1
|
Pál B. On the functions of astrocyte-mediated neuronal slow inward currents. Neural Regen Res 2024; 19:2602-2612. [PMID: 38595279 PMCID: PMC11168512 DOI: 10.4103/nrr.nrr-d-23-01723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/25/2023] [Accepted: 01/24/2024] [Indexed: 04/11/2024] Open
Abstract
Slow inward currents are known as neuronal excitatory currents mediated by glutamate release and activation of neuronal extrasynaptic N-methyl-D-aspartate receptors with the contribution of astrocytes. These events are significantly slower than the excitatory postsynaptic currents. Parameters of slow inward currents are determined by several factors including the mechanisms of astrocytic activation and glutamate release, as well as the diffusion pathways from the release site towards the extrasynaptic receptors. Astrocytes are stimulated by neuronal network activity, which in turn excite neurons, forming an astrocyte-neuron feedback loop. Mostly as a consequence of brain edema, astrocytic swelling can also induce slow inward currents under pathological conditions. There is a growing body of evidence on the roles of slow inward currents on a single neuron or local network level. These events often occur in synchrony on neurons located in the same astrocytic domain. Besides synchronization of neuronal excitability, slow inward currents also set synaptic strength via eliciting timing-dependent synaptic plasticity. In addition, slow inward currents are also subject to non-synaptic plasticity triggered by long-lasting stimulation of the excitatory inputs. Of note, there might be important region-specific differences in the roles and actions triggering slow inward currents. In greater networks, the pathophysiological roles of slow inward currents can be better understood than physiological ones. Slow inward currents are identified in the pathophysiological background of autism, as slow inward currents drive early hypersynchrony of the neural networks. Slow inward currents are significant contributors to paroxysmal depolarizational shifts/interictal spikes. These events are related to epilepsy, but also found in Alzheimer's disease, Parkinson's disease, and stroke, leading to the decline of cognitive functions. Events with features overlapping with slow inward currents (excitatory, N-methyl-D-aspartate-receptor mediated currents with astrocytic contribution) as ischemic currents and spreading depolarization also have a well-known pathophysiological role in worsening consequences of stroke, traumatic brain injury, or epilepsy. One might assume that slow inward currents occurring with low frequency under physiological conditions might contribute to synaptic plasticity and memory formation. However, to state this, more experimental evidence from greater neuronal networks or the level of the individual is needed. In this review, I aimed to summarize findings on slow inward currents and to speculate on the potential functions of it.
Collapse
Affiliation(s)
- Balázs Pál
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
2
|
Csemer A, Sokvári C, Maamrah B, Szabó L, Korpás K, Pocsai K, Pál B. Pharmacological Activation of Piezo1 Channels Enhances Astrocyte-Neuron Communication via NMDA Receptors in the Murine Neocortex. Int J Mol Sci 2024; 25:3994. [PMID: 38612801 PMCID: PMC11012114 DOI: 10.3390/ijms25073994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024] Open
Abstract
The Piezo1 mechanosensitive ion channel is abundant on several elements of the central nervous system including astrocytes. It has been already demonstrated that activation of these channels is able to elicit calcium waves on astrocytes, which contributes to the release of gliotransmitters. Astrocyte- and N-methyl-D-aspartate (NMDA) receptor-dependent slow inward currents (SICs) are hallmarks of astrocyte-neuron communication. These currents are triggered by glutamate released as gliotransmitter, which in turn activates neuronal NMDA receptors responsible for this inward current having slower kinetics than any synaptic events. In this project, we aimed to investigate whether Piezo1 activation and inhibition is able to alter spontaneous SIC activity of murine neocortical pyramidal neurons. When the Piezo1 opener Yoda1 was applied, the SIC frequency and the charge transfer by these events in a minute time was significantly increased. These changes were prevented by treating the preparations with the NMDA receptor inhibitor D-AP5. Furthermore, Yoda1 did not alter the spontaneous EPSC frequency and amplitude when SICs were absent. The Piezo1 inhibitor Dooku1 effectively reverted the actions of Yoda1 and decreased the rise time of SICs when applied alone. In conclusion, activation of Piezo1 channels is able to alter astrocyte-neuron communication. Via enhancement of SIC activity, astrocytic Piezo1 channels have the capacity to determine neuronal excitability.
Collapse
Affiliation(s)
- Andrea Csemer
- Department of Physiology, Faculty of Medicine, University of Debrecen, H-4002 Debrecen, Hungary; (A.C.); (C.S.); (B.M.); (K.K.); (K.P.)
- Doctoral School of Molecular Medicine, University of Debrecen, H-4012 Debrecen, Hungary;
| | - Cintia Sokvári
- Department of Physiology, Faculty of Medicine, University of Debrecen, H-4002 Debrecen, Hungary; (A.C.); (C.S.); (B.M.); (K.K.); (K.P.)
- Doctoral School of Molecular Medicine, University of Debrecen, H-4012 Debrecen, Hungary;
| | - Baneen Maamrah
- Department of Physiology, Faculty of Medicine, University of Debrecen, H-4002 Debrecen, Hungary; (A.C.); (C.S.); (B.M.); (K.K.); (K.P.)
- Doctoral School of Molecular Medicine, University of Debrecen, H-4012 Debrecen, Hungary;
| | - László Szabó
- Doctoral School of Molecular Medicine, University of Debrecen, H-4012 Debrecen, Hungary;
- HUN-REN DE Cell Physiology Research Group, H-4032 Debrecen, Hungary
| | - Kristóf Korpás
- Department of Physiology, Faculty of Medicine, University of Debrecen, H-4002 Debrecen, Hungary; (A.C.); (C.S.); (B.M.); (K.K.); (K.P.)
- Doctoral School of Molecular Medicine, University of Debrecen, H-4012 Debrecen, Hungary;
| | - Krisztina Pocsai
- Department of Physiology, Faculty of Medicine, University of Debrecen, H-4002 Debrecen, Hungary; (A.C.); (C.S.); (B.M.); (K.K.); (K.P.)
| | - Balázs Pál
- Department of Physiology, Faculty of Medicine, University of Debrecen, H-4002 Debrecen, Hungary; (A.C.); (C.S.); (B.M.); (K.K.); (K.P.)
- Doctoral School of Molecular Medicine, University of Debrecen, H-4012 Debrecen, Hungary;
| |
Collapse
|
3
|
Ding L, Gu Z, Chen H, Wang P, Song Y, Zhang X, Li M, Chen J, Han H, Cheng J, Tong Z. Phototherapy for age-related brain diseases: Challenges, successes and future. Ageing Res Rev 2024; 94:102183. [PMID: 38218465 DOI: 10.1016/j.arr.2024.102183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 12/16/2023] [Accepted: 01/01/2024] [Indexed: 01/15/2024]
Abstract
Brain diseases present a significant obstacle to both global health and economic progress, owing to their elusive pathogenesis and the limited effectiveness of pharmaceutical interventions. Phototherapy has emerged as a promising non-invasive therapeutic modality for addressing age-related brain disorders, including stroke, Alzheimer's disease (AD), and Parkinson's disease (PD), among others. This review examines the recent progressions in phototherapeutic interventions. Firstly, the article elucidates the various wavelengths of visible light that possess the capability to penetrate the skin and skull, as well as the pathways of light stimulation, encompassing the eyes, skin, veins, and skull. Secondly, it deliberates on the molecular mechanisms of visible light on photosensitive proteins, within the context of brain disorders and other molecular pathways of light modulation. Lastly, the practical application of phototherapy in diverse clinical neurological disorders is indicated. Additionally, this review presents novel approaches that combine phototherapy and pharmacological interventions. Moreover, it outlines the limitations of phototherapeutics and proposes innovative strategies to improve the treatment of cerebral disorders.
Collapse
Affiliation(s)
- Ling Ding
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Ziqi Gu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Haishu Chen
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Panpan Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Yilan Song
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Xincheng Zhang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Mengyu Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Jinhan Chen
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China
| | - Hongbin Han
- Department of Radiology, Peking University Third Hospital, Beijing, China. Key Laboratory of Magnetic Resonance Imaging Equipment and Technique, NMPA key Laboratory for Evaluation of Medical Imaging Equipment and Technique, Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, China.
| | - Jianhua Cheng
- Department of neurology, the first affiliated hospital of Wenzhou medical University, Wenzhou 325035, China.
| | - Zhiqian Tong
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, Zhejiang 325035, PR China.
| |
Collapse
|
4
|
Csemer A, Kovács A, Maamrah B, Pocsai K, Korpás K, Klekner Á, Szücs P, Nánási PP, Pál B. Astrocyte- and NMDA receptor-dependent slow inward currents differently contribute to synaptic plasticity in an age-dependent manner in mouse and human neocortex. Aging Cell 2023; 22:e13939. [PMID: 37489544 PMCID: PMC10497838 DOI: 10.1111/acel.13939] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/26/2023] Open
Abstract
Slow inward currents (SICs) are known as excitatory events of neurons elicited by astrocytic glutamate via activation of extrasynaptic NMDA receptors. By using slice electrophysiology, we tried to provide evidence that SICs can elicit synaptic plasticity. Age dependence of SICs and their impact on synaptic plasticity was also investigated in both on murine and human cortical slices. It was found that SICs can induce a moderate synaptic plasticity, with features similar to spike timing-dependent plasticity. Overall SIC activity showed a clear decline with aging in humans and completely disappeared above a cutoff age. In conclusion, while SICs contribute to a form of astrocyte-dependent synaptic plasticity both in mice and humans, this plasticity is differentially affected by aging. Thus, SICs are likely to play an important role in age-dependent physiological and pathological alterations of synaptic plasticity.
Collapse
Affiliation(s)
- Andrea Csemer
- Department of Physiology, Faculty of MedicineUniversity of DebrecenDebrecenHungary
- Doctoral School of Molecular MedicineUniversity of DebrecenDebrecenHungary
| | - Adrienn Kovács
- Department of Physiology, Faculty of MedicineUniversity of DebrecenDebrecenHungary
| | - Baneen Maamrah
- Department of Physiology, Faculty of MedicineUniversity of DebrecenDebrecenHungary
- Doctoral School of Molecular MedicineUniversity of DebrecenDebrecenHungary
| | - Krisztina Pocsai
- Department of Physiology, Faculty of MedicineUniversity of DebrecenDebrecenHungary
| | - Kristóf Korpás
- Department of Physiology, Faculty of MedicineUniversity of DebrecenDebrecenHungary
| | - Álmos Klekner
- Department of Neurosurgery, Clinical CentreUniversity of DebrecenDebrecenHungary
| | - Péter Szücs
- Department of Anatomy, Histology and Embryology, Faculty of MedicineUniversity of DebrecenDebrecenHungary
| | - Péter P. Nánási
- Department of Physiology, Faculty of MedicineUniversity of DebrecenDebrecenHungary
- Department of Dental Physiology and Pharmacology, Faculty of DentistryUniversity of DebrecenDebrecenHungary
| | - Balázs Pál
- Department of Physiology, Faculty of MedicineUniversity of DebrecenDebrecenHungary
- Doctoral School of Molecular MedicineUniversity of DebrecenDebrecenHungary
| |
Collapse
|
5
|
Sucha P, Hermanova Z, Chmelova M, Kirdajova D, Camacho Garcia S, Marchetti V, Vorisek I, Tureckova J, Shany E, Jirak D, Anderova M, Vargova L. The absence of AQP4/TRPV4 complex substantially reduces acute cytotoxic edema following ischemic injury. Front Cell Neurosci 2022; 16:1054919. [PMID: 36568889 PMCID: PMC9773096 DOI: 10.3389/fncel.2022.1054919] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction Astrocytic Aquaporin 4 (AQP4) and Transient receptor potential vanilloid 4 (TRPV4) channels form a functional complex that likely influences cell volume regulation, the development of brain edema, and the severity of the ischemic injury. However, it remains to be fully elucidated whether blocking these channels can serve as a therapeutic approach to alleviate the consequences of having a stroke. Methods and results In this study, we used in vivo magnetic resonance imaging (MRI) to quantify the extent of brain lesions one day (D1) and seven days (D7) after permanent middle cerebral artery occlusion (pMCAO) in AQP4 or TRPV4 knockouts and mice with simultaneous deletion of both channels. Our results showed that deletion of AQP4 or TRPV4 channels alone leads to a significant worsening of ischemic brain injury at both time points, whereas their simultaneous deletion results in a smaller brain lesion at D1 but equal tissue damage at D7 when compared with controls. Immunohistochemical analysis 7 days after pMCAO confirmed the MRI data, as the brain lesion was significantly greater in AQP4 or TRPV4 knockouts than in controls and double knockouts. For a closer inspection of the TRPV4 and AQP4 channel complex in the development of brain edema, we applied a real-time iontophoretic method in situ to determine ECS diffusion parameters, namely volume fraction (α) and tortuosity (λ). Changes in these parameters reflect alterations in cell volume, and tissue structure during exposure of acute brain slices to models of ischemic conditions in situ, such as oxygen-glucose deprivation (OGD), hypoosmotic stress, or hyperkalemia. The decrease in α was comparable in double knockouts and controls when exposed to hypoosmotic stress or hyperkalemia. However, during OGD, there was no decrease in α in the double knockouts as observed in the controls, which suggests less swelling of the cellular components of the brain. Conclusion Although simultaneous deletion of AQP4 and TRPV4 did not improve the overall outcome of ischemic brain injury, our data indicate that the interplay between AQP4 and TRPV4 channels plays a critical role during neuronal and non-neuronal swelling in the acute phase of ischemic injury.
Collapse
Affiliation(s)
- Petra Sucha
- Second Faculty of Medicine, Charles University, Prague, Czechia,Department of Cellular Neurophysiology, Institute of Experimental Medicine of the CAS, Prague, Czechia
| | - Zuzana Hermanova
- Second Faculty of Medicine, Charles University, Prague, Czechia,Department of Cellular Neurophysiology, Institute of Experimental Medicine of the CAS, Prague, Czechia
| | - Martina Chmelova
- Second Faculty of Medicine, Charles University, Prague, Czechia,Department of Cellular Neurophysiology, Institute of Experimental Medicine of the CAS, Prague, Czechia
| | - Denisa Kirdajova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the CAS, Prague, Czechia
| | - Sara Camacho Garcia
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the CAS, Prague, Czechia
| | - Valeria Marchetti
- Second Faculty of Medicine, Charles University, Prague, Czechia,Department of Cellular Neurophysiology, Institute of Experimental Medicine of the CAS, Prague, Czechia
| | - Ivan Vorisek
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the CAS, Prague, Czechia
| | - Jana Tureckova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the CAS, Prague, Czechia
| | - Eyar Shany
- Department of Diagnostic and Interventional Radiology, Institute of Clinical and Experimental Medicine, Prague, Czechia
| | - Daniel Jirak
- Department of Diagnostic and Interventional Radiology, Institute of Clinical and Experimental Medicine, Prague, Czechia,First Faculty of Medicine, Institute of Biophysics and Informatics, Charles University, Prague, Czechia
| | - Miroslava Anderova
- Second Faculty of Medicine, Charles University, Prague, Czechia,Department of Cellular Neurophysiology, Institute of Experimental Medicine of the CAS, Prague, Czechia,*Correspondence: Miroslava Anderova,
| | - Lydia Vargova
- Second Faculty of Medicine, Charles University, Prague, Czechia,Department of Cellular Neurophysiology, Institute of Experimental Medicine of the CAS, Prague, Czechia
| |
Collapse
|
6
|
Gu Z, Chen H, Zhao H, Yang W, Song Y, Li X, Wang Y, Du D, Liao H, Pan W, Li X, Gao Y, Han H, Tong Z. New insight into brain disease therapy: nanomedicines-crossing blood-brain barrier and extracellular space for drug delivery. Expert Opin Drug Deliv 2022; 19:1618-1635. [PMID: 36285632 DOI: 10.1080/17425247.2022.2139369] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
INTRODUCTION Brain diseases including brain tumor, Alzheimer's disease, Parkinson's disease, etc. are difficult to treat. The blood-brain barrier (BBB) is a major obstacle for drug delivery into the brain. Although nano-package and receptor-mediated delivery of nanomedicine markedly increases BBB penetration, it yet did not extensively improve clinical cure rate. Recently, brain extracellular space (ECS) and interstitial fluid (ISF) drainage in ECS have been found to determine whether a drug dissolved in ISF can reach its target cells. Notably, an increase in tortuosity of ECS associated with slower ISF drainage induced by the accumulated harmful substances, such as: amyloid-beta (Aβ), α-synuclein, and metabolic wastes, causes drug delivery failure. AREAS COVERED The methods of nano-package and receptor-mediated drug delivery and the penetration efficacy of nanomedicines across BBB and ECS are assessed. EXPERT OPINION Invasive delivering drug via ECS and noninvasive near-infrared photo-sensitive nanomedicines may provide a promising benefit to patients with brain disease.
Collapse
Affiliation(s)
- Ziqi Gu
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Haishu Chen
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Han Zhao
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Wanting Yang
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Yilan Song
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Xiang Li
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Yang Wang
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China.,Department of Radiology, Peking University Third Hospital, Beijing, China
| | - Dan Du
- Department of Radiology, Peking University Third Hospital, Beijing, China.,Department of Magnetic Resonance Imaging, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao, China.,Beijing Key Laboratory of Magnetic Resonance Imaging Devices and Technology, Peking University Third Hospital, Beijing, China
| | - Haikang Liao
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Wenhao Pan
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Xi Li
- The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yajuan Gao
- Department of Radiology, Peking University Third Hospital, Beijing, China.,NMPA key Laboratory for Evaluation of Medical Imaging Equipment and Technique, Beijing, China
| | - Hongbin Han
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China.,Department of Radiology, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging Devices and Technology, Peking University Third Hospital, Beijing, China.,Peking University Shenzhen Graduate School, Shenzhen, China
| | - Zhiqian Tong
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China.,The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
7
|
Jurga AM, Paleczna M, Kadluczka J, Kuter KZ. Beyond the GFAP-Astrocyte Protein Markers in the Brain. Biomolecules 2021; 11:biom11091361. [PMID: 34572572 PMCID: PMC8468264 DOI: 10.3390/biom11091361] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 12/13/2022] Open
Abstract
The idea of central nervous system as one-man band favoring neurons is long gone. Now we all are aware that neurons and neuroglia are team players and constant communication between those various cell types is essential to maintain functional efficiency and a quick response to danger. Here, we summarize and discuss known and new markers of astroglial multiple functions, their natural heterogeneity, cellular interactions, aging and disease-induced dysfunctions. This review is focused on newly reported facts regarding astrocytes, which are beyond the old stereotypes. We present an up-to-date list of marker proteins used to identify a broad spectrum of astroglial phenotypes related to the various physiological and pathological nervous system conditions. The aim of this review is to help choose markers that are well-tailored for specific needs of further experimental studies, precisely recognizing differential glial phenotypes, or for diagnostic purposes. We hope it will help to categorize the functional and structural diversity of the astroglial population and ease a clear readout of future experimental results.
Collapse
|
8
|
Exosomes and exosomal microRNA in non-targeted radiation bystander and abscopal effects in the central nervous system. Cancer Lett 2020; 499:73-84. [PMID: 33160002 DOI: 10.1016/j.canlet.2020.10.049] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/24/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022]
Abstract
Localized cranial radiotherapy is a dominant treatment for brain cancers. After being subjected to radiation, the central nervous system (CNS) exhibits targeted effects as well as non-targeted radiation bystander effects (RIBE) and abscopal effects (RIAE). Radiation-induced targeted effects in the CNS include autophagy and various changes in tumor cells due to radiation sensitivity, which can be regulated by microRNAs. Non-targeted radiation effects are mainly induced by gap junctional communication between cells, exosomes containing microRNAs can be transduced by intracellular endocytosis to regulate RIBE and RIAE. In this review, we discuss the involvement of microRNAs in radiation-induced targeted effects, as well as exosomes and/or exosomal microRNAs in non-targeted radiation effects in the CNS. As a target pathway, we also discuss the Akt pathway which is regulated by microRNAs, exosomes, and/or exosomal microRNAs in radiation-induced targeted effects and RIBE in CNS tumor cells. As the CNS-derived exosomes can cross the blood-brain-barrier (BBB) into the bloodstream and be isolated from peripheral blood, exosomes and exosomal microRNAs can emerge as promising minimally invasive biomarkers and therapeutic targets for radiation-induced targeted and non-targeted effects in the CNS.
Collapse
|
9
|
Pacholko AG, Wotton CA, Bekar LK. Astrocytes-The Ultimate Effectors of Long-Range Neuromodulatory Networks? Front Cell Neurosci 2020; 14:581075. [PMID: 33192327 PMCID: PMC7554522 DOI: 10.3389/fncel.2020.581075] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/07/2020] [Indexed: 11/21/2022] Open
Abstract
It was long thought that astrocytes, given their lack of electrical signaling, were not involved in communication with neurons. However, we now know that one astrocyte on average maintains and regulates the extracellular neurotransmitter and potassium levels of more than 140,000 synapses, both excitatory and inhibitory, within their individual domains, and form a syncytium that can propagate calcium waves to affect distant cells via release of “gliotransmitters” such as glutamate, ATP, or adenosine. Neuromodulators can affect signal-to-noise and frequency transmission within cortical circuits by effects on inhibition, allowing for the filtering of relevant vs. irrelevant stimuli. Moreover, synchronized “resting” and desynchronized “activated” brain states are gated by short bursts of high-frequency neuromodulatory activity, highlighting the need for neuromodulation that is robust, rapid, and far-reaching. As many neuromodulators are released in a volume manner where degradation/uptake and the confines of the complex CNS limit diffusion distance, we ask the question—are astrocytes responsible for rapidly extending neuromodulator actions to every synapse? Neuromodulators are known to influence transitions between brain states, leading to control over plasticity, responses to salient stimuli, wakefulness, and sleep. These rapid and wide-spread state transitions demand that neuromodulators can simultaneously influence large and diverse regions in a manner that should be impossible given the limitations of simple diffusion. Intriguingly, astrocytes are ideally situated to amplify/extend neuromodulator effects over large populations of synapses given that each astrocyte can: (1) ensheath a large number of synapses; (2) release gliotransmitters (glutamate/ATP/adenosine) known to affect inhibition; (3) regulate extracellular potassium that can affect excitability and excitation/inhibition balance; and (4) express receptors for all neuromodulators. In this review article, we explore the hypothesis that astrocytes extend and amplify neuromodulatory influences on neuronal networks via alterations in calcium dynamics, the release of gliotransmitters, and potassium homeostasis. Given that neuromodulatory networks are at the core of our sleep-wake cycle and behavioral states, and determine how we interact with our environment, this review article highlights the importance of basic astrocyte function in homeostasis, general cognition, and psychiatric disorders.
Collapse
Affiliation(s)
- Anthony G Pacholko
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Caitlin A Wotton
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Lane K Bekar
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
10
|
Breithausen B, Kautzmann S, Boehlen A, Steinhäuser C, Henneberger C. Limited contribution of astroglial gap junction coupling to buffering of extracellular K + in CA1 stratum radiatum. Glia 2019; 68:918-931. [PMID: 31743499 DOI: 10.1002/glia.23751] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/25/2019] [Accepted: 10/29/2019] [Indexed: 12/21/2022]
Abstract
Astrocytes form large networks, in which individual cells are connected via gap junctions. It is thought that this astroglial gap junction coupling contributes to the buffering of extracellular K+ increases. However, it is largely unknown how the control of extracellular K+ by astroglial gap junction coupling depends on the underlying activity patterns and on the magnitude of extracellular K+ increases. We explored this dependency in acute hippocampal slices (CA1, stratum radiatum) by direct K+ -sensitive microelectrode recordings and acute pharmacological inhibition of gap junctions. K+ transients evoked by synaptic and axonal activity were largely unaffected by acute astroglial uncoupling in slices obtained from young and adult rats. Iontophoretic K+ -application enabled us to generate K+ gradients with defined spatial properties and magnitude. By varying the K+ -iontophoresis position and protocol, we found that acute pharmacological uncoupling increases the amplitude of K+ transients once their initial amplitude exceeded ~10 mM. Our experiments demonstrate that the contribution of gap junction coupling to buffering of extracellular K+ gradients is limited to large and localized K+ increases.
Collapse
Affiliation(s)
- Björn Breithausen
- Institute of Cellular Neurosciences, University of Bonn Medical School, Bonn, Germany
| | - Steffen Kautzmann
- Institute of Cellular Neurosciences, University of Bonn Medical School, Bonn, Germany
| | - Anne Boehlen
- Institute of Cellular Neurosciences, University of Bonn Medical School, Bonn, Germany
| | - Christian Steinhäuser
- Institute of Cellular Neurosciences, University of Bonn Medical School, Bonn, Germany
| | - Christian Henneberger
- Institute of Cellular Neurosciences, University of Bonn Medical School, Bonn, Germany.,Institute of Neurology, University College London, London, UK.,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| |
Collapse
|
11
|
Roles Played by the Na +/Ca 2+ Exchanger and Hypothermia in the Prevention of Ischemia-Induced Carrier-Mediated Efflux of Catecholamines into the Extracellular Space: Implications for Stroke Therapy. Neurochem Res 2019; 45:16-33. [PMID: 31346893 PMCID: PMC6942591 DOI: 10.1007/s11064-019-02842-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 05/30/2019] [Accepted: 07/04/2019] [Indexed: 12/11/2022]
Abstract
The release of [3H]dopamine ([3H]DA) and [3H]noradrenaline ([3H]NA) in acutely perfused rat striatal and cortical slice preparations was measured at 37 °C and 17 °C under ischemic conditions. The ischemia was simulated by the removal of oxygen and glucose from the Krebs solution. At 37 °C, resting release rates in response to ischemia were increased; in contrast, at 17 °C, resting release rates were significantly reduced, or resting release was completely prevented. The removal of extracellular Ca2+ further increased the release rates of [3H]DA and [3H]NA induced by ischemic conditions. This finding indicated that the Na+/Ca2+ exchanger (NCX), working in reverse in the absence of extracellular Ca2+, fails to trigger the influx of Ca2+ in exchange for Na+ and fails to counteract ischemia by further increasing the intracellular Na+ concentration ([Na+]i). KB-R7943, an inhibitor of NCX, significantly reduced the cytoplasmic resting release rate of catecholamines under ischemic conditions and under conditions where Ca2+ was removed. Hypothermia inhibited the excessive release of [3H]DA in response to ischemia, even in the absence of Ca2+. These findings further indicate that the NCX plays an important role in maintaining a high [Na+]i, a condition that may lead to the reversal of monoamine transporter functions; this effect consequently leads to the excessive cytoplasmic tonic release of monoamines and the reversal of the NCX. Using HPLC combined with scintillation spectrometry, hypothermia, which enhances the stimulation-evoked release of DA, was found to inhibit the efflux of toxic DA metabolites, such as 3,4-dihydroxyphenylacetaldehyde (DOPAL). In slices prepared from human cortical brain tissue removed during elective neurosurgery, the uptake and release values for [3H]NA did not differ from those measured at 37 °C in slices that were previously maintained under hypoxic conditions at 8 °C for 20 h. This result indicates that hypothermia preserves the functions of the transport and release mechanisms, even under hypoxic conditions. Oxidative stress (H2O2), a mediator of ischemic brain injury enhanced the striatal resting release of [3H]DA and its toxic metabolites (DOPAL, quinone). The study supports our earlier findings that during ischemia transmitters are released from the cytoplasm. In addition, the major findings of this study that hypothermia of brain slice preparations prevents the extracellular calcium concentration ([Ca2+]o)-independent non-vesicular transmitter release induced by ischemic insults, inhibiting Na+/Cl−-dependent membrane transport of monoamines and their toxic metabolites into the extracellular space, where they can exert toxic effects.
Collapse
|
12
|
Pál B. Involvement of extrasynaptic glutamate in physiological and pathophysiological changes of neuronal excitability. Cell Mol Life Sci 2018; 75:2917-2949. [PMID: 29766217 PMCID: PMC11105518 DOI: 10.1007/s00018-018-2837-5] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/27/2018] [Accepted: 05/07/2018] [Indexed: 12/14/2022]
Abstract
Glutamate is the most abundant neurotransmitter of the central nervous system, as the majority of neurons use glutamate as neurotransmitter. It is also well known that this neurotransmitter is not restricted to synaptic clefts, but found in the extrasynaptic regions as ambient glutamate. Extrasynaptic glutamate originates from spillover of synaptic release, as well as from astrocytes and microglia. Its concentration is magnitudes lower than in the synaptic cleft, but receptors responding to it have higher affinity for it. Extrasynaptic glutamate receptors can be found in neuronal somatodendritic location, on astroglia, oligodendrocytes or microglia. Activation of them leads to changes of neuronal excitability with different amplitude and kinetics. Extrasynaptic glutamate is taken up by neurons and astrocytes mostly via EAAT transporters, and astrocytes, in turn metabolize it to glutamine. Extrasynaptic glutamate is involved in several physiological phenomena of the central nervous system. It regulates neuronal excitability and synaptic strength by involving astroglia; contributing to learning and memory formation, neurosecretory and neuromodulatory mechanisms, as well as sleep homeostasis.The extrasynaptic glutamatergic system is affected in several brain pathologies related to excitotoxicity, neurodegeneration or neuroinflammation. Being present in dementias, neurodegenerative and neuropsychiatric diseases or tumor invasion in a seemingly uniform way, the system possibly provides a common component of their pathogenesis. Although parts of the system are extensively discussed by several recent reviews, in this review I attempt to summarize physiological actions of the extrasynaptic glutamate on neuronal excitability and provide a brief insight to its pathology for basic understanding of the topic.
Collapse
Affiliation(s)
- Balázs Pál
- Department of Physiology, Faculty of Medicine, University of Debrecen, Nagyerdei krt 98, Debrecen, 4012, Hungary.
| |
Collapse
|
13
|
Hillen AEJ, Burbach JPH, Hol EM. Cell adhesion and matricellular support by astrocytes of the tripartite synapse. Prog Neurobiol 2018; 165-167:66-86. [PMID: 29444459 DOI: 10.1016/j.pneurobio.2018.02.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/25/2017] [Accepted: 02/07/2018] [Indexed: 12/18/2022]
Abstract
Astrocytes contribute to the formation, function, and plasticity of synapses. Their processes enwrap the neuronal components of the tripartite synapse, and due to this close interaction they are perfectly positioned to modulate neuronal communication. The interaction between astrocytes and synapses is facilitated by cell adhesion molecules and matricellular proteins, which have been implicated in the formation and functioning of tripartite synapses. The importance of such neuron-astrocyte integration at the synapse is underscored by the emerging role of astrocyte dysfunction in synaptic pathologies such as autism and schizophrenia. Here we review astrocyte-expressed cell adhesion molecules and matricellular molecules that play a role in integration of neurons and astrocytes within the tripartite synapse.
Collapse
Affiliation(s)
- Anne E J Hillen
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands; Department of Pediatrics/Child Neurology, VU University Medical Center, 1081 HV Amsterdam, The Netherlands
| | - J Peter H Burbach
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | - Elly M Hol
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands; Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, 1098 XH Amsterdam, The Netherlands; Department of Neuroimmunology, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, The Netherlands.
| |
Collapse
|
14
|
Ou Y, Weber SG. Numerical Modeling of Electroosmotic Push-Pull Perfusion and Assessment of Its Application to Quantitative Determination of Enzymatic Activity in the Extracellular Space of Mammalian Tissue. Anal Chem 2017; 89:5864-5873. [PMID: 28447456 PMCID: PMC5823015 DOI: 10.1021/acs.analchem.7b00187] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Many sampling methods have been developed to measure the extracellular concentrations of solutes in the extracellular space of mammalian tissue, e.g., brain. However, few have been used to quantitatively study the various processes, such as enzymatic degradation, that determines the fate of these solutes. For a method to be useful in this pursuit, it must be able to (1) perfuse tissue and collect the perfusate for quantitative analysis of the solutes introduced and reaction products produced, (2) control the average residence time of the active solutes, and (3) have the appropriate spatial resolution for the process of interest. Our lab previously developed a perfusion technique based on electroosmosis (EO), called EO push-pull perfusion (EOPPP), that is in principle suitable to meet these needs. However, much like the case for other sampling methods that came before, there are parameters that are needed for quantitative interpretation of data but that cannot be measured easily (or at all). In this paper, we present a robust finite element model that provides a deep understanding of fluid dynamics and mass transport in the EOPPP method, assesses the general applicability of EOPPP to studying enzyme activity in the ECS, and grants a simple approach to data treatment and interpretation to obtain, for example, Vmax and Km for an enzymatic reaction in the extracellular space of the tissue. This model is a valuable tool in optimizing and planning experiments without the need for costly experiments.
Collapse
Affiliation(s)
- Yangguang Ou
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260
| | - Stephen G. Weber
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260
| |
Collapse
|
15
|
Coppola JJ, Ward NJ, Jadi MP, Disney AA. Modulatory compartments in cortex and local regulation of cholinergic tone. ACTA ACUST UNITED AC 2016; 110:3-9. [PMID: 27553093 DOI: 10.1016/j.jphysparis.2016.08.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/26/2016] [Accepted: 08/19/2016] [Indexed: 01/02/2023]
Abstract
Neuromodulatory signaling is generally considered broad in its impact across cortex. However, variations in the characteristics of cortical circuits may introduce regionally-specific responses to diffuse modulatory signals. Features such as patterns of axonal innervation, tissue tortuosity and molecular diffusion, effectiveness of degradation pathways, subcellular receptor localization, and patterns of receptor expression can lead to local modification of modulatory inputs. We propose that modulatory compartments exist in cortex and can be defined by variation in structural features of local circuits. Further, we argue that these compartments are responsible for local regulation of neuromodulatory tone. For the cholinergic system, these modulatory compartments are regions of cortical tissue within which signaling conditions for acetylcholine are relatively uniform, but between which signaling can vary profoundly. In the visual system, evidence for the existence of compartments indicates that cholinergic modulation likely differs across the visual pathway. We argue that the existence of these compartments calls for thinking about cholinergic modulation in terms of finer-grained control of local cortical circuits than is implied by the traditional view of this system as a diffuse modulator. Further, an understanding of modulatory compartments provides an opportunity to better understand and perhaps correct signal modifications that lead to pathological states.
Collapse
Affiliation(s)
- Jennifer J Coppola
- Department of Psychology, Vanderbilt University, PMB 407817, 2301 Vanderbilt Place, Nashville, TN 37240-7817, USA.
| | - Nicholas J Ward
- Department of Psychology, Vanderbilt University, PMB 407817, 2301 Vanderbilt Place, Nashville, TN 37240-7817, USA.
| | - Monika P Jadi
- Computational Neurobiology Laboratory, Salk Institute for Biological Studies, 10610 North Torrey Pines Road, La Jolla, CA 92093, USA.
| | - Anita A Disney
- Department of Psychology, Vanderbilt University, PMB 407817, 2301 Vanderbilt Place, Nashville, TN 37240-7817, USA.
| |
Collapse
|
16
|
Bjorefeldt A, Wasling P, Zetterberg H, Hanse E. Neuromodulation of fast-spiking and non-fast-spiking hippocampal CA1 interneurons by human cerebrospinal fluid. J Physiol 2016; 594:937-52. [PMID: 26634295 DOI: 10.1113/jp271553] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 11/30/2015] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS How the brain extracellular fluid influences the activity of GABAergic interneurons in vivo is not known. This issue is examined in the hippocampal brain slice by comparing GABAergic interneuron activity in human versus artificial cerebrospinal fluid. Human cerebrospinal fluid (hCSF) substantially increases the excitability of fast-spiking and non-fast-spiking CA1 interneurons. CA1 pyramidal cells are even more strongly excited by hCSF. The tonic excitation of pyramidal cells, in combination with an increased responsiveness of interneurons to excitatory input, is likely to promote the generation of synchronized network activity in the hippocampus. ABSTRACT GABAergic interneurons intricately regulate the activity of hippocampal and neocortical networks. Their function in vivo is likely to be tuned by neuromodulatory substances in the brain extracellular fluid. However, in vitro investigations of GABAergic interneuron function do not account for such effects, as neurons are kept in artificial extracellular fluid. To examine the neuromodulatory influence of brain extracellular fluid on GABAergic activity, we recorded from fast-spiking and non-fast-spiking CA1 interneurons, as well as from pyramidal cells, in the presence of human cerebrospinal fluid (hCSF), using a matched artificial cerebrospinal fluid (aCSF) as control. We found that hCSF increased the frequency of spontaneous firing more than twofold in the two groups of interneurons, and more than fourfold in CA1 pyramidal cells. hCSF did not affect the resting membrane potential of CA1 interneurons but caused depolarization in pyramidal cells. The increased excitability of interneurons and pyramidal cells was accompanied by reductions in after-hyperpolarization amplitudes and a left-shift in the frequency-current relationships. Our results suggest that ambient concentrations of neuromodulators in the brain extracellular fluid powerfully influence the excitability of neuronal networks.
Collapse
Affiliation(s)
- Andreas Bjorefeldt
- Department of Physiology, Institute of Neuroscience and Physiology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Pontus Wasling
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, 431 80 Molndal, Sweden.,Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Eric Hanse
- Department of Physiology, Institute of Neuroscience and Physiology, University of Gothenburg, 405 30 Gothenburg, Sweden
| |
Collapse
|
17
|
Agnati LF, Fuxe K. Extracellular-vesicle type of volume transmission and tunnelling-nanotube type of wiring transmission add a new dimension to brain neuro-glial networks. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0505. [PMID: 25135966 DOI: 10.1098/rstb.2013.0505] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Two major types of intercellular communication are found in the central nervous system (CNS), namely wiring transmission (WT; point-to-point communication via private channels, e.g. synaptic transmission) and volume transmission (VT; communication in the extracellular fluid and in the cerebrospinal fluid). Volume and synaptic transmission become integrated because their chemical signals activate different types of interacting receptors in heteroreceptor complexes located synaptically and extrasynaptically in the plasma membrane. In VT, we focus on the role of the extracellular-vesicle type of VT, and in WT, on the potential role of the tunnelling-nanotube (TNT) type of WT. The so-called exosomes appear to be the major vesicular carrier for intercellular communication but the larger microvesicles also participate. Extracellular vesicles are released from cultured cortical neurons and different types of glial cells and modulate the signalling of the neuronal-glial networks of the CNS. This type of VT has pathological relevance, and epigenetic mechanisms may participate in the modulation of extracellular-vesicle-mediated VT. Gerdes and co-workers proposed the existence of a novel type of WT based on TNTs, which are straight transcellular channels leading to the formation in vitro of syncytial cellular networks found also in neuronal and glial cultures.
Collapse
Affiliation(s)
| | - Kjell Fuxe
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, 17177 Stockholm, Sweden
| |
Collapse
|
18
|
Acute amnestic encephalopathy in amyloid-β oligomer-injected mice is due to their widespread diffusion in vivo. Neurobiol Aging 2015; 36:2043-52. [PMID: 25862419 DOI: 10.1016/j.neurobiolaging.2015.03.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 02/17/2015] [Accepted: 03/08/2015] [Indexed: 12/13/2022]
Abstract
Amyloid-β (Aβ) oligomers are the suspected culprit as initiators of Alzheimer's disease (AD). However, their diffusion in the brain remains unknown. Here, we studied Aβ oligomers' dissemination and evaluated their in vivo toxicity. Wild-type mice were injected with 50 pmol of synthetic Aβ oligomers (of different size) in the hippocampus. Oligomers diffused largely in the brain as soon as 1 hour and up to 7 days after injection. A transient encephalopathy with memory impairment was induced by this unique injection. The immunoreactivity of the postsynaptic marker PSD95 was diffusely decreased. Similar results (both on memory and PSD95 immunoreactivity) were obtained with delipidated and high molecular weight oligomers (>50 kDa) but not with smaller assemblies. Tau hyperphosphorylation was observed in the oligomer-injected brains. Finally, fos immunostaining was increased in Aβ-derived diffusible ligands-injected mice, suggesting neuronal hyperactivity. Rapid and widespread diffusion of Aβ oligomers was demonstrated in vivo and associated with decreased synaptic markers and memory deficits which gives new insight to the pathogenicity of Aβ.
Collapse
|
19
|
Giacci MK, Wheeler L, Lovett S, Dishington E, Majda B, Bartlett CA, Thornton E, Harford-Wright E, Leonard A, Vink R, Harvey AR, Provis J, Dunlop SA, Hart NS, Hodgetts S, Natoli R, Van Den Heuvel C, Fitzgerald M. Differential effects of 670 and 830 nm red near infrared irradiation therapy: a comparative study of optic nerve injury, retinal degeneration, traumatic brain and spinal cord injury. PLoS One 2014; 9:e104565. [PMID: 25105800 PMCID: PMC4126771 DOI: 10.1371/journal.pone.0104565] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 07/10/2014] [Indexed: 01/23/2023] Open
Abstract
Red/near-infrared irradiation therapy (R/NIR-IT) delivered by laser or light-emitting diode (LED) has improved functional outcomes in a range of CNS injuries. However, translation of R/NIR-IT to the clinic for treatment of neurotrauma has been hampered by lack of comparative information regarding the degree of penetration of the delivered irradiation to the injury site and the optimal treatment parameters for different CNS injuries. We compared the treatment efficacy of R/NIR-IT at 670 nm and 830 nm, provided by narrow-band LED arrays adjusted to produce equal irradiance, in four in vivo rat models of CNS injury: partial optic nerve transection, light-induced retinal degeneration, traumatic brain injury (TBI) and spinal cord injury (SCI). The number of photons of 670 nm or 830 nm light reaching the SCI injury site was 6.6% and 11.3% of emitted light respectively. Treatment of rats with 670 nm R/NIR-IT following partial optic nerve transection significantly increased the number of visual responses at 7 days after injury (P ≤ 0.05); 830 nm R/NIR-IT was partially effective. 670 nm R/NIR-IT also significantly reduced reactive species and both 670 nm and 830 nm R/NIR-IT reduced hydroxynonenal immunoreactivity (P ≤ 0.05) in this model. Pre-treatment of light-induced retinal degeneration with 670 nm R/NIR-IT significantly reduced the number of Tunel+ cells and 8-hydroxyguanosine immunoreactivity (P ≤ 0.05); outcomes in 830 nm R/NIR-IT treated animals were not significantly different to controls. Treatment of fluid-percussion TBI with 670 nm or 830 nm R/NIR-IT did not result in improvements in motor or sensory function or lesion size at 7 days (P>0.05). Similarly, treatment of contusive SCI with 670 nm or 830 nm R/NIR-IT did not result in significant improvements in functional recovery or reduced cyst size at 28 days (P>0.05). Outcomes from this comparative study indicate that it will be necessary to optimise delivery devices, wavelength, intensity and duration of R/NIR-IT individually for different CNS injury types.
Collapse
Affiliation(s)
- Marcus K. Giacci
- Experimental and Regenerative Neurosciences, The University of Western Australia, Crawley, Australia
- School of Animal Biology, The University of Western Australia, Crawley, Australia
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, Crawley, Australia
| | - Lachlan Wheeler
- Experimental and Regenerative Neurosciences, The University of Western Australia, Crawley, Australia
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, Crawley, Australia
| | - Sarah Lovett
- Experimental and Regenerative Neurosciences, The University of Western Australia, Crawley, Australia
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, Crawley, Australia
| | - Emma Dishington
- Experimental and Regenerative Neurosciences, The University of Western Australia, Crawley, Australia
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, Crawley, Australia
| | - Bernadette Majda
- Experimental and Regenerative Neurosciences, The University of Western Australia, Crawley, Australia
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, Crawley, Australia
| | - Carole A. Bartlett
- Experimental and Regenerative Neurosciences, The University of Western Australia, Crawley, Australia
- School of Animal Biology, The University of Western Australia, Crawley, Australia
| | - Emma Thornton
- School of Medical Sciences, The University of Adelaide, Adelaide, Australia
| | | | - Anna Leonard
- School of Medical Sciences, The University of Adelaide, Adelaide, Australia
| | - Robert Vink
- School of Medical Sciences, The University of Adelaide, Adelaide, Australia
| | - Alan R. Harvey
- Experimental and Regenerative Neurosciences, The University of Western Australia, Crawley, Australia
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, Crawley, Australia
| | - Jan Provis
- ANU Medical School and John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Sarah A. Dunlop
- Experimental and Regenerative Neurosciences, The University of Western Australia, Crawley, Australia
- School of Animal Biology, The University of Western Australia, Crawley, Australia
| | - Nathan S. Hart
- School of Animal Biology, The University of Western Australia, Crawley, Australia
- Neuroecology Group, The Oceans Institute, The University of Western Australia, Crawley, Australia
| | - Stuart Hodgetts
- Experimental and Regenerative Neurosciences, The University of Western Australia, Crawley, Australia
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, Crawley, Australia
| | - Riccardo Natoli
- ANU Medical School and John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | | | - Melinda Fitzgerald
- Experimental and Regenerative Neurosciences, The University of Western Australia, Crawley, Australia
- School of Animal Biology, The University of Western Australia, Crawley, Australia
- * E-mail:
| |
Collapse
|
20
|
Marinov TM, Santamaria F. Computational modeling of diffusion in the cerebellum. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 123:169-89. [PMID: 24560145 DOI: 10.1016/b978-0-12-397897-4.00007-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Diffusion is a major transport mechanism in living organisms. In the cerebellum, diffusion is responsible for the propagation of molecular signaling involved in synaptic plasticity and metabolism, both intracellularly and extracellularly. In this chapter, we present an overview of the cerebellar structure and function. We then discuss the types of diffusion processes present in the cerebellum and their biological importance. We particularly emphasize the differences between extracellular and intracellular diffusion and the presence of tortuosity and anomalous diffusion in different parts of the cerebellar cortex. We provide a mathematical introduction to diffusion and a conceptual overview of various computational modeling techniques. We discuss their scope and their limit of application. Although our focus is the cerebellum, we have aimed at presenting the biological and mathematical foundations as general as possible to be applicable to any other area in biology in which diffusion is of importance.
Collapse
Affiliation(s)
- Toma M Marinov
- UTSA Neurosciences Institute, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Fidel Santamaria
- UTSA Neurosciences Institute, University of Texas at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
21
|
Savigni DL, O'Hare Doig RL, Szymanski CR, Bartlett CA, Lozić I, Smith NM, Fitzgerald M. Three Ca2+ channel inhibitors in combination limit chronic secondary degeneration following neurotrauma. Neuropharmacology 2013; 75:380-90. [PMID: 23958451 DOI: 10.1016/j.neuropharm.2013.07.034] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 07/24/2013] [Accepted: 07/30/2013] [Indexed: 01/29/2023]
Abstract
Following neurotrauma, cells beyond the initial trauma site undergo secondary degeneration, with excess Ca2+ a likely trigger for loss of neurons, compact myelin and function. Treatment using inhibitors of specific Ca2+ channels has shown promise in preclinical studies, but clinical trials have been disappointing and combinatorial approaches are needed. We assessed efficacy of multiple combinations of three Ca2+ channel inhibitors at reducing secondary degeneration following partial optic nerve transection in rat. We used lomerizine to inhibit voltage gated Ca2+ channels; oxidised adenosine-triphosphate (oxATP) to inhibit purinergic P2X7 receptors and/or 2-[7-(1H-imidazol-1-yl)-6-nitro-2,3-dioxo-1,2,3,4-tetrahydro quinoxalin-1-yl]acetic acid (INQ) to inhibit Ca2+ permeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. Only the three Ca2+ channel inhibitors delivered in combination significantly preserved visual function, as assessed using the optokinetic nystagmus visual reflex, at 3 months after injury. Preservation of retinal ganglion cells was partial and is unlikely to have accounted for differential effects on function. A range of the Ca2+ channel inhibitor combinations prevented swelling of optic nerve vulnerable to secondary degeneration. Each of the treatments involving lomerizine significantly increased the proportion of axons with normal compact myelin. Nevertheless, limiting decompaction of myelin was not sufficient for preservation of function in our model. Multiple combinations of Ca2+ channel inhibitors reduced formation of atypical node/paranode complexes; outcomes were not associated with preservation of visual function. However, prevention of lengthening of the paranodal gap that was only achieved by treatment with the three Ca2+ channel inhibitors in combination was an important additional effect that likely contributed to the associated preservation of the optokinetic reflex using this combinatorial treatment strategy.
Collapse
Affiliation(s)
- Donna L Savigni
- Experimental and Regenerative Neurosciences, The University of Western Australia, Crawley, WA 6009, Australia; School of Animal Biology, The University of Western Australia, Crawley, WA 6009, Australia
| | - Ryan L O'Hare Doig
- Experimental and Regenerative Neurosciences, The University of Western Australia, Crawley, WA 6009, Australia; School of Animal Biology, The University of Western Australia, Crawley, WA 6009, Australia
| | - Charis R Szymanski
- Experimental and Regenerative Neurosciences, The University of Western Australia, Crawley, WA 6009, Australia; School of Animal Biology, The University of Western Australia, Crawley, WA 6009, Australia
| | - Carole A Bartlett
- Experimental and Regenerative Neurosciences, The University of Western Australia, Crawley, WA 6009, Australia; School of Animal Biology, The University of Western Australia, Crawley, WA 6009, Australia
| | - Ivan Lozić
- Experimental and Regenerative Neurosciences, The University of Western Australia, Crawley, WA 6009, Australia; School of Chemistry and Biochemistry, The University of Western Australia, Crawley, WA 6009, Australia
| | - Nicole M Smith
- Experimental and Regenerative Neurosciences, The University of Western Australia, Crawley, WA 6009, Australia; School of Chemistry and Biochemistry, The University of Western Australia, Crawley, WA 6009, Australia
| | - Melinda Fitzgerald
- Experimental and Regenerative Neurosciences, The University of Western Australia, Crawley, WA 6009, Australia; School of Animal Biology, The University of Western Australia, Crawley, WA 6009, Australia.
| |
Collapse
|
22
|
Rupert AE, Ou Y, Sandberg M, Weber SG. Electroosmotic push-pull perfusion: description and application to qualitative analysis of the hydrolysis of exogenous galanin in organotypic hippocampal slice cultures. ACS Chem Neurosci 2013; 4:838-48. [PMID: 23614879 DOI: 10.1021/cn400082d] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We demonstrate here a method that perfuses a small region of an organotypic hippocampal culture with a solution containing an enzyme substrate, a neuropeptide. Perfusate containing hydrolysis products is continually collected and subsequently analyzed for the products of the enzymatic degradation of the peptide substrate. The driving force for perfusion is an electric field. The fused silica capillaries used as "push" and "pull" or "source" and "collection" capillaries have a ζ-potential that is negative and greater in magnitude than the tissue's ζ-potential. Thus, depending on the magnitudes of particular dimensions, the electroosmotic flow in the capillaries augments the fluid velocity in the tissue. The flow rate is not directly measured; however, we determine it using a finite-element approach. We have determined the collection efficiency of the system using an all d-amino acid internal standard. The flow rates are low, in the nL/min range, and adjustable by controlling the current or voltage in the system. The collection efficiency of the d-amino acid peptide internal standard is variable, increasing with increased current and thus electroosmotic flow rate. The collection efficiency can be rationalized in the context of a Peclet number. Electroosmotic push-pull perfusion of the neuropeptide galanin (gal1-29) through the extracellular space of an organotypic hippocampal culture results in its hydrolysis by ectopeptidase reactions occurring in the extracellular space. The products of hydrolysis were identified by MALDI-MS. Experiments at two levels of current (8-12 μA and 19-40 μA) show that the probability of seeing hydrolysis products (apparently from aminopeptidases) is greater in the Cornu Ammonis area 3 (CA3) than in the Cornu Ammonis area 1 (CA1) in the higher current experiments. In the lower current experiments, shorter peptide products of aminopeptidases (gal13-29 to gal20-19) are seen with greater frequency in CA3 than in CA1 but there is no statistically significant difference for longer peptides (gal3-29 to gal12-29).
Collapse
Affiliation(s)
- Amy E. Rupert
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania
15260, United States
| | - Y. Ou
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania
15260, United States
| | - M. Sandberg
- Department
of Medical Biochemistry and Cell Biology, Gothenburg University, Gothenburg, S 405 30 Sweden
| | - S. G. Weber
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania
15260, United States
| |
Collapse
|
23
|
Kim SY, Jones TA. The effects of ceftriaxone on skill learning and motor functional outcome after ischemic cortical damage in rats. Restor Neurol Neurosci 2013; 31:87-97. [PMID: 23047495 PMCID: PMC4433287 DOI: 10.3233/rnn-2012-120245] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE Ceftriaxone, a β-lactam antibiotic, can selectively enhance the expression of glutamate transporter 1 (GLT1), the most abundant astrocytic glutamate transporter expressed in the cortex. It has been found to have neuroprotective effects when administered prior to brain ischemic damage or during the acute phase post-stroke, but its effects in chronic period have not been examined. METHODS We examined the effects of ceftriaxone on the acquisition of motor skill and the functional outcome after focal ischemic cortical lesions. In adult male rats, ceftriaxone (200 mg/kg) or vehicle was intraperitoneally injected daily for 5 days, a treatment regime previously established to upregulate GLT-1. This preceded 28 days of skilled reach training in intact animals or began 3 days following lesions, followed by 5 weeks of rehabilitative reach training. RESULTS In intact rats, ceftriaxone did not affect skill learning rate or final performance. Following ischemic lesions, though there was no significant difference in lesion sizes between groups, ceftriaxone exacerbated initial deficits in reaching performance. CONCLUSION These findings of detrimental effects on motor functional outcome suggest that ceftriaxone may be more useful for neuroprotection during the acute phase of ischemia than for functional recovery in the post-acute period after ischemic damage.
Collapse
Affiliation(s)
- Soo Young Kim
- Institute for Neuroscience, University of Texas at Austin, TX, USA.
| | | |
Collapse
|
24
|
Role of nonsynaptic GluN2B-containing NMDA receptors in excitotoxicity: evidence that fluoxetine selectively inhibits these receptors and may have neuroprotective effects. Brain Res Bull 2012; 93:32-8. [PMID: 23089362 DOI: 10.1016/j.brainresbull.2012.10.005] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 10/09/2012] [Accepted: 10/13/2012] [Indexed: 12/19/2022]
Abstract
In acute ischaemic brain injury and chronic neurodegeneration, the primary step leading to excitotoxicity and cell death is the excessive and/or prolonged activation of glutamate (Glu) receptors, followed by intracellular calcium (Ca(2+)) overload. These steps lead to several effects: a persistent depolarisation of neurons, mitochondrial dysfunction resulting in energy failure, an increased production of reactive oxygen species (ROS), an increase in the concentration of cytosolic Ca(2+) [Ca(2+)]i, increased mitochondrial Ca(2+) uptake, and the activation of self-destructing enzymatic mechanisms. Antagonists for NMDA receptors (NMDARs) are expected to display neuroprotective effects, but no evidence to support this hypothesis has yet been reported. A number of clinical trials using NMDAR antagonists have failed to demonstrate neuroprotective effects, either by reducing brain injury or by preventing neurodegeneration. Recent advances in NMDAR research have provided an explanation for this phenomenon. Synaptic and extrasynaptic NMDARs are composed of different subunits (GluN2A and GluN2B) that demonstrate opposing effects. Synaptic GluN2A-containing and extrasynaptic GluN2B-containing NMDARs have different co-agonists: d-serine for synaptic NMDARs and glycine for extrasynaptic NMDARs. Both co-agonists are of glial origin. The mechanisms of cell destruction or cell survival in response to the activation of NMDAR receptors depend in part on [Ca(2+)]i and the route of entry of this ion and more significantly on the subunit composition and localisation of the NMDARs. While synaptic NMDAR activation is involved in neuroprotection, the stimulation of extrasynaptic NMDARs, which are composed of GluN2B subunits, triggers cell destruction pathways and may play a key role in the neurodegeneration associated with Glu-induced excitotoxicity. In addition, it has been found that synaptic and extrasynaptic NMDA receptors have opposing effects in determining the fate of neurons. This result has led to the targeting of nonsynaptic GluN2B-containing NMDARs as promising candidates for drug research. Under hypoxic conditions, it is likely that the failure of synaptic glutamatergic transmission, the impairment of the GluN2A-activated neuroprotective cascade, and the persistent over-activation of extrasynaptic GluN2B-containing NMDARs lead to excitotoxicity. Fluoxetine, a drug widely used in clinical practice as an antidepressant, has been found to selectively block GluNR2B-containing NMDARs. Therefore, it seems to be a potential candidate for neuroprotection.
Collapse
|
25
|
Marx G, Gilon C. The molecular basis of memory. ACS Chem Neurosci 2012; 3:633-42. [PMID: 23050060 DOI: 10.1021/cn300097b] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Accepted: 07/17/2012] [Indexed: 11/28/2022] Open
Abstract
We propose a tripartite biochemical mechanism for memory. Three physiologic components are involved, namely, the neuron (individual and circuit), the surrounding neural extracellular matrix, and the various trace metals distributed within the matrix. The binding of a metal cation affects a corresponding nanostructure (shrinking, twisting, expansion) and dielectric sensibility of the chelating node (address) within the matrix lattice, sensed by the neuron. The neural extracellular matrix serves as an electro-elastic lattice, wherein neurons manipulate multiple trace metals (n > 10) to encode, store, and decode coginive information. The proposed mechanism explains brains low energy requirements and high rates of storage capacity described in multiples of Avogadro number (N(A) = 6 × 10(23)). Supportive evidence correlates memory loss to trace metal toxicity or deficiency, or breakdown in the delivery/transport of metals to the matrix, or its degradation. Inherited diseases revolving around dysfunctional trace metal metabolism and memory dysfunction, include Alzheimer's disease (Al, Zn, Fe), Wilson's disease (Cu), thalassemia (Fe), and autism (metallothionein). The tripartite mechanism points to the electro-elastic interactions of neurons with trace metals distributed within the neural extracellular matrix, as the molecular underpinning of "synaptic plasticity" affecting short-term memory, long-term memory, and forgetting.
Collapse
Affiliation(s)
| | - Chaim Gilon
- Institute of Chemistry, Hebrew University, Jerusalem, Israel
| |
Collapse
|
26
|
Diczfalusy E, Zsigmond P, Dizdar N, Kullman A, Loyd D, Wårdell K. A model for simulation and patient-specific visualization of the tissue volume of influence during brain microdialysis. Med Biol Eng Comput 2011; 49:1459-69. [DOI: 10.1007/s11517-011-0841-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 10/22/2011] [Indexed: 01/06/2023]
|
27
|
New insights into the altered fibronectin matrix and extrasynaptic transmission in the aging brain. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.jcgg.2010.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
28
|
Oliet SHR, Bonfardin VDJ. Morphological plasticity of the rat supraoptic nucleus--cellular consequences. Eur J Neurosci 2011; 32:1989-94. [PMID: 21143653 DOI: 10.1111/j.1460-9568.2010.07514.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The supraoptic nuclei of the hypothalamus display a remarkable anatomical plasticity during lactation, parturition and chronic dehydration, conditions associated with massive neurohypophysial hormone secretion. This structural remodeling is characterized by a pronounced reduction of the astrocytic coverage of oxytocin neurons, resulting in an increase in the number and extent of directly juxtaposed neuronal surfaces. Although the exact role played by such an anatomical remodeling in the physiology of the hypothalamo-neurohypophysial system is still unknown, several findings obtained over the last decade indicate that synaptic and extrasynaptic transmissions are impacted by these structural changes. We review these data and try to extrapolate how such changes at the cellular level might affect the overall activity of the system. One repercussion of the retraction of glial processes is the accumulation of glutamate in the extracellular space. This build-up of glutamate causes an increased activation of pre-synaptic metabotropic glutamate receptors, which are negatively coupled to neurotransmitter release, and a switch in the mode of action of pre-synaptic kainate receptors that control GABA release. Finally, the range of action of substances released from astrocytes and acting on adjacent magnocellular neurons is also affected during the anatomical remodeling. It thus appears that the structural plasticity of the hypothalamic magnocellular nuclei strongly affects neuron-glial interactions and, as a consequence, induces significant changes in synaptic and extrasynaptic transmission.
Collapse
Affiliation(s)
- Stéphane H R Oliet
- Inserm U862, Neurocentre Magendie, 146 rue Léo Saignat, 33077 Bordeaux, France.
| | | |
Collapse
|
29
|
Potier B, Billard JM, Rivière S, Sinet PM, Denis I, Champeil-Potokar G, Grintal B, Jouvenceau A, Kollen M, Dutar P. Reduction in glutamate uptake is associated with extrasynaptic NMDA and metabotropic glutamate receptor activation at the hippocampal CA1 synapse of aged rats. Aging Cell 2010; 9:722-35. [PMID: 20569241 DOI: 10.1111/j.1474-9726.2010.00593.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
This study aims to determine whether the regulation of extracellular glutamate is altered during aging and its possible consequences on synaptic transmission and plasticity. A decrease in the expression of the glial glutamate transporters GLAST and GLT-1 and reduced glutamate uptake occur in the aged (24-27 months) Sprague-Dawley rat hippocampus. Glutamatergic excitatory postsynaptic potentials recorded extracellularly in ex vivo hippocampal slices from adult (3-5 months) and aged rats are depressed by DL-TBOA, an inhibitor of glutamate transporter activity, in an N-Methyl-d-Aspartate (NMDA)-receptor-dependent manner. In aged but not in young rats, part of the depressing effect of DL-TBOA also involves metabotropic glutamate receptor (mGluRs) activation as it is significantly reduced by the specific mGluR antagonist d-methyl-4-carboxy-phenylglycine (MCPG). The paired-pulse facilitation ratio, a functional index of glutamate release, is reduced by MCPG in aged slices to a level comparable to that in young rats both under control conditions and after being enhanced by DL-TBOA. These results suggest that the age-associated glutamate uptake deficiency favors presynaptic mGluR activation that lowers glutamate release. In parallel, 2 Hz-induced long-term depression is significantly decreased in aged animals and is fully restored by MCPG. All these data indicate a facilitated activation of extrasynaptic NMDAR and mGluRs in aged rats, possibly because of an altered distribution of glutamate in the extrasynaptic space. This in turn affects synaptic transmission and plasticity within the aged hippocampal CA1 network.
Collapse
Affiliation(s)
- Brigitte Potier
- Université Paris Descartes, Centre de Psychiatrie et de Neurosciences, UMR, Paris, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Wang H, Imamura Y, Ishibashi R, Chandana EPS, Yamamoto M, Noda M. The Reck tumor suppressor protein alleviates tissue damage and promotes functional recovery after transient cerebral ischemia in mice. J Neurochem 2010; 115:385-98. [PMID: 20796170 DOI: 10.1111/j.1471-4159.2010.06933.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The extracellular matrix (ECM) is important for both structural integrity and functions of the brain. Matrix metalloproteinases (MMPs) play major roles in ECM-remodeling under both physiological and pathological conditions. Reversion-inducing cysteine-rich protein with Kazal motifs (Reck) is a membrane-anchored MMP-regulator implicated in coordinated regulation of pericellular proteolysis. Although patho-physiological importance of MMPs and another group of MMP-regulators, tissue inhibitor of metalloproteinases, in brain ischemia has been demonstrated, little is known about the role of Reck in this process. In this study, we found that Reck is up-regulated in hippocampus and penumbra of subventricular zone after transient cerebral ischemia in mice. Most of the Reck-positive cells found at day 2 after ischemia are positive for Nestin as well as Ki67 and localized to the CA2 region of the hippocampus. At day 7 after ischemia, the Reck-positive cells increased in number, extended processes, expressed the reactive astrocyte marker GFAP and the neuronal marker NF200, and were widely distributed in the hippocampus. In the mutant mice carrying single functional Reck allele (Reck+/-), tissue damage and cell death after cerebral ischemia were augmented, the recovery of long-term potentiation in the hippocampus was compromised, NR2C subunit of NMDA receptor was up-regulated, gelatinolytic activity of MMPs were up-regulated and laminin-immunoreactivity was reduced. Our data implicate Reck in protection of ECM/tissue integrity and promotion of functional recovery in the brain after transient cerebral ischemia.
Collapse
Affiliation(s)
- Huan Wang
- Department of Molecular Oncology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | | | | | | | | | | |
Collapse
|
31
|
Veening JG, de Jong T, Barendregt HP. Oxytocin-messages via the cerebrospinal fluid: behavioral effects; a review. Physiol Behav 2010; 101:193-210. [PMID: 20493198 DOI: 10.1016/j.physbeh.2010.05.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 04/21/2010] [Accepted: 05/04/2010] [Indexed: 12/16/2022]
Abstract
The cerebrospinal fluid (CSF) usually is considered as a protective 'nutrient and waste control' system for the brain. Recent findings suggest, however, that the composition of CSF is actively controlled and may play an influential role in the changes in brain activity, underlying different behavioral states. In the present review, we present an overview of available data concerning the release of oxytocin into the CSF, the location of the oxytocin-receptive brain areas and the behavioral effects of intracerebroventricular oxytocin. About 80% of the oxytocin-receptive areas are located close to the ventricular or subarachnoid CSF, including the hypothalamic 'Behavior Control Column' (L.W.Swanson, 2003). As a conclusion we suggest that 'CSF-oxytocin' contributes considerably to the non-synaptic communication processes involved in hypothalamic-, brainstem- and olfactory brain areas and behavioral states and that the flowing CSF is used as a 'broadcasting system' to send coordinated messages to a wide variety of nearby and distant brain areas.
Collapse
Affiliation(s)
- Jan G Veening
- Department of Anatomy (109), UMC St Radboud, Nijmegen, The Netherlands.
| | | | | |
Collapse
|
32
|
Abstract
At the nodes of Ranvier, excitable axon membranes are exposed directly to the extracellular fluid. Cations are accumulated and depleted in the local extracellular nodal region during action potential propagation, but the impact of the extranodal micromilieu on signal propagation still remains unclear. Brain-specific hyaluronan-binding link protein, Bral1, colocalizes and forms complexes with negatively charged extracellular matrix (ECM) proteins, such as versican V2 and brevican, at the nodes of Ranvier in the myelinated white matter. The link protein family, including Bral1, appears to be the linchpin of these hyaluronan-bound ECM complexes. Here we report that the hyaluronan-associated ECM no longer shows a nodal pattern and that CNS nerve conduction is markedly decreased in Bral1-deficient mice even though there were no differences between wild-type and mutant mice in the clustering or transition of ion channels at the nodes or in the tissue morphology around the nodes of Ranvier. However, changes in the extracellular space diffusion parameters, measured by the real-time iontophoretic method and diffusion-weighted magnetic resonance imaging (MRI), suggest a reduction in the diffusion hindrances in the white matter of mutant mice. These findings provide a better understanding of the mechanisms underlying the accumulation of cations due to diffusion barriers around the nodes during saltatory conduction, which further implies the importance of the Bral1-based extramilieu for neuronal conductivity.
Collapse
|
33
|
Understanding wiring and volume transmission. ACTA ACUST UNITED AC 2010; 64:137-59. [PMID: 20347870 DOI: 10.1016/j.brainresrev.2010.03.003] [Citation(s) in RCA: 196] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 03/17/2010] [Accepted: 03/17/2010] [Indexed: 11/23/2022]
Abstract
The proposal on the existence of two main modes of intercellular communication in the central nervous system (CNS) was introduced in 1986 and called wiring transmission (WT) and volume transmission (VT). The major criterion for this classification was the different characteristics of the communication channel with physical boundaries well delimited in the case of WT (axons and their synapses; gap junctions) but not in the case of VT (the extracellular fluid filled tortuous channels of the extracellular space and the cerebrospinal fluid filled ventricular space and sub-arachnoidal space). The basic dichotomic classification of intercellular communication in the brain is still considered valid, but recent evidence on the existence of unsuspected specialized structures for intercellular communication, such as microvesicles (exosomes and shedding vesicles) and tunnelling nanotubes, calls for a refinement of the original classification model. The proposed updating is based on criteria which are deduced not only from these new findings but also from concepts offered by informatics to classify the communication networks in the CNS. These criteria allowed the identification also of new sub-classes of WT and VT, namely the "tunnelling nanotube type of WT" and the "Roamer type of VT." In this novel type of VT microvesicles are safe vesicular carriers for targeted intercellular communication of proteins, mtDNA and RNA in the CNS flowing in the extracellular fluid along energy gradients to reach target cells. In the tunnelling nanotubes proteins, mtDNA and RNA can migrate as well as entire organelles such as mitochondria. Although the existence and the role of these new types of intercellular communication in the CNS are still a matter of investigation and remain to be fully demonstrated, the potential importance of these novel types of WT and VT for brain function in health and disease is discussed.
Collapse
|
34
|
Vizi ES, Fekete A, Karoly R, Mike A. Non-synaptic receptors and transporters involved in brain functions and targets of drug treatment. Br J Pharmacol 2010; 160:785-809. [PMID: 20136842 DOI: 10.1111/j.1476-5381.2009.00624.x] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Beyond direct synaptic communication, neurons are able to talk to each other without making synapses. They are able to send chemical messages by means of diffusion to target cells via the extracellular space, provided that the target neurons are equipped with high-affinity receptors. While synaptic transmission is responsible for the 'what' of brain function, the 'how' of brain function (mood, attention, level of arousal, general excitability, etc.) is mainly controlled non-synaptically using the extracellular space as communication channel. It is principally the 'how' that can be modulated by medicine. In this paper, we discuss different forms of non-synaptic transmission, localized spillover of synaptic transmitters, local presynaptic modulation and tonic influence of ambient transmitter levels on the activity of vast neuronal populations. We consider different aspects of non-synaptic transmission, such as synaptic-extrasynaptic receptor trafficking, neuron-glia communication and retrograde signalling. We review structural and functional aspects of non-synaptic transmission, including (i) anatomical arrangement of non-synaptic release sites, receptors and transporters, (ii) intravesicular, intra- and extracellular concentrations of neurotransmitters, as well as the spatiotemporal pattern of transmitter diffusion. We propose that an effective general strategy for efficient pharmacological intervention could include the identification of specific non-synaptic targets and the subsequent development of selective pharmacological tools to influence them.
Collapse
Affiliation(s)
- E S Vizi
- Department of Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.
| | | | | | | |
Collapse
|
35
|
The discovery of central monoamine neurons gave volume transmission to the wired brain. Prog Neurobiol 2010; 90:82-100. [PMID: 19853007 DOI: 10.1016/j.pneurobio.2009.10.012] [Citation(s) in RCA: 197] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 05/11/2009] [Accepted: 10/09/2009] [Indexed: 12/19/2022]
|
36
|
Veening JG, Barendregt HP. The regulation of brain states by neuroactive substances distributed via the cerebrospinal fluid; a review. Cerebrospinal Fluid Res 2010; 7:1. [PMID: 20157443 PMCID: PMC2821375 DOI: 10.1186/1743-8454-7-1] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Accepted: 01/06/2010] [Indexed: 01/04/2023] Open
Abstract
The cerebrospinal fluid (CSF) system provides nutrients to and removes waste products from the brain. Recent findings suggest, however, that in addition, the CSF contains message molecules in the form of actively released neuroactive substances. The concentrations of these vary between locations, suggesting they are important for the changes in brain activity that underlie different brain states, and induce different sensory input and behavioral output relationships.The cranial CSF displays a rapid caudally-directed ventricular flow followed by a slower rostrally-directed subarachnoid flow (mainly towards the cribriform plate and from there into the nasal lymphatics). Thus, many brain areas are exposed to and can be influenced by substances contained in the CSF. In this review we discuss the production and flow of the CSF, including the mechanisms involved in the regulation of its composition. In addition, the available evidence for the release of neuropeptides and other neuroactive substances into the CSF is reviewed, with particular attention to the selective effects of these on distant downstream receptive brain areas. As a conclusion we suggest that (1) the flowing CSF is involved in more than just nutrient and waste control, but is also used as a broadcasting system consisting of coordinated messages to a variety of nearby and distant brain areas; (2) this special form of volume transmission underlies changes in behavioral states.
Collapse
Affiliation(s)
- Jan G Veening
- Department of Anatomy, (109) UMC St Radboud, Nijmegen, the Netherlands.
| | | |
Collapse
|
37
|
Magzoub M, Zhang H, Dix JA, Verkman AS. Extracellular space volume measured by two-color pulsed dye infusion with microfiberoptic fluorescence photodetection. Biophys J 2009; 96:2382-90. [PMID: 19289063 DOI: 10.1016/j.bpj.2008.12.3916] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Revised: 11/14/2008] [Accepted: 12/08/2008] [Indexed: 01/11/2023] Open
Abstract
The extracellular space (ECS) is the aqueous matrix surrounding cells in solid tissues. The only method to measure ECS volume fraction (alpha) in vivo has been tetramethylammonium iontophoresis, a technically challenging method developed more than 25 years ago. We report a simple, quantitative method to measure alpha by microfiberoptic fluorescence detection of a self-quenched green dye, calcein, and a reference red dye, sulforhodamine 101, after pulsed iontophoretic infusion. The idea is that the maximum increase in calcein fluorescence after iontophoresis is proportional to the aqueous volume into which the dye is deposited. We validated the method theoretically, and experimentally, using cell-embedded gels with specified alpha and ECS viscosity. Measurements in living mice gave alpha of 0.20 +/- 0.01 in brain, 0.13 +/- 0.02 in kidney and 0.074 +/- 0.01 in skeletal muscle. The technical simplicity of the "pulsed-infusion microfiberoptic photodetection" method developed here should allow elucidation of the relatively understudied biological roles of the ECS.
Collapse
Affiliation(s)
- Mazin Magzoub
- Department of Medicine, University of California, San Francisco, California, USA
| | | | | | | |
Collapse
|
38
|
Reverse Na+/Ca2+-exchange mediated Ca2+-entry and noradrenaline release in Na+-loaded peripheral sympathetic nerves. Neurochem Int 2008; 53:338-45. [DOI: 10.1016/j.neuint.2008.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 08/25/2008] [Accepted: 08/27/2008] [Indexed: 12/23/2022]
|
39
|
Petkova-Kirova P, Rakovska A, Zaekova G, Ballini C, Corte LD, Radomirov R, Vágvölgyi A. Stimulation by neurotensin of dopamine and 5-hydroxytryptamine (5-HT) release from rat prefrontal cortex: possible role of NTR1 receptors in neuropsychiatric disorders. Neurochem Int 2008; 53:355-61. [PMID: 18835308 DOI: 10.1016/j.neuint.2008.08.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 08/08/2008] [Accepted: 08/08/2008] [Indexed: 10/21/2022]
Abstract
The modulation of cortical dopaminergic and serotonergic neurotransmissions by neurotensin (NT) was studied by measuring the release of dopamine (DA) and 5-hydroxytryptamine (5-HT) from the prefrontal cortex (PFC) of freely moving rats. The samples were collected via transversal microdialysis. Dopamine and 5-HT levels in the dialysate were measured using high-performance liquid chromatography (HPLC) with an electrochemical detector. Local administration of neurotensin (1microM or 0.1microM) in the PFC via the dialysis probe produced significant, long-lasting, and concentration-dependent increase in the extracellular release of DA and 5-HT. The increase produced by 1microM neurotensin reached a maximum of about 210% for DA and 340% for 5-HT. A high-affinity selective neurotensin receptor (NTR1) antagonist {2-[(1-(7-chloro-4-quinolinyl)-5-(2,6-dimethoxyphenyl)pyrazol-3yl)carbonylamino tricyclo (3.3.1.1.(3.7)) decan-2-carboxylic acid} (SR 48692), perfused locally at a concentration of 0.1microM and 0.5microM in the PFC antagonized the effects of 1microM neurotensin. Our in vivo neurochemical results indicate, for the first time, that neurotensin is able to regulate cortical dopaminergic and serotonergic neuronal activity in freely moving rats. These effects are possibly mediated by interactions of neurotensin with neurons releasing DA or 5-HT, projecting to the PFC from the ventrotegmental area (VTA) and from the dorsal raphe nuclei (DRN), respectively. The potentiating effects of neurotensin on DA and 5-HT release in the PFC are regulated by NTR1 receptors, probably located on dopaminergic and serotonergic nerve terminals or axons.
Collapse
Affiliation(s)
- Polina Petkova-Kirova
- Institute of Biophysics, Bulgarian Academy of Sciences, Acad. G. Bonchev Street bl. 21, 1113 Sofia, Bulgaria
| | | | | | | | | | | | | |
Collapse
|
40
|
Characterization of Phenytoin, Carbamazepine, Vinpocetine and Clorgyline Simultaneous Effects on Sodium Channels and Catecholamine Metabolism in Rat Striatal Nerve Endings. Neurochem Res 2008; 34:470-9. [DOI: 10.1007/s11064-008-9805-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Accepted: 07/07/2008] [Indexed: 01/05/2023]
|
41
|
Del Bigio MR, Enno TL. Effect of hydrocephalus on rat brain extracellular compartment. Cerebrospinal Fluid Res 2008; 5:12. [PMID: 18616813 PMCID: PMC2488327 DOI: 10.1186/1743-8454-5-12] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2008] [Accepted: 07/10/2008] [Indexed: 11/23/2022] Open
Abstract
Background The cerebral cortex may be compressed in hydrocephalus and some experiments suggest that movement of extracellular substances through the cortex is impaired. We hypothesized that the extracellular compartment is reduced in size and that the composition of the extracellular compartment changes in rat brains with kaolin-induced hydrocephalus. Methods We studied neonatal (newborn) onset hydrocephalus for 1 or 3 weeks, juvenile (3 weeks) onset hydrocephalus for 3–4 weeks or 9 months, and young adult (10 weeks) onset hydrocephalus for 2 weeks, after kaolin injection. Freeze substitution electron microscopy was used to measure the size of the extracellular compartment. Western blotting and immunohistochemistry with quantitative image densitometry was used to study the extracellular matrix constituents, phosphacan, neurocan, NG2, decorin, biglycan, and laminin. Results The extracellular space in cortical layer 1 was reduced significantly from 16.5 to 9.6% in adult rats with 2 weeks duration hydrocephalus. Western blot and immunohistochemistry showed that neurocan increased only in the periventricular white matter following neonatal induction and 3 weeks duration hydrocephalus. The same rats showed mild decorin increases in white matter and around cortical neurons. Juvenile and adult onset hydrocephalus was associated with no significant changes. Conclusion We conclude that compositional changes in the extracellular compartment are negligible in cerebral cortex of hydrocephalic rats at various ages. Therefore, the functional change related to extracellular fluid flow should be reversible.
Collapse
Affiliation(s)
- Marc R Del Bigio
- Department of Pathology, University of Manitoba, and Manitoba Institute of Child Health, Winnipeg MB, R3E 3P5, Canada.
| | | |
Collapse
|
42
|
Petkova-Kirova P, Rakovska A, Della Corte L, Zaekova G, Radomirov R, Mayer A. Neurotensin modulation of acetylcholine, GABA, and aspartate release from rat prefrontal cortex studied in vivo with microdialysis. Brain Res Bull 2008; 77:129-35. [PMID: 18721670 DOI: 10.1016/j.brainresbull.2008.04.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Accepted: 04/14/2008] [Indexed: 11/17/2022]
Abstract
The effects of the peptide transmitter neurotensin (NT) on the release of acetylcholine (ACh), gamma-aminobutyric acid (GABA), glutamate (Glu), aspartate (Asp), and taurine from the prefrontal cortex (PFC) of freely moving rats were studied by transversal microdialysis. Neurotensin (0.2 and 1 microM) administered locally in the PFC produced a concentration-dependent increase in the extracellular levels of ACh, GABA, and Asp, but not of Glu or taurine. The increase produced by 1 microM NT reached a maximum of about 240% for ACh, 370% for GABA, and 380% for Asp. Lower doses of NT (0.05 microM) did not cause a significant change in ACh, GABA, or Asp output in the PFC. Higher concentrations of NT (2 microM) did not induce further increases in the level of neurotransmitters. A high-affinity selective neurotensin receptor (NTR1) antagonist SR 48692 (0.5 microM) perfused locally blocked neurotensin (1 microM)-evoked ACh, GABA, and Asp release. Local infusion of the sodium channel blocker tetrodotoxin (TTX) (1 microM) decreased the release of ACh, had no significant effect on GABA or Asp release, and prevented the 1 microM neurotensin-induced increase in ACh, GABA, and Asp output. Removal of calcium from the Ringer's solution prevented the peptide from having any effects on the neurotransmitters. Thus, in vivo NT plays a modulatory role in the PFC by interacting with cortical neurons releasing GABA and Asp and with ACh-containing neurons projecting to the PFC. The NT effects are of neural origin, as they are TTX-sensitive, and mediated by the NTR1 receptor, as they are antagonized by SR 48692.
Collapse
Affiliation(s)
- Polina Petkova-Kirova
- Institute of Biophysics, Bulgarian Academy of Sciences, Acad. G. Bonchev Street, bl. 21, 1113 Sofia, Bulgaria.
| | | | | | | | | | | |
Collapse
|
43
|
Kiss JP. Theory of active antidepressants: A nonsynaptic approach to the treatment of depression. Neurochem Int 2008; 52:34-9. [PMID: 17507113 DOI: 10.1016/j.neuint.2007.04.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Revised: 04/03/2007] [Accepted: 04/10/2007] [Indexed: 12/23/2022]
Abstract
Although depression is one of the major neuropsychiatric disorders, the success rate of medication for any drug is about 60%, which means that approximately 40% of the patients does not respond to the initial treatment. The major aim of this review is to provide a possible explanation for the relative inefficacy of currently used antidepressants and to propose a novel mechanism of action, which might improve the success rate of clinical treatment. According to the monoamine theory the most important neurochemical process in depression is the impairment of monoaminergic neurotransmission and the concomitant decrease of extracellular concentration of noradrenaline and/or serotonin. Since the vast majority of monoaminergic varicosities makes no synaptic contact but is able to release transmitters directly into the extrasynaptic space, the monoaminergic neurotransmission is predominantly nonsynaptic in nature. Depression can be regarded, therefore, as a disease, which is developed (at least in part) on the basis of the impairment of nonsynaptic interactions and the effective treatment has to improve this non-conventional communication in the nervous system. The currently used antidepressants (reuptake inhibitors, negative feedback inhibitors, monoamino oxidase inhibitors) can increase the monoamine levels in the extracellular space only if the monoaminergic cells are electrically active and without an action potential-induced vesicular exocytosis these compounds are ineffective. It is proposed that a selective and moderate induction of the carrier-mediated release of NA and 5-HT might be a better therapeutic approach to the treatment of depression, since this new class of antidepressants, the so-called 'active antidepressants' have a mechanism of action, which is independent from the electrical activity of monoaminergic cells, therefore the extrasynaptic concentration of monoamines and thereby the nonsynaptic communication can be enhanced more efficiently.
Collapse
Affiliation(s)
- Janos P Kiss
- Department of Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, 43 Szigony u., H-1083 Budapest, Hungary.
| |
Collapse
|
44
|
|