] [Accepted: 08/07/2006] [Indexed: 10/24/2022]
Abstract
The kallikrein-kinin system is involved in a variety of physiological and pathological processes. Components of this system, identified in rat and human brains, can be altered in neurodegenerative processes such as Alzheimer's disease. Here, we studied kinin release and its inactivation in rats submitted to chronic cerebroventricular infusion of beta-amyloid (Abeta) peptide. Neurodegeneration was confirmed by histological analysis of brain samples. In cerebrospinal fluid of animals infused with Abeta, bradykinin concentration was increased, as determined by radioimmunoassay. However, in the brain of Abeta group, we only detected the tripeptide Arg-Pro-Pro, purified by reversed-phase chromatography and characterized by liquid chromatography-electrospray ionization mass spectrometry. This fragment of bradykinin indicated the possible participation of kinin-processing enzymes in the brain such as a prolyl oligopeptidase.
Collapse
Affiliation(s)
- Lígia M Iores-Marçal
- Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Rua Três de Maio 100, 04044-020, S. Paulo, SP, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Ayyildiz M, Yildirim M, Agar E, Baltaci AK. The effect of leptin on penicillin-induced epileptiform activity in rats. Brain Res Bull 2005; 68:374-8. [PMID: 16377445 DOI: 10.1016/j.brainresbull.2005.09.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Revised: 09/22/2005] [Accepted: 09/23/2005] [Indexed: 10/25/2022]
Abstract
Leptin is an adipose tissue-derived peptide hormone, which acts as a satiety factor to reduce appetite by interactions with hypothalamic neurons. The other possible physiological functions of leptin are still unclear. In this study, we have evaluated dose-dependent effect of leptin on penicillin-induced epileptiform activity, analyzed by electrocorticogram (ECoG). The epileptiform activity was induced by microinjection of penicillin into the left sensorymotor cortex. Thirty minutes after penicillin injection, 1, 2 or 10 microg of leptin was administrated intracerebroventricularly (i.c.v.). Leptin (1, 2 or 10 microg) alone did not significantly change the spike amplitudes in non-penicillin pretreated control animals. One or two micrograms of leptin significantly increased the frequency of epileptiform activity in the penicillin-pretreated animals. The high dose of leptin (10 microg) did not significantly change either amplitude or frequency of epileptiform activity. One microgram i.c.v. leptin was the most effective dose in changing of frequency on penicillin-induced epileptiform activity. The proconvulsant effects of leptin appeared 90 min after leptin (1 and 2 microg) injection. These data indicate that leptin increases the frequency of penicillin-induced epileptic activity. We speculate that this action of leptin might suggest that leptin may be a proconvulsant substance.
Collapse
Affiliation(s)
- Mustafa Ayyildiz
- Department of Physiology, Faculty of Medicine, University of Ondokuz Mayis, 55139 Samsun, Turkey
| | | | | | | |
Collapse
|