1
|
Rostrup F, Falk-Petersen CB, Harpso E K, Buchleithner S, Conforti I, Jung S, Gloriam DE, Schirmeister T, Wellendorph P, Fro Lund B. Structural Determinants for the Mode of Action of Imidazopyridine DS2 at δ-Containing γ-Aminobutyric Acid Type A Receptors. J Med Chem 2021; 64:4730-4743. [PMID: 33847501 DOI: 10.1021/acs.jmedchem.0c02163] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Despite the therapeutic relevance of δ-containing γ-aminobutyric acid type A receptors (GABAARs) and the need for δ-selective compounds, the structural determinants for the mode and molecular site of action of δ-selective positive allosteric modulator imidazo[1,2-a]pyridine DS2 remain elusive. To guide the quest for insight, we synthesized a series of DS2 analogues guided by a structural receptor model. Using a fluorescence-based fluorometric imaging plate reader membrane potential assay, we found that the δ-selectivity and the pharmacological profile are severely affected by substituents in the 5-position of the imidazopyridine core scaffold. Interestingly, the 5-methyl, 5-bromo, and 5-chloro DS2 analogues, 30, 35, and 36, were shown to be superior to DS2 at α4β1δ as mid-high nanomolar potency δ-selective allosteric modulators, displaying 6-16 times higher potency than DS2. Of these, 30 also displayed at least 60-fold selectivity for α4β1δ over α4β1γ2 receptor subtypes representing a potential tool for the selective characterization of δ-containing GABAARs in general.
Collapse
Affiliation(s)
- Frederik Rostrup
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100, Denmark
| | - Christina B Falk-Petersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100, Denmark
| | - Kasper Harpso E
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100, Denmark
| | - Stine Buchleithner
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100, Denmark
| | - Irene Conforti
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100, Denmark
| | - Sascha Jung
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Mainz D-55128, Germany
| | - David E Gloriam
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100, Denmark
| | - Tanja Schirmeister
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Mainz D-55128, Germany
| | - Petrine Wellendorph
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100, Denmark
| | - Bente Fro Lund
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100, Denmark
| |
Collapse
|
2
|
L’Estrade E, Hansen HD, Falk-Petersen C, Haugaard A, Griem-Krey N, Jung S, Lüddens H, Schirmeister T, Erlandsson M, Ohlsson T, Knudsen GM, Herth MM, Wellendorph P, Frølund B. Synthesis and Pharmacological Evaluation of [ 11C]4-Methoxy- N-[2-(thiophen-2-yl)imidazo[1,2- a]pyridin-3-yl]benzamide as a Brain Penetrant PET Ligand Selective for the δ-Subunit-Containing γ-Aminobutyric Acid Type A Receptors. ACS OMEGA 2019; 4:8846-8851. [PMID: 31459972 PMCID: PMC6648289 DOI: 10.1021/acsomega.9b00434] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/10/2019] [Indexed: 06/10/2023]
Abstract
The α4/6βδ-containing GABAA receptors are involved in a number of brain diseases. Despite the potential of a δ-selective imaging agent, no PET radioligand is currently available for in vivo imaging. Here, we report the characterization of DS2OMe (1) as a candidate radiotracer, 11C-labeling, and subsequent evaluation of [11C]DS2OMe in a domestic pig as a PET radioligand for visualization of the δ-containing GABAA receptors.
Collapse
Affiliation(s)
- Elina
T. L’Estrade
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
- Neurobiology
Research Unit and CIMBI, Copenhagen University
Hospital, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
- Radiation
Physics, Nuclear Medicine Physics Unit, Skånes University Hospital, Barngatan 3, 222 42 Lund, Sweden
| | - Hanne D. Hansen
- Neurobiology
Research Unit and CIMBI, Copenhagen University
Hospital, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Christina Falk-Petersen
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Anne Haugaard
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Nane Griem-Krey
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Sascha Jung
- Institute
of Pharmacy & Biochemistry, Johannes
Gutenberg University, D-55128 Mainz, Germany
| | - Hartmut Lüddens
- Department
of Psychiatry and Psychotherapy, Faculty of Health and Medical Sciences, University of Medical Center, D-55131 Mainz, Germany
| | - Tanja Schirmeister
- Institute
of Pharmacy & Biochemistry, Johannes
Gutenberg University, D-55128 Mainz, Germany
| | - Maria Erlandsson
- Radiation
Physics, Nuclear Medicine Physics Unit, Skånes University Hospital, Barngatan 3, 222 42 Lund, Sweden
| | - Tomas Ohlsson
- Radiation
Physics, Nuclear Medicine Physics Unit, Skånes University Hospital, Barngatan 3, 222 42 Lund, Sweden
| | - Gitte M. Knudsen
- Neurobiology
Research Unit and CIMBI, Copenhagen University
Hospital, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Matthias M. Herth
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
- Neurobiology
Research Unit and CIMBI, Copenhagen University
Hospital, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
- Department
of Clinical Physiology, Nuclear Medicine and PET, University Hospital Copenhagen, Rigshospitalet Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Petrine Wellendorph
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Bente Frølund
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| |
Collapse
|
3
|
Benkherouf AY, Soini SL, Stompor M, Uusi-Oukari M. Positive allosteric modulation of native and recombinant GABA A receptors by hops prenylflavonoids. Eur J Pharmacol 2019; 852:34-41. [PMID: 30797788 DOI: 10.1016/j.ejphar.2019.02.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 10/27/2022]
Abstract
Hops are a major component of beer that is added during brewing. In addition to its wide range of bioactivity, it exhibits neuroactive properties as a sedative and sleeping aid. The compounds responsible for this activity are yet to be revealed and understood in terms of their pharmacological properties. Here we evaluated the potential of several hops flavonoids in modulating the GABAergic activity and assessed their selectivity to GABAA receptors subtypes. GABA-potentiating effects were measured using [3H]ethynylbicycloorthobenzoate (EBOB) radioligand binding assay in native and recombinant α1β3γ2, α2β3γ2 and α6β3δ receptors expressed in HEK293 cells. Flumazenil sensitivity of GABA-potentiating effects and [3H]Ro 15-4513 binding assay were used to examine the flavonoids binding to benzodiazepine site. The prenylflavonoids xanthohumol (XN), isoxanthohumol (IXN) and 8-prenylnaringenin (8PN) potentiated GABA-induced displacement of [3H]EBOB binding in a concentration-dependent manner. The IC50 for this potentiation in native GABAA receptors were 29.7 µM, 11.6 µM, 7.3 µM, respectively. In recombinant receptors, the sensitivity to prenylflavonoid potentiation of GABA-induced displacement of [3H]EBOB binding followed the order α6β3δ > α2β3γ2 > α1β3γ2 with the strongest inhibition observed by 8PN in α6β3δ (IC50 = 3.6 μM). Flumazenil had no significant effect on the prenylflavonoid-induced displacement of [3H]EBOB binding and [3H]Ro 15-4513 displacement from native GABAA receptors was only detected at high micromolar concentrations (100 µM). We identified potent prenylflavonoids in hops that positively modulate GABA-induced responses in native and αβγ/δ recombinant GABAA receptors at low micromolar concentrations. These GABAergic modulatory effects were not mediated via the high-affinity benzodiazepine binding site.
Collapse
Affiliation(s)
- Ali Y Benkherouf
- Centre of Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Finland
| | - Sanna L Soini
- Centre of Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Finland
| | - Monika Stompor
- Centre for Innovative Research in Medical and Natural Sciences, Faculty of Medicine, University of Rzeszów, Poland
| | - Mikko Uusi-Oukari
- Centre of Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Finland.
| |
Collapse
|
4
|
Yakoub K, Jung S, Sattler C, Damerow H, Weber J, Kretzschmann A, Cankaya AS, Piel M, Rösch F, Haugaard AS, Frølund B, Schirmeister T, Lüddens H. Structure–Function Evaluation of Imidazopyridine Derivatives Selective for δ-Subunit-Containing γ-Aminobutyric Acid Type A (GABAA) Receptors. J Med Chem 2018; 61:1951-1968. [DOI: 10.1021/acs.jmedchem.7b01484] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Kirsten Yakoub
- Department of Psychiatry and Psychotherapy, Faculty of Health and Medical Sciences, University Medical Center Mainz, D-55131 Mainz, Germany
| | | | - Christian Sattler
- Department of Psychiatry and Psychotherapy, Faculty of Health and Medical Sciences, University Medical Center Mainz, D-55131 Mainz, Germany
| | | | | | | | | | | | | | - Anne S. Haugaard
- Department of Drug Design and Pharmacology, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Bente Frølund
- Department of Drug Design and Pharmacology, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | | | - Hartmut Lüddens
- Department of Psychiatry and Psychotherapy, Faculty of Health and Medical Sciences, University Medical Center Mainz, D-55131 Mainz, Germany
| |
Collapse
|
5
|
Uusi-Oukari M, Vähätalo L, Liljeblad A. Modifications of diflunisal and meclofenamate carboxyl groups affect their allosteric effects on GABAA receptor ligand binding. Neurochem Res 2014; 39:1183-91. [PMID: 24925262 DOI: 10.1007/s11064-014-1351-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 06/24/2013] [Accepted: 06/28/2013] [Indexed: 11/25/2022]
Abstract
Gamma-aminobutyric acid type A receptors (GABAAR) are allosterically modulated by the nonsteroidal anti-inflammatory drugs diflunisal and fenamates. The carboxyl group of these compounds is charged at physiological pH and therefore penetration of the compounds into the brain is low. In the present study we have transformed the carboxyl group of diflunisal and meclofenamate into non-ionizable functional groups and analyzed the effects of the modifications on stimulation of [(3)H]muscimol binding and on potentiation of γ-aminobutyric acid-induced displacement of 4'-ethenyl-4-n-[2,3-(3)H]propylbicycloorthobenzoate. N-Butylamide derivative of diflunisal modulated radioligand binding with equal or higher potency than the parent compound, while diflunisalamide showed reduced allosteric effect as compared to diflunisal. Amide derivative of meclofenamate equally affected radioligand binding parameters, while both diflunisal and meclofenamate methyl esters were less active than the parent compounds. Our study clearly demonstrates that an intact carboxyl group in diflunisal and meclofenamate is not indispensable for their positive GABAAR modulation. Further derivatization of the compound might yield compounds with higher selectivity for GABAARs that could be utilized in drug development.
Collapse
Affiliation(s)
- Mikko Uusi-Oukari
- Department of Pharmacology, Drug Development and Therapeutics, University of Turku, Itainen Pitkakatu 4, 20014, Turku, Finland,
| | | | | |
Collapse
|
6
|
Paola Mascia M, Fabbri D, Antonietta Dettori M, Ledda G, Delogu G, Biggio G. Hydroxylated biphenyl derivatives are positive modulators of human GABA(A) receptors. Eur J Pharmacol 2012; 693:45-50. [PMID: 22959356 DOI: 10.1016/j.ejphar.2012.07.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 07/19/2012] [Accepted: 07/30/2012] [Indexed: 11/17/2022]
Abstract
A series of 7 hydroxylated biphenyl derivatives (1-7) were prepared to evaluate their ability to modulate the function of several ligand gated ion channel (LGIC) recombinant receptors expressed in Xenopus laevis oocytes. Compounds 1, 3, 4, 6 and 7 are natural occurring compounds whereas the synthesis of compounds 2 and 5 was previously reported (Delogu et al., 2004; Fabbri et al., 2007). None of the compounds tested were able to modify, the activity of the strychnine-sensitive glycine receptor, or the activity of nicotinic receptor. The function of the 5HT(3A) receptor was partially inhibited by all compounds tested, however this inhibition occurred at relatively high concentrations (100 μM). All compounds, with the exception of compound 6, potentiate the action of gamma-aminobutyric acid (GABA)-evoked Cl(-) currents in Xenopus laevis oocytes expressing recombinant human α(1)β(2)γ(2L) GABA(A) receptors. Compounds 1, 2, 5 and 7 enhance the function of the GABA(A) receptor at concentrations higher than 3-10 μM. Compound 4 was the most efficacious. However, compound 3 was the most potent (EC(50) 0.8 μM). The potency of compound 3 in modulating the function of the GABA(A) receptor was comparable to that of diazepam, propofol or allopregnanolone. The enhancement of the GABA evoked Cl(-) currents by compound 3 was not affected by flumazenil. Compound 3 did not induce loss of the righting reflex in rats suggesting that it is not an anesthetic agent, however, its ability in protecting the animals from seizures induced by picrotoxin confirm that its action occurs through the GABA(A) receptor.
Collapse
Affiliation(s)
- Maria Paola Mascia
- CNR-Institute of Neuroscience, Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy.
| | | | | | | | | | | |
Collapse
|
7
|
Kontturi LS, Aalto AJ, Wallner M, Uusi-Oukari M. The cerebellar GABAAR α6-R100Q polymorphism alters ligand binding in outbred Sprague-Dawley rats in a similar manner as in selectively bred AT and ANT rats. Alcohol 2011; 45:653-61. [PMID: 21163615 DOI: 10.1016/j.alcohol.2010.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 11/11/2010] [Accepted: 11/18/2010] [Indexed: 10/18/2022]
Abstract
The alcohol-tolerant AT and alcohol-nontolerant ANT rat lines have been selectively bred for innate sensitivity to ethanol-induced motor impairment. The cerebellar GABAA receptor (GABAAR) α6 subunit alleles α6-100R and α6-100Q are segregated in the AT and ANT rats, respectively. This α6 polymorphism might explain various differences in pharmacological properties and density of GABAARs between the rat lines. In the present study, we have used nonselected outbred Sprague-Dawley rats homozygous for the α6-100RR (RR) and α6-100QQ (QQ) genotypes to show that these RR and QQ rats display similar differences between genotypes as AT and ANT rat lines. The genotypes differed in their affinity for [3H]Ro 15-4513 and classic benzodiazepines (BZs) to cerebellar "diazepam-insensitive" (DZ-IS) binding sites, in density of cerebellar [3H]muscimol binding and in the antagonizing effect of furosemide on GABA-induced inhibition of [3H]EBOB binding. The results suggest the involvement of α6-R100Q polymorphism in these line differences and in the differences previously found between AT and ANT rats. In addition, the α6-R100Q polymorphism induces striking differences in [3H]Ro 15-4513 binding kinetics to recombinant α6β3γ2s receptors and cerebellar DZ-IS sites. Association of [3H]Ro 15-4513 binding was ∼10-fold faster and dissociation was ∼3-4-fold faster in DZ-IS α6βγ2 receptors containing the α6-100Q allele, with a resulting change of ∼2.5-fold in equilibrium dissociation constant (KD). The results indicate that in addition to the central role of the homologous α6-100R/Q (α1-101H) residue in BZ binding and efficacy, this critical BZ binding site residue has a major impact on BZ binding kinetics.
Collapse
|