1
|
PLPP/CIN-mediated NF2-serine 10 dephosphorylation regulates F-actin stability and Mdm2 degradation in an activity-dependent manner. Cell Death Dis 2021; 12:37. [PMID: 33414453 PMCID: PMC7791067 DOI: 10.1038/s41419-020-03325-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 12/17/2022]
Abstract
Neurofibromin 2 (NF2, also known as merlin) is a tumor suppressor protein encoded by the neurofibromatosis type 2 gene NF2. NF2 is also an actin-binding protein that functions in an intrinsic signaling network critical for actin dynamics. Although protein kinase A (PKA)-mediated NF2-serin (S) 10 phosphorylation stabilizes filamentous actin (F-actin), the underlying mechanisms of NF2-S10 dephosphorylation and the role of NF2 in seizures have been elusive. Here, we demonstrate that pyridoxal-5′-phosphate phosphatase/chronophin (PLPP/CIN) dephosphorylated NF2-S10 site as well as cofilin-S3 site. In addition, NF2-S10 dephosphorylation reversely regulated murine double minute-2 (Mdm2) and postsynaptic density 95 (PSD95) degradations in an activity-dependent manner, which increased seizure intensity and its progression in response to kainic acid (KA). In addition, NF2 knockdown facilitated seizure intensity and its progress through F-actin instability independent of cofilin-mediated actin dynamics. Therefore, we suggest that PLPP/CIN may be a potential therapeutic target for epileptogenesis and NF2-associated diseases.
Collapse
|
2
|
Xiong TQ, Chen LM, Tan BH, Guo CY, Li YN, Zhang YF, Li SL, Zhao H, Li YC. The effects of calcineurin inhibitor FK506 on actin cytoskeleton, neuronal survival and glial reactions after pilocarpine-induced status epilepticus in mice. Epilepsy Res 2018; 140:138-147. [PMID: 29358156 DOI: 10.1016/j.eplepsyres.2018.01.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/05/2017] [Accepted: 01/03/2018] [Indexed: 01/03/2023]
Abstract
After status epilepticus (SE), actin cytoskeleton (F-actin) becomes progressively deconstructed in the hippocampus, which is consistent with the delayed pyramidal cell death in both time course and spatial distribution. A variety of experiments show that calcineurin inhibitors such as FK506 are able to inhibit the SE-induced actin depolymerization. However, it is still unclear what changes happen to the F-actin in the epileptic brain after FK506 treatment. A pilocarpine model of SE in mice was used to examine the effects of FK506 on the F-actin in the hippocampal neurons. The post SE (PSE) mice with or without FK506 treatment were monitored consecutively for 14 days to examine the frequency and duration of spontaneous seizures. The effects of FK506 on the activity of cofilin and actin dynamics were assessed at 7 and 14 d PSE by western blots. The organization of F-actin, neuronal cell death, and glial reactions were investigated by phalloidin staining, histological and immunocytochemical staining, respectively. As compared to the PSE + vehicle mice, FK506 treatment significantly decreased the frequency and duration of spontaneous seizures. Relative to the PSE + vehicle mice, western blots detected a partial restoration of phosphorylated cofilin and a significant increase of F/G ratio in the hippocampus after FK506 treatment. In the PSE + vehicle mice, almost no F-actin puncta were left in the CA1 and CA3 subfields at 7 and 14 d PSE. FK506-treated PSE mice showed a similar decrease of F-actin, but the extent of damage was significantly ameliorated. Consistently, the surviving neurons became significantly increased in number after FK506 treatment, relative to the PSE + vehicle groups. After FK506 treatment, microglial reaction was partially inhibited, but the expression of GFAP was not significantly changed, compared to the PSE + vehicle mice. The results suggest that post-epileptic treatment with FK506 ameliorated, but could not stop the deconstruction of F-actin or the delayed neuronal loss in the PSE mice.
Collapse
Affiliation(s)
- Tian-Qing Xiong
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Jilin Province, 130021, PR China
| | - Ling-Meng Chen
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Jilin Province, 130021, PR China
| | - Bai-Hong Tan
- Laboratory Teaching Center of Basic Medicine, Norman Bethune Health Science Center of Jilin University, Jilin Province, 130021, PR China
| | - Chun-Yan Guo
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Jilin Province, 130021, PR China
| | - Yong-Nan Li
- Department of Neurology, Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150001, PR China
| | - Yan-Feng Zhang
- Department of Neurology, First Affiliated Hospital of Jilin University, Changchun, Jilin Province 130021, PR China
| | - Shu-Lei Li
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Jilin Province, 130021, PR China
| | - Hui Zhao
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Jilin Province, 130021, PR China
| | - Yan-Chao Li
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Jilin Province, 130021, PR China.
| |
Collapse
|
3
|
Cavus I, Widi GA, Duckrow RB, Zaveri H, Kennard JT, Krystal J, Spencer DD. 50 Hz hippocampal stimulation in refractory epilepsy: Higher level of basal glutamate predicts greater release of glutamate. Epilepsia 2016; 57:288-97. [PMID: 26749134 DOI: 10.1111/epi.13269] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2015] [Indexed: 11/27/2022]
Abstract
OBJECTIVE The effect of electrical stimulation on brain glutamate release in humans is unknown. Glutamate is elevated at baseline in the epileptogenic hippocampus of patients with refractory epilepsy, and increases during spontaneous seizures. We examined the effect of 50 Hz stimulation on glutamate release and its relationship to interictal levels in the hippocampus of patients with epilepsy. In addition, we measured basal and stimulated glutamate levels in a subset of these patients where stimulation elicited a seizure. METHODS Subjects (n = 10) were patients with medically refractory epilepsy who were undergoing intracranial electroencephalography (EEG) evaluation in an epilepsy monitoring unit. Electrical stimulation (50 Hz) was delivered through implanted hippocampal electrodes (n = 11), and microdialysate samples were collected every 2 min. Basal glutamate, changes in glutamate efflux with stimulation, and the relationships between peak stimulation-associated glutamate concentrations, basal zero-flow levels, and stimulated seizures were examined. RESULTS Stimulation of epileptic hippocampi in patients with refractory epilepsy caused increases in glutamate efflux (p = 0.005, n = 10), and 4 of ten patients experienced brief stimulated seizures. Stimulation-induced increases in glutamate were not observed during the evoked seizures, but rather were related to the elevation in interictal basal glutamate (R(2) = 0.81, p = 0.001). The evoked-seizure group had lower basal glutamate levels than the no-seizure group (p = 0.04), with no stimulation-induced change in glutamate efflux (p = 0.47, n = 4). Conversely, increased glutamate was observed following stimulation in the no-seizure group (p = 0.005, n = 7). Subjects with an atrophic hippocampus had higher basal glutamate levels (p = 0.03, n = 7) and higher stimulation-induced glutamate efflux. SIGNIFICANCE Electrical stimulation of the epileptic hippocampus either increased extracellular glutamate efflux or induced seizures. The magnitude of stimulated glutamate increase was related to elevation in basal interictal glutamate, suggesting a common mechanism, possibly impaired glutamate metabolism. Divergent mechanisms may exist for seizure induction and increased glutamate in patients with epilepsy. These data highlight the potential risk of 50 Hz stimulation in patients with epilepsy.
Collapse
Affiliation(s)
- Idil Cavus
- Department of Neurosurgery, Yale University, New Haven, Connecticut, U.S.A.,Department of Psychiatry, Yale University, New Haven, Connecticut, U.S.A
| | - Gabriel A Widi
- Yale University School of Medicine, New Haven, Connecticut, U.S.A
| | - Robert B Duckrow
- Department of Neurosurgery, Yale University, New Haven, Connecticut, U.S.A.,Department of Neurology, Yale University, New Haven, Connecticut, U.S.A
| | - Hitten Zaveri
- Department of Neurology, Yale University, New Haven, Connecticut, U.S.A
| | - Jeremy T Kennard
- Department of Neurosurgery, Yale University, New Haven, Connecticut, U.S.A
| | - John Krystal
- Department of Psychiatry, Yale University, New Haven, Connecticut, U.S.A
| | - Dennis D Spencer
- Department of Neurosurgery, Yale University, New Haven, Connecticut, U.S.A
| |
Collapse
|
4
|
Guo XF, Wang JY, Wang H, Zhang HS. Simultaneous determination of primary and secondary phenethylamines in biological samples by high-performance liquid chromatographic method with fluorescence detection. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 967:69-74. [DOI: 10.1016/j.jchromb.2014.07.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 06/11/2014] [Accepted: 07/13/2014] [Indexed: 11/25/2022]
|
5
|
The Calcineurin Inhibitor Ascomicin Interferes with the Early Stage of the Epileptogenic Process Induced by Latrunculin A Microperfusion in Rat Hippocampus. J Neuroimmune Pharmacol 2014; 9:654-67. [DOI: 10.1007/s11481-014-9558-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 07/21/2014] [Indexed: 01/01/2023]
|
6
|
Fliegel S, Brand I, Spanagel R, Noori HR. Ethanol-induced alterations of amino acids measured by in vivo microdialysis in rats: a meta-analysis. In Silico Pharmacol 2013; 1:7. [PMID: 25505652 PMCID: PMC4230485 DOI: 10.1186/2193-9616-1-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 05/07/2013] [Indexed: 12/14/2022] Open
Abstract
PURPOSE In recent years in vivo microdialysis has become an important method in research studies investigating the alterations of neurotransmitters in the extracellular fluid of the brain. Based on the major involvement of glutamate and γ-aminobutyric acid (GABA) in mediating a variety of alcohol effects in the mammalian brain, numerous microdialysis studies have focused on the dynamical behavior of these systems in response to alcohol. METHODS Here we performed multiple meta-analyses on published datasets from the rat brain: (i) we studied basal extracellular concentrations of glutamate and GABA in brain regions that belong to a neurocircuitry involved in neuropsychiatric diseases, especially in alcoholism (Noori et al., Addict Biol 17:827-864, 2012); (ii) we examined the effect of acute ethanol administration on glutamate and GABA levels within this network and (iii) we studied alcohol withdrawal-induced alterations in glutamate and GABA levels within this neurocircuitry. RESULTS For extraction of basal concentrations of these neurotransmitters, datasets of 6932 rats were analyzed and the absolute basal glutamate and GABA levels were estimated for 18 different brain sites. In response to different doses of acute ethanol administration, datasets of 529 rats were analyzed and a non-linear dose response (glutamate and GABA release) relationship was observed in several brain sites. Specifically, glutamate in the nucleus accumbens shows a decreasing logarithmic dose response curve. Finally, regression analysis of 11 published reports employing brain microdialysis experiments in 104 alcohol-dependent rats reveals very consistent augmented extracellular glutamate and GABA levels in various brain sites that correlate with the intensity of the withdrawal response were identified. CONCLUSIONS In summary, our results provide standardized basal values for future experimental and in silico studies on neurotransmitter release in the rat brain and may be helpful to understand the effect of ethanol on neurotransmitter release. Furthermore, this study illustrates the benefit of meta-analyses using the generalization of a wide range of preclinical data.
Collapse
Affiliation(s)
- Sarah Fliegel
- Institute of Psychopharmacology, Central Institute of Mental Health, Faculty of Medicine Mannheim, University of Heidelberg, J5, 68159 Mannheim, Germany
| | - Ines Brand
- Institute of Psychopharmacology, Central Institute of Mental Health, Faculty of Medicine Mannheim, University of Heidelberg, J5, 68159 Mannheim, Germany
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Faculty of Medicine Mannheim, University of Heidelberg, J5, 68159 Mannheim, Germany
| | - Hamid R Noori
- Institute of Psychopharmacology, Central Institute of Mental Health, Faculty of Medicine Mannheim, University of Heidelberg, J5, 68159 Mannheim, Germany
| |
Collapse
|
7
|
Sierra-Paredes G, Oreiro-García MT, Vázquez-Illanes MD, Sierra-Marcuño G. Effect of eslicarbazepine acetate (BIA 2-093) on latrunculin A-induced seizures and extracellular amino acid concentrations in the rat hippocampus. Epilepsy Res 2007; 77:36-43. [PMID: 17890056 DOI: 10.1016/j.eplepsyres.2007.08.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2007] [Revised: 08/20/2007] [Accepted: 08/23/2007] [Indexed: 11/29/2022]
Abstract
PURPOSE Eslicarbazepine acetate (ESL, BIA 2-093) is a novel antiepileptic drug endowed with an anticonvulsant potency similar to that of carbamazepine, and shares with carbamazepine and oxcarbazepine the capability to inhibit voltage-gated sodium channels. ESL is efficacious against maximal electroshock seizure-induced seizures, protects against picrotoxin-induced seizures in mice and rats, and prevents development of kindling in rats. In vivo, latrunculin A microperfusion in the rat hippocampus induces acute epileptic seizures and long-term biochemical changes leading to decreased picrotoxin seizure threshold and spontaneous seizures. We have tested the effect of ESL on latrunculin A-induced seizures, and its effect on the changes in extracellular amino acid levels induced by latrunculin A. METHODS Rat hippocampus was continuously perfused with a latrunculin A solution (4 microM) through CMA/12 microdialysis probes at a flow rate of 2 microl/min during 8 h with continuous EEG and videotape recording for 3 consecutive days. The same protocol was repeated after oral administration of ESL (3, 10 and 30 mg/kg). Samples from the microdialysate were collected and analyzed by HPLC using pre-column derivatization with 6 aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) and fluorescence detection. RESULTS After the administration of 3 mg/kg of ESL, seizures were completely suppressed in the 66.7% of the rats. 10 and 30 mg/kg of ESL did completely suppressed seizures in the 100% of the animals studied. Hippocampal extracellular levels of glutamate, glycine and aspartate were significantly increased during latrunculin A microperfusion, while GABA levels remained unchanged. At the doses studied, ESL reversed the increases in extracellular glutamate and aspartate concentrations to basal levels and significantly reduced glycine levels. CONCLUSIONS ESL, at oral doses of 3, 10 and 30 mg/kg, shows an excellent anticonvulsant effect against seizures induced by latrunculin A microperfusion in the rat, and prevents the increases in glutamate and aspartate induced by latrunculin A.
Collapse
Affiliation(s)
- Germán Sierra-Paredes
- Neuroscience Division, Department of Biochemistry and Molecular Biology, School of Medicine, University of Santiago, San Francisco 1, 15782 Santiago de Compostela, Spain.
| | | | | | | |
Collapse
|