1
|
Cadeddu R, Braccagni G, Floris G, Branca C, Corridori E, Salviati S, Sánchez P, Santovito LS, Torres JM, Ortega E, Pinna G, Moos PJ, Scheggi S, Bortolato M. Prefrontal 5α-reductase 2 mediates male-specific acute stress response. SCIENCE ADVANCES 2025; 11:eadr0563. [PMID: 39841836 PMCID: PMC11753402 DOI: 10.1126/sciadv.adr0563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 12/19/2024] [Indexed: 01/24/2025]
Abstract
A key response to acute stress is the increased brain synthesis of the neurosteroid allopregnanolone (AP). Although the rate-limiting step of this reaction is catalyzed by 5α-reductase (5αR), the role of its two primary isoenzymes, 5αR1 and 5αR2, in stress reactivity remains unclear. Here, we found that acute stress led to increased levels of 5αR2, but not 5αR1, in the medial prefrontal cortex (mPFC) of male, but not female, rats. Down-regulation of 5αR2 in the mPFC significantly reduced stress response in males, and similar sexual dimorphic effects were observed in a novel line of 5αR2 knockout rats. Notably, 5αR1 regulated baseline AP synthesis, whereas 5αR2 enabled AP production under stress. Acute AP administration restored stress response in 5αR2 knockdown rats. Single-nucleus transcriptomics showed that 5αR2 enabled stress-induced protein translation in neurons and glia. These results highlight the crucial role of 5αR2 in mediating sex-specific differences in acute stress reactivity.
Collapse
Affiliation(s)
- Roberto Cadeddu
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
| | - Giulia Braccagni
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Gabriele Floris
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
- Center for Substance Abuse Research, Temple University, Philadelphia, PA, USA
- Department of Neural Sciences, Temple University, Philadelphia, PA, USA
| | - Caterina Branca
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Eleonora Corridori
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Sara Salviati
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Pilar Sánchez
- Department of Biochemistry, Molecular Biology 3 and Immunology, Faculty of Medicine, University of Granada, Granada, Spain
| | - Luca Spiro Santovito
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
- Department of Internal Medicine, Division of Gastroenterology, Hepatology, and Nutrition, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jesus M. Torres
- Department of Biochemistry, Molecular Biology 3 and Immunology, Faculty of Medicine, University of Granada, Granada, Spain
| | - Esperanza Ortega
- Department of Biochemistry, Molecular Biology 3 and Immunology, Faculty of Medicine, University of Granada, Granada, Spain
| | - Graziano Pinna
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
- UI Center on Depression and Resilience (UICDR), Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
- Center for Alcohol Research in Epigenetics (CARE), Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Philip J. Moos
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
| | - Simona Scheggi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Marco Bortolato
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
2
|
Sze Y, Brunton PJ. How is prenatal stress transmitted from the mother to the fetus? J Exp Biol 2024; 227:jeb246073. [PMID: 38449331 DOI: 10.1242/jeb.246073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Prenatal stress programmes long-lasting neuroendocrine and behavioural changes in the offspring. Often this programming is maladaptive and sex specific. For example, using a rat model of maternal social stress in late pregnancy, we have demonstrated that adult prenatally stressed male, but not prenatally stressed female offspring display heightened anxiety-like behaviour, whereas both sexes show hyperactive hypothalamo-pituitary-adrenal (HPA) axis responses to stress. Here, we review the current knowledge of the mechanisms underpinning dysregulated HPA axis responses, including evidence supporting a role for reduced neurosteroid-mediated GABAergic inhibitory signalling in the brains of prenatally stressed offspring. How maternal psychosocial stress is signalled from the mother to the fetuses is unclear. Direct transfer of maternal glucocorticoids to the fetuses is often considered to mediate the programming effects of maternal stress on the offspring. However, protective mechanisms including attenuated maternal stress responses and placental 11β-hydroxysteroid dehydrogenase-2 (which inactivates glucocorticoids) should limit materno-fetal glucocorticoid transfer during pregnancy. Moreover, a lack of correlation between maternal stress, circulating maternal glucocorticoid levels and circulating fetal glucocorticoid levels is reported in several studies and across different species. Therefore, here we interrogate the evidence for a role for maternal glucocorticoids in mediating the effects of maternal stress on the offspring and consider the evidence for alternative mechanisms, including an indirect role for glucocorticoids and the contribution of changes in the placenta in signalling the stress status of the mother to the fetus.
Collapse
Affiliation(s)
- Ying Sze
- Centre for Discovery Brain Sciences, Hugh Robson Building, University of Edinburgh, George Square, Edinburgh EH8 9XD, UK
| | - Paula J Brunton
- Centre for Discovery Brain Sciences, Hugh Robson Building, University of Edinburgh, George Square, Edinburgh EH8 9XD, UK
- Zhejiang University-University of Edinburgh Joint Institute, Haining, Zhejiang 314400, P.R. China
| |
Collapse
|
3
|
Marciniak E, Młotkowska P, Roszkowicz-Ostrowska K, Ciska E, Misztal T. Involvement of neurosteroids in the control of prolactin secretion in sheep under basal, stressful and pregnancy conditions. Theriogenology 2022; 190:73-80. [DOI: 10.1016/j.theriogenology.2022.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 07/25/2022] [Accepted: 08/02/2022] [Indexed: 12/01/2022]
|
4
|
Sze Y, Brunton PJ. Effects of prenatal stress on neuroactive steroid responses to acute stress in adult male and female rats. J Neuroendocrinol 2021; 33:e12916. [PMID: 33270955 PMCID: PMC7900968 DOI: 10.1111/jne.12916] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/23/2020] [Accepted: 10/24/2020] [Indexed: 12/20/2022]
Abstract
Acute swim stress results in the robust production of several neuroactive steroids, which act as mediators of the stress response. These steroids include glucocorticoids, and positive GABAA receptor modulatory steroids such as allopregnanolone and tetrahydrocorticosterone (THDOC), which potentiate inhibitory GABA signalling, thereby playing a role in the negative control of the hypothalamic-pituitary-adrenal (HPA) axis. Prenatally stressed (PNS) offspring exhibit increased vulnerability to stress-related disorders and frequently display exaggerated HPA axis responses to stressors during adulthood, which may be a result of reduced neuroactive steroid production and consequently inhibitory signalling. Here, we investigated whether exposure of rats to prenatal social stress from gestational day 16-20 altered neuroactive steroid production under non-stress conditions and in response to an acute stressor (swim stress) in adulthood. Using liquid chromatography-mass spectrometry, nine neuroactive steroids were quantified (corticosterone, deoxycorticosterone [DOC], dihydrodeoxycorticosterone, THDOC, progesterone, dihydroprogesterone, allopregnanolone, pregnenolone, testosterone) in plasma and in five brain regions (frontal cortex, hypothalamus, amygdala, hippocampus, brainstem) of male and female control and PNS rats. There was no difference in the neuroactive steroid profile between control and PNS rats under basal conditions. The increase in circulating corticosterone induced by acute swim stress was similar in control and PNS offspring. However, greater stress-induced corticosterone and DOC concentrations were observed in the brainstem of male PNS offspring, whereas DOC concentrations were lower in the hippocampus of PNS females compared to controls, following acute stress. Although PNS rats did not show deficits in allopregnanolone responses to acute stress, there were modest deficits in the production of THDOC in the brainstem, amygdala, and frontal cortex of PNS males and in the frontal cortex of PNS females. The data suggest that neuroactive steroid modulation of GABAergic signalling following stress exposure may be affected in a sex- and region-specific manner in PNS offspring.
Collapse
Affiliation(s)
- Ying Sze
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
- The Roslin InstituteUniversity of EdinburghEdinburghUK
| | - Paula J. Brunton
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
- The Roslin InstituteUniversity of EdinburghEdinburghUK
- Zhejiang University‐University of Edinburgh Joint InstituteHainingChina
| |
Collapse
|
5
|
Almeida FB, Nin MS, Barros HMT. The role of allopregnanolone in depressive-like behaviors: Focus on neurotrophic proteins. Neurobiol Stress 2020; 12:100218. [PMID: 32435667 PMCID: PMC7231971 DOI: 10.1016/j.ynstr.2020.100218] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 03/16/2020] [Accepted: 03/30/2020] [Indexed: 12/18/2022] Open
Abstract
Allopregnanolone (3α,5α-tetrahydroprogesterone; pharmaceutical formulation: brexanolone) is a neurosteroid that has recently been approved for the treatment of postpartum depression, promising to fill part of a long-lasting gap in the effectiveness of pharmacotherapies for depressive disorders. In this review, we explore the experimental research that characterized the antidepressant-like effects of allopregnanolone, with a particular focus on the neurotrophic adaptations induced by this neurosteroid in preclinical studies. We demonstrate that there is a consistent decrease in allopregnanolone levels in limbic brain areas in rodents submitted to stress-induced models of depression, such as social isolation and chronic unpredictable stress. Further, both the drug-induced upregulation of allopregnanolone or its direct administration reduce depressive-like behaviors in models such as the forced swim test. The main drugs of interest that upregulate allopregnanolone levels are selective serotonin reuptake inhibitors (SSRIs), which present the neurosteroidogenic property even in lower, non-SSRI doses. Finally, we explore how these antidepressant-like behaviors are related to neurogenesis, particularly in the hippocampus. The protagonist in this mechanism is likely the brain-derived neurotrophic factor (BFNF), which is decreased in animal models of depression and may be restored by the normalization of allopregnanolone levels. The role of an interaction between GABA and the neurotrophic mechanisms needs to be further investigated.
Collapse
Key Words
- 3α,5α-tetrahydroprogesterone
- BDNF
- BDNF, brain-derived neurotrophic factor
- Brexanolone
- CSF, cerebrospinal fluid
- CUS, chronic unpredictable stress
- Depression
- EKR, extracellular signal-regulated kinase
- FST, forced swim test
- GABA, γ-aminobutyric acid
- GABAAR, GABA type A receptor
- HSD, hydroxysteroid dehydrogenase
- NGF, nerve growth factor
- Neurosteroid
- PTSD, post-traumatic stress disorder
- PXR, pregnane xenobiotic receptor
- SBSS, selective brain steroidogenic stimulant
- SSRI, selective serotonin reuptake inhibitor
- Selective brain steroidogenic stimulant
- THP, tetrahydroprogesterone
- TSPO, 18 kDa translocator protein
- TrkB, tropomyosin receptor kinase B
- USV, ultrasonic vocalization
Collapse
Affiliation(s)
- Felipe Borges Almeida
- Graduate Program in Health Sciences: Pharmacology and Toxicology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), 90050-170, Porto Alegre, RS, Brazil
| | - Maurício Schüler Nin
- Graduate Program in Health Sciences: Pharmacology and Toxicology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), 90050-170, Porto Alegre, RS, Brazil.,Centro Universitário Metodista do IPA, 90420-060, Porto Alegre, RS, Brazil.,Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Universidade Federal do Rio Grande do Sul (UFRGS), 90040-060, Porto Alegre, RS, Brazil
| | - Helena Maria Tannhauser Barros
- Graduate Program in Health Sciences: Pharmacology and Toxicology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), 90050-170, Porto Alegre, RS, Brazil
| |
Collapse
|
6
|
Aas M, Ueland T, Inova A, Melle I, Andreassen OA, Steen NE. Childhood Trauma Is Nominally Associated With Elevated Cortisol Metabolism in Severe Mental Disorder. Front Psychiatry 2020; 11:391. [PMID: 32528319 PMCID: PMC7247816 DOI: 10.3389/fpsyt.2020.00391] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 04/17/2020] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE Individuals exposed to childhood trauma display longstanding modifications of the Hypothalamic-Pituitary-Adrenal (HPA) axis, as well as cognitive impairments. Schizophrenia spectrum disorder (SZ) and bipolar disorders (BD) are characterised by higher prevalence of childhood trauma, abnormal HPA axis, and cognitive dysfunction. Elevated cortisol metabolism was recently demonstrated in both disorders. However, it is yet to be established if childhood adversity is associated with cortisol metabolism in this population, and how this may be associated with cognitive function. METHODS One-hundred-and-fourteen participants with a DSM-IV SZ or BD diagnosis took part in the study. Diagnoses were evaluated by the Structured Clinical Interview for DSM-IV Axis I disorders (SCID-I). Estimated cortisol metabolizing activity (5α-reductase and 5β-reductase) was assessed by urinary free cortisol, and metabolites. All patients underwent cognitive assessment and completed the Childhood Trauma Questionnaire. RESULTS Estimated 5β-reductase activity was elevated in participant with childhood physical abuse (r = 0.26, p = 0.005). After adjusting for age, sex and diagnosis, physical abuse was still nominally associated with elevated 5β-reductase. Moreover, only high 5α-reductase activity was negatively correlated with working memory and executive performance (r = -0.23, p = 0.01; r = -0.19, p = 0.05, respectively), however this disappeared after adjusting for age, sex and diagnosis. Cortisol metabolism did not mediate the association between childhood trauma and cognitive function. CONCLUSIONS Our study indicates that childhood physical abuse is associated with elevated cortisol metabolism (5β-reductase) in adults with a SZ or BD disorder. However, our study did not support cortisol metabolism as a mediator between childhood trauma experiences and cognitive function within these disorders.
Collapse
Affiliation(s)
- Monica Aas
- NORMENT, Psychosis Research Unit, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Torill Ueland
- NORMENT, Psychosis Research Unit, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway.,Department of Psychology, University of Oslo, Oslo, Norway
| | - Amina Inova
- NORMENT, Psychosis Research Unit, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Ingrid Melle
- NORMENT, Psychosis Research Unit, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Ole A Andreassen
- NORMENT, Psychosis Research Unit, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway.,NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Nils Eiel Steen
- NORMENT, Psychosis Research Unit, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway.,NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
7
|
Frau R, Traccis F, Bortolato M. Neurobehavioural complications of sleep deprivation: Shedding light on the emerging role of neuroactive steroids. J Neuroendocrinol 2020; 32:e12792. [PMID: 31505075 PMCID: PMC6982588 DOI: 10.1111/jne.12792] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 08/06/2019] [Accepted: 09/05/2019] [Indexed: 01/05/2023]
Abstract
Sleep deprivation (SD) is associated with a broad spectrum of cognitive and behavioural complications, including emotional lability and enhanced stress reactivity, as well as deficits in executive functions, decision making and impulse control. These impairments, which have profound negative consequences on the health and productivity of many individuals, reflect alterations of the prefrontal cortex (PFC) and its connectivity with subcortical regions. However, the molecular underpinnings of these alterations remain elusive. Our group and others have begun examining how the neurobehavioural outcomes of SD may be influenced by neuroactive steroids, a family of molecules deeply implicated in sleep regulation and the stress response. These studies have revealed that, similar to other stressors, acute SD leads to increased synthesis of the neurosteroid allopregnanolone in the PFC. Whereas this up-regulation is likely aimed at counterbalancing the detrimental impact of oxidative stress induced by SD, the increase in prefrontal allopregnanolone levels contributes to deficits in sensorimotor gating and impulse control, signalling a functional impairment of PFC. This scenario suggests that the synthesis of neuroactive steroids during acute SD may be enacted as a neuroprotective response in the PFC; however, such compensation may in turn set off neurobehavioural complications by interfering with the corticolimbic connections responsible for executive functions and emotional regulation.
Collapse
Affiliation(s)
- Roberto Frau
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Monserrato (CA), Italy
- National Institute of Neuroscience (INN), University of Cagliari, Monserrato (CA), Italy
| | - Francesco Traccis
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Monserrato (CA), Italy
| | - Marco Bortolato
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City (UT), USA
| |
Collapse
|
8
|
Sze Y, Brunton PJ. Sex, stress and steroids. Eur J Neurosci 2019; 52:2487-2515. [DOI: 10.1111/ejn.14615] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Ying Sze
- Centre for Discovery Brain Sciences University of Edinburgh Edinburgh UK
| | - Paula J. Brunton
- Centre for Discovery Brain Sciences University of Edinburgh Edinburgh UK
- Zhejiang University‐University of Edinburgh Joint Institute Haining Zhejiang China
| |
Collapse
|
9
|
Antidepressant-like effect of fluoxetine may depend on translocator protein activity and pretest session duration in forced swimming test in mice. Behav Pharmacol 2019; 29:375-378. [PMID: 29076866 DOI: 10.1097/fbp.0000000000000359] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The antidepressant-like effect of fluoxetine (20 mg/kg i.p.) has been assessed using the forced swimming test (FST) in IRC (CD-1) mice exposed or not to a pretest session of different duration (5 or 20 min). The influence of the mitochondrial translocator protein (TSPO) activity on the antidepressant-like effect of fluoxetine (20 mg/kg i.p.) in the FST was also studied. The antidepressant-like effect of fluoxetine was observed only in mice subjected to a 5-min pretest session 24 h before the FST. The TSPO antagonist PK11195 [1-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinolinecarboxamide; 1 or 3 mg/kg i.p.] inhibited the antidepressant activity of fluoxetine in the FST. In the present study, fluoxetine or PK11195 was administered for a short duration. We suppose that the functional activity of TSPO may depend on a pretest session and that using this procedure is necessary to detect antidepressant activity of fluoxetine-like drugs.
Collapse
|
10
|
Mosher LJ, Godar SC, Morissette M, McFarlin KM, Scheggi S, Gambarana C, Fowler SC, Di Paolo T, Bortolato M. Steroid 5α-reductase 2 deficiency leads to reduced dominance-related and impulse-control behaviors. Psychoneuroendocrinology 2018; 91:95-104. [PMID: 29544191 PMCID: PMC5901899 DOI: 10.1016/j.psyneuen.2018.02.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 02/09/2018] [Accepted: 02/13/2018] [Indexed: 01/10/2023]
Abstract
The enzyme steroid 5α-reductase 2 (5αR2) catalyzes the conversion of testosterone into the potent androgen 5α-dihydrotestosterone. Previous investigations showed that 5αR2 is expressed in key brain areas for emotional and socio-affective reactivity, yet the role of this enzyme in behavioral regulation remains mostly unknown. Here, we profiled the behavioral characteristics of 5αR2 heterozygous (HZ) and knockout (KO) mice, as compared with their wild-type (WT) littermates. While male 5αR2 KO mice displayed no overt alterations in motoric, sensory, information-processing and anxiety-related behaviors, they exhibited deficits in neurobehavioral correlates of dominance (including aggression against intruders, mating, and tube dominance) as well as novelty-seeking and risk-taking responses. Furthermore, male 5αR2 KO mice exhibited reduced D2-like dopamine receptor binding in the shell of the nucleus accumbens - a well-recognized molecular signature of social dominance. Collectively, these results suggest that 5αR2 is involved in the establishment of social dominance and its behavioral manifestations. Further studies are warranted to understand how the metabolic actions of 5αR2 on steroid profile may be implicated in social ranking, impulse control, and the modulation of dopamine receptor expression in the nucleus accumbens.
Collapse
Affiliation(s)
- Laura J Mosher
- Dept of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, United States; Dept of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
| | - Sean C Godar
- Dept of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, United States
| | - Marc Morissette
- Neuroscience Research Unit, Centre Hospitalier Universitaire de Québec, CHUL, Quebec City, Quebec, Canada
| | - Kenneth M McFarlin
- Dept of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States.
| | - Simona Scheggi
- Dept of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, United States; Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Carla Gambarana
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Stephen C Fowler
- Dept of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, United States
| | - Thérèse Di Paolo
- Neuroscience Research Unit, Centre Hospitalier Universitaire de Québec, CHUL, Quebec City, Quebec, Canada; Faculty of Pharmacy, Laval University, Quebec City, Quebec, Canada
| | - Marco Bortolato
- Dept of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City, UT, United States.
| |
Collapse
|
11
|
Frau R, Bini V, Soggiu A, Scheggi S, Pardu A, Fanni S, Roncada P, Puligheddu M, Marrosu F, Caruso D, Devoto P, Bortolato M. The Neurosteroidogenic Enzyme 5α-Reductase Mediates Psychotic-Like Complications of Sleep Deprivation. Neuropsychopharmacology 2017; 42:2196-2205. [PMID: 28102229 PMCID: PMC5603808 DOI: 10.1038/npp.2017.13] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/18/2016] [Accepted: 01/05/2017] [Indexed: 01/02/2023]
Abstract
Acute sleep deprivation (SD) can trigger or exacerbate psychosis- and mania-related symptoms; the neurobiological basis of these complications, however, remains elusive. Given the extensive involvement of neuroactive steroids in psychopathology, we hypothesized that the behavioral complications of SD may be contributed by 5α-reductase (5αR), the rate-limiting enzyme in the conversion of progesterone into the neurosteroid allopregnanolone. We first tested whether rats exposed to SD may exhibit brain-regional alterations in 5αR isoenzymes and neuroactive steroid levels; then, we assessed whether the behavioral and neuroendocrine alterations induced by SD may be differentially modulated by the administration of the 5αR inhibitor finasteride, as well as progesterone and allopregnanolone. SD selectively enhanced 5αR expression and activity, as well as AP levels, in the prefrontal cortex; furthermore, finasteride (10-100 mg/kg, IP) dose-dependently ameliorated PPI deficits, hyperactivity, and risk-taking behaviors, in a fashion akin to the antipsychotic haloperidol and the mood stabilizer lithium carbonate. Finally, PPI deficits were exacerbated by allopregnanolone (10 mg/kg, IP) and attenuated by progesterone (30 mg/kg, IP) in SD-subjected, but not control rats. Collectively, these results provide the first-ever evidence that 5αR mediates a number of psychosis- and mania-like complications of SD through imbalances in cortical levels of neuroactive steroids.
Collapse
Affiliation(s)
- Roberto Frau
- Department of Biomedical Sciences,
Division of Neuroscience and Clinical Pharmacology, Monserrato,
Italy,Tourette Syndrome Center,
Monserrato, Italy,Sleep Medicine Center; University of
Cagliari, Monserrato, Italy
| | - Valentina Bini
- Department of Biomedical Sciences,
Division of Neuroscience and Clinical Pharmacology, Monserrato,
Italy,Tourette Syndrome Center,
Monserrato, Italy
| | - Alessio Soggiu
- ‘L. Spallanzani’ Institute,
Proteomics Section—Department of Veterinary Sciences and Public Health,
University of Milan, Milan, Italy
| | - Simona Scheggi
- Department of Molecular and Developmental
Medicine, University of Siena, Siena, Italy,Department of Pharmacology and
Toxicology, College of Pharmacy, University of Utah, Salt Lake
City, UT, USA
| | - Alessandra Pardu
- Department of Biomedical Sciences,
Division of Neuroscience and Clinical Pharmacology, Monserrato,
Italy
| | - Silvia Fanni
- Department of Biomedical Sciences,
Division of Neuroscience and Clinical Pharmacology, Monserrato,
Italy
| | - Paola Roncada
- ‘L. Spallanzani’ Institute,
Proteomics Section—Department of Veterinary Sciences and Public Health,
University of Milan, Milan, Italy
| | - Monica Puligheddu
- Tourette Syndrome Center,
Monserrato, Italy,Sleep Medicine Center; University of
Cagliari, Monserrato, Italy,Department of Public Health, Section of
Neurology, Monserrato, Italy
| | - Francesco Marrosu
- Tourette Syndrome Center,
Monserrato, Italy,Sleep Medicine Center; University of
Cagliari, Monserrato, Italy,Department of Public Health, Section of
Neurology, Monserrato, Italy
| | - Donatella Caruso
- Department of Pharmacological and
Biomolecular Sciences, Center of Excellence for Neurodegenerative Diseases,
University of Milan, Milan, Italy
| | - Paola Devoto
- Department of Biomedical Sciences,
Division of Neuroscience and Clinical Pharmacology, Monserrato,
Italy,Tourette Syndrome Center,
Monserrato, Italy,Sleep Medicine Center; University of
Cagliari, Monserrato, Italy
| | - Marco Bortolato
- Department of Pharmacology and
Toxicology, College of Pharmacy, University of Utah, Salt Lake
City, UT, USA,Department of Pharmacology and Toxicology, College of
Pharmacy, University of Utah, Skaggs Hall, Room 3916, 30S 2000
E, Salt Lake City
84112, UT, USA, Tel: 801 587 3352, Fax:
801 585 5111, E-mail:
| |
Collapse
|
12
|
Allopregnanolone mediates the exacerbation of Tourette-like responses by acute stress in mouse models. Sci Rep 2017; 7:3348. [PMID: 28611376 PMCID: PMC5469807 DOI: 10.1038/s41598-017-03649-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 05/02/2017] [Indexed: 12/26/2022] Open
Abstract
Tourette syndrome (TS) is a neuropsychiatric disorder characterized by multiple tics and sensorimotor abnormalities, the severity of which is typically increased by stress. The neurobiological underpinnings of this exacerbation, however, remain elusive. We recently reported that spatial confinement (SC), a moderate environmental stressor, increases tic-like responses and elicits TS-like sensorimotor gating deficits in the D1CT-7 mouse, one of the best-validated models of TS. Here, we hypothesized that these adverse effects may be mediated by neurosteroids, given their well-documented role in stress-response orchestration. Indeed, SC increased the levels of progesterone, as well as its derivatives 5α-dihydroprogesterone and allopregnanolone, in the prefrontal cortex (PFC) of D1CT-7 mice. Among these steroids, however, only allopregnanolone (5-15 mg/kg, IP) dose-dependently exacerbated TS-like manifestations in D1CT-7, but not wild-type littermates; these effects were countered by the benchmark anti-tic therapy haloperidol (0.3 mg/kg, IP). Furthermore, the phenotypic effects of spatial confinement in D1CT-7 mice were suppressed by finasteride (25-50 mg/kg, IP), an inhibitor of the main rate-limiting enzyme in allopregnanolone synthesis. These findings collectively suggest that stress may exacerbate TS symptoms by promoting allopregnanolone synthesis in the PFC, and corroborate previous clinical results pointing to finasteride as a novel therapeutic avenue to curb symptom fluctuations in TS.
Collapse
|
13
|
Scioli-Salter E, Forman DE, Otis JD, Tun C, Allsup K, Marx CE, Hauger RL, Shipherd JC, Higgins D, Tyzik A, Rasmusson AM. Potential neurobiological benefits of exercise in chronic pain and posttraumatic stress disorder: Pilot study. ACTA ACUST UNITED AC 2016; 53:95-106. [PMID: 27006290 DOI: 10.1682/jrrd.2014.10.0267] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 05/29/2015] [Indexed: 01/26/2023]
Abstract
This pilot study assessed the effects of cardiopulmonary exercise testing and cardiorespiratory fitness on plasma neuropeptide Y (NPY), allopregnanolone and pregnanolone (ALLO), cortisol, and dehydroepiandrosterone (DHEA), and their association with pain sensitivity. Medication-free trauma-exposed participants were either healthy (n = 7) or experiencing comorbid chronic pain/posttraumatic stress disorder (PTSD) (n = 5). Peak oxygen consumption (VO2) during exercise testing was used to characterize cardiorespiratory fitness. Peak VO2 correlated with baseline and peak NPY levels (r = 0.66, p < 0.05 and r = 0.69, p < 0.05, respectively), as well as exercise-induced changes in ALLO (r = 0.89, p < 0.001) and peak ALLO levels (r = 0.71, p < 0.01). NPY levels at the peak of exercise correlated with pain threshold 30 min after exercise (r = 0.65, p < 0.05), while exercise-induced increases in ALLO correlated with pain tolerance 30 min after exercise (r = 0.64, p < 0.05). In contrast, exercise-induced changes in cortisol and DHEA levels were inversely correlated with pain tolerance after exercise (r = -0.69, p < 0.05 and r = -0.58, p < 0.05, respectively). These data suggest that cardiorespiratory fitness is associated with higher plasma NPY levels and increased ALLO responses to exercise, which in turn relate to pain sensitivity. Future work will examine whether progressive exercise training increases cardiorespiratory fitness in association with increases in NPY and ALLO and reductions in pain sensitivity in chronic pain patients with PTSD.
Collapse
|
14
|
Brunton PJ. Neuroactive steroids and stress axis regulation: Pregnancy and beyond. J Steroid Biochem Mol Biol 2016; 160:160-8. [PMID: 26259885 DOI: 10.1016/j.jsbmb.2015.08.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/31/2015] [Accepted: 08/03/2015] [Indexed: 01/09/2023]
Abstract
The hypothalamo-pituitary-adrenal (HPA) axis plays a critical role in regulating responses to stress and long term dysregulation of the HPA axis is associated with higher rates of mood disorders. There are circumstances where the HPA axis is more or less responsive to stress. For example, during late pregnancy ACTH and corticosterone responses to stress are markedly suppressed, whereas in offspring born to mothers that experienced repeated stress during pregnancy, the HPA axis is hyper-responsive to stress. Neuroactive steroids such as allopregnanolone, tetrahydrodeoxycorticosterone (THDOC) and androstanediol can modulate HPA axis activity and concentrations of some neuroactive steroids in the brain are altered during pregnancy and following stress. Thus, here altered neurosteroidogenesis is proposed as a mechanism that could underpin the dynamic changes in HPA axis regulation typically observed in late pregnant and in prenatally stressed individuals. In support of this hypothesis, evidence in rats demonstrates that elevated levels of allopregnanolone in pregnancy induce a central inhibitory opioid mechanism that serves to minimize stress-induced HPA axis activity. Conversely, in prenatally stressed rodents, where HPA axis stress responses are enhanced, evidence indicates the capacity of the brain for neurosteroidogenesis is reduced. Understanding the mechanisms involved in adaptations in HPA axis regulation may provide insights for manipulating stress sensitivity and for developing therapies for stress-related disorders in humans.
Collapse
Affiliation(s)
- Paula J Brunton
- Division of Neurobiology, The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, Scotland, UK.
| |
Collapse
|
15
|
Giatti S, Foglio B, Romano S, Pesaresi M, Panzica G, Garcia-Segura LM, Caruso D, Melcangi RC. Effects of Subchronic Finasteride Treatment and Withdrawal on Neuroactive Steroid Levels and Their Receptors in the Male Rat Brain. Neuroendocrinology 2016; 103:746-57. [PMID: 26646518 DOI: 10.1159/000442982] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 11/30/2015] [Indexed: 11/19/2022]
Abstract
The enzymatic conversion of progesterone and testosterone by the enzyme 5alpha-reductase exerts a crucial role in the control of nervous function. The effects of finasteride in the brain, an inhibitor of this enzyme used for the treatment of human benign prostatic hyperplasia and androgenic alopecia, have been poorly explored. Therefore, the effects of a subchronic treatment with finasteride at low doses (3 mg/kg/day) and the consequences of its withdrawal on neuroactive steroid levels in plasma, cerebrospinal fluid and some brain regions as well as on the expression of classical and non-classical steroid receptors have been evaluated in male rats. After subchronic treatment (i.e., for 20 days) the following effects were detected: (i) depending on the compartment considered, alteration in the levels of neuroactive steroids, not only in 5alpha-reduced metabolites but also in its precursors and in neuroactive steroids from other steroidogenic pathways and (ii) an upregulation of the androgen receptor in the cerebral cortex and beta3 subunit of the GABA-A receptor in the cerebellum. One month after the last treatment (i.e., withdrawal period), some of these effects persisted (i.e., the upregulation of the androgen receptor in the cerebral cortex, an increase of dihydroprogesterone in the cerebellum, a decrease of dihydrotestosterone in plasma). Moreover, other changes in neuroactive steroid levels, steroid receptors (i.e., an upregulation of the estrogen receptor alpha and a downregulation of the estrogen receptor beta in the cerebral cortex) and GABA-A receptor subunits (i.e., a decrease of alpha 4 and beta 3 mRNA levels in the cerebral cortex) were detected. These findings suggest that finasteride treatment may have broad consequences for brain function.
Collapse
Affiliation(s)
- Silvia Giatti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Frau R, Abbiati F, Bini V, Casti A, Caruso D, Devoto P, Bortolato M. Targeting neurosteroid synthesis as a therapy for schizophrenia-related alterations induced by early psychosocial stress. Schizophr Res 2015; 168:640-8. [PMID: 25999042 PMCID: PMC4628592 DOI: 10.1016/j.schres.2015.04.044] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 04/29/2015] [Accepted: 04/29/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND Cogent evidence has shown that schizophrenia vulnerability is enhanced by psychosocial stress in adolescence, yet the underpinnings of this phenomenon remain elusive. One of the animal models that best capture the relationship between juvenile stress and schizophrenia is isolation rearing (IR). This manipulation, which consists in subjecting rats to social isolation from weaning through adulthood, results in neurobehavioral alterations akin to those observed in schizophrenia patients. In particular, IR-subjected rats display a marked reduction of the prepulse inhibition (PPI) of the startle reflex, which are posited to reflect imbalances in dopamine neurotransmission in the nucleus accumbens (NAcc). We recently documented that the key neurosteroidogenic enzyme 5α-reductase (5αR) plays an important role in the dopaminergic regulation of PPI; given that IR leads to a marked down-regulation of this enzyme in the NAcc, the present study was designed to further elucidate the functional role of 5αR in the regulation of PPI of IR-subjected rats. METHODS We studied the impact of the prototypical 5αR inhibitor finasteride (FIN) on the PPI deficits and NAcc steroid profile of IR-subjected male rats, in comparison with socially reared (SR) controls. RESULTS FIN (25-100 mg/kg, i.p.) dose-dependently countered IR-induced PPI reduction, without affecting gating integrity in SR rats. The NAcc and striatum of IR-subjected rats displayed several changes in neuroactive steroid profile, including a reduction in pregnenolone in both SR and IR-subjected groups, as well as a decrease in allopregnanolone content in the latter group; both effects were significantly opposed by FIN. CONCLUSIONS These results show that 5αR inhibition counters the PPI deficits induced by IR, possibly through limbic changes in pregnenolone and/or allopregnanolone concentrations.
Collapse
Affiliation(s)
- Roberto Frau
- “Guy Everett” Laboratory, Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy,Tourette Syndrome Center, University of Cagliari, Cagliari, Italy
| | - Federico Abbiati
- Department of Pharmacological and Biomolecular Sciences, Center of Excellence on Neurodegenerative Diseases; University of Milan, Milan, Italy
| | - Valentina Bini
- “Guy Everett” Laboratory, Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy,Tourette Syndrome Center, University of Cagliari, Cagliari, Italy
| | - Alberto Casti
- “Guy Everett” Laboratory, Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Donatella Caruso
- Department of Pharmacological and Biomolecular Sciences, Center of Excellence on Neurodegenerative Diseases; University of Milan, Milan, Italy
| | - Paola Devoto
- “Guy Everett” Laboratory, Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy,Tourette Syndrome Center, University of Cagliari, Cagliari, Italy
| | - Marco Bortolato
- Tourette Syndrome Center, University of Cagliari, Cagliari, Italy; Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, USA; Consortium for Translational Research on Aggression and Drug Abuse (ConTRADA), University of Kansas, Lawrence, KS, USA; Problem Gambling Research Studies (ProGResS) Network, University of Kansas, Lawrence, KS, USA.
| |
Collapse
|
17
|
Maldonado-Devincci AM, Beattie MC, Morrow DH, McKinley RE, Cook JB, O’Buckley TK, Morrow AL. Reduction of circulating and selective limbic brain levels of (3α,5α)-3-hydroxy-pregnan-20-one (3α,5α-THP) following forced swim stress in C57BL/6J mice. Psychopharmacology (Berl) 2014; 231:3281-92. [PMID: 24744202 PMCID: PMC4335654 DOI: 10.1007/s00213-014-3552-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 03/16/2014] [Indexed: 01/12/2023]
Abstract
RATIONALE Stress activates the hypothalamic-pituitary-adrenal (HPA) axis, and GABAergic neuroactive steroids contribute to homeostatic regulation of this circuitry. Acute forced swim stress (FSS) increases plasma, cortical, and hypothalamic (3α,5α)-3-hydroxy-pregnan-20-one (3α,5α-THP) levels in rats. However, there have not been systemic investigations of acute stress on changes in plasma and brain levels of 3α,5α-THP in mouse models. OBJECTIVES The present experiments aimed to assess circulating and local brain levels of 3α,5α-THP following acute FSS in C57BL/6J mice. METHODS Mice were exposed to FSS (10 min), and 50 min later, blood and brains were collected. Circulating pregnenolone and 3α,5α-THP levels were assessed in serum. Free-floating brain sections (40 μm, four to five sections/region) were immunostained and analyzed in cortical and limbic brain structures. RESULTS FSS decreased circulating 3α,5α-THP (-41.6 ± 10.4 %) and reduced 3α,5α-THP immunolabeling in the paraventricular nucleus of the hypothalamus (-15.2 ± 5.7 %), lateral amygdala (LA, -31.1 ± 13.4 %), and nucleus accumbens (NAcc) shell (-31.9 ± 14.6). Within the LA, vesicular glutamate transporter 1 (VGLUT1) and vesicular GABA transporter were localized in 3α,5α-THP-positively stained cells, while in the NAcc shell, only VGLUT1 was localized in 3α,5α-THP-positively stained cells, suggesting that both glutamatergic and GABAergic cells within the LA are 3α,5α-THP-positive, while in the NAcc shell, 3α,5α-THP only localizes to glutamatergic cells. CONCLUSIONS The decrease in circulating and brain levels of 3α,5α-THP may be due to alterations in the biosynthesis/metabolism or changes in the regulation of the HPA axis following FSS. Changes in GABAergic neuroactive steroids in response to stress likely mediate functional adaptations in neuronal activity. This may provide a potential targeted therapeutic avenue to address maladaptive stress responsivity.
Collapse
Affiliation(s)
- Antoniette M. Maldonado-Devincci
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, 3027 Thurston Bowles Building, CB 7178, Chapel Hill, NC 27599, USA,Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Matthew C. Beattie
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, 3027 Thurston Bowles Building, CB 7178, Chapel Hill, NC 27599, USA
| | - Danielle H. Morrow
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, 3027 Thurston Bowles Building, CB 7178, Chapel Hill, NC 27599, USA
| | - Raechel E. McKinley
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, 3027 Thurston Bowles Building, CB 7178, Chapel Hill, NC 27599, USA
| | - Jason B. Cook
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, 3027 Thurston Bowles Building, CB 7178, Chapel Hill, NC 27599, USA,Curriculum in Neurobiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Todd K. O’Buckley
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, 3027 Thurston Bowles Building, CB 7178, Chapel Hill, NC 27599, USA
| | - A. Leslie Morrow
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, 3027 Thurston Bowles Building, CB 7178, Chapel Hill, NC 27599, USA,Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA,Curriculum in Neurobiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA,Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA,Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
18
|
Bali A, Jaggi AS. Multifunctional aspects of allopregnanolone in stress and related disorders. Prog Neuropsychopharmacol Biol Psychiatry 2014; 48:64-78. [PMID: 24044974 DOI: 10.1016/j.pnpbp.2013.09.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 09/05/2013] [Accepted: 09/05/2013] [Indexed: 12/22/2022]
Abstract
Allopregnanolone (3α-hydroxy-5α-pregnan-20-one) is a major cholesterol-derived neurosteroid in the central nervous system and is synthesized from progesterone by steroidogenic enzymes, 5α-reductase (the rate-limiting enzyme) and 3α-hydroxysteroid dehydrogenase. The pathophysiological role of allopregnanolone in neuropsychiatric disorders has been highlighted in several investigations. The changes in neuroactive steroid levels are detected in stress and stress-related disorders including anxiety, panic and depression. The changes in allopregnanolone in response to acute stressor tend to restore the homeostasis by dampening the hyper-activated HPA axis. However, long standing stressors leading to development of neuropsychiatric disorders including depression and anxiety are associated with decrease in the allopregnanolone levels. GABAA receptor complex has been considered as the primary target of allopregnanolone and majority of its inhibitory actions are mediated through GABA potentiation or direct activation of GABA currents. The role of progesterone receptors in producing the late actions of allopregnanolone particularly in lordosis facilitation has also been described. Moreover, recent studies have also described the involvement of other multiple targets including brain-derived neurotrophic factor (BDNF), glutamate, dopamine, opioids, oxytocin, and calcium channels. The present review discusses the various aspects of allopregnanolone in stress and stress-related disorders including anxiety, depression and panic.
Collapse
Affiliation(s)
- Anjana Bali
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala, 147002, India
| | | |
Collapse
|
19
|
Regional distribution of 5α-reductase type 2 in the adult rat brain: an immunohistochemical analysis. Psychoneuroendocrinology 2013; 38:281-93. [PMID: 22776423 PMCID: PMC3762250 DOI: 10.1016/j.psyneuen.2012.06.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 06/18/2012] [Accepted: 06/18/2012] [Indexed: 11/20/2022]
Abstract
The enzyme 5α-reductase (5αR) catalyzes the conversion of testosterone and other Δ(4)-3-ketosteroids into their 5α-reduced metabolites. Of the five members of the 5αR family, the type 2 enzyme (5αR2) plays a key role in androgen metabolism, and is abundantly distributed in the urogenital system. Although 5αR2 has been reported to be highly expressed in the brain during early developmental stages, little is currently known on its anatomical and cellular distribution in the adult brain. Thus, the present study was designed to determine the detailed localization of 5αR2 in the adult rat brain, using a highly specific polyclonal antibody against this isoform. Parasagittal and coronal sections revealed 5αR2 immunoreactivity throughout most brain regions, with strong immunolabeling in the layers III and VI of the prefrontal and somatosensory cortex, olfactory bulb, thalamic nuclei, CA3 field of hippocampus, basolateral amygdala and Purkinje cell layer of cerebellum. Lower 5αR2 levels were detected in the hypothalamus and midbrain. Moreover, double labeling fluorescence with confocal laser scanning microscopy (CLSM) revealed that 5αR2 is localized in neurons, but not in glial cells. Specifically, the enzyme was documented in the pyramidal neurons of the cortex by CLSM analysis of simultaneous Golgi-Cox and immunofluorescent staining. Finally, low levels of 5αR2 expression were identified in GABAergic cells across the cortex, hippocampus and striatum. These findings show that, in the adult brain, 5αR2 is distributed in critical regions for behavioral regulation, suggesting that the functional role of this isoform is present throughout the entire lifespan of the individual.
Collapse
|
20
|
Walf AA, Frye CA. Gestational or acute restraint in adulthood reduces levels of 5α-reduced testosterone metabolites in the hippocampus and produces behavioral inhibition of adult male rats. Front Cell Neurosci 2012; 6:40. [PMID: 23264760 PMCID: PMC3524518 DOI: 10.3389/fncel.2012.00040] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 09/12/2012] [Indexed: 01/31/2023] Open
Abstract
Stressors, during early life or adulthood, can alter steroid-sensitive behaviors, such as exploration, anxiety, and/or cognitive processes. We investigated if exposure to acute stressors in adulthood may alter behavioral and neuroendocrine responses of male rats that were exposed to gestational stress or not. We hypothesized that rats exposed to gestational and acute stress may show behavioral inhibition, increased corticosterone, and altered androgen levels in the hippocampus. Subjects were adult, male offspring of rat dams that were restrained daily on gestational days 14–20, or did not experience this manipulation. Immediately before testing, rats were restraint stressed for 20 min or not. During week 1, rats were tested in a battery of tasks, including the open field, elevated plus maze, social interaction, tailflick, pawlick, and defensive burying tasks. During week 2, rats were trained and tested 24 h later in the inhibitory avoidance task. Plasma corticosterone and androgen levels, and hippocampal androgen levels, were measured in all subjects. Gestational and acute restraint stress increased plasma levels of corticosterone, and reduced levels of testosterone's 5α-reduced metabolites, dihydrotestosterone (DHT) and 3α-androstanediol (3α-diol), but not the aromatized metabolite, estradiol (E2), in plasma or the hippocampus. Gestational and acute restraint stress reduced central entries made in the open field, and latencies to enter the shock-associated side of the inhibitory avoidance chamber during testing. Gestational stress reduced time spent interacting with a conspecific. These data suggest that gestational and acute restraint stress can have actions to produce behavioral inhibition coincident with increased corticosterone and decreased 5α-reduced androgens of adult male rats. Thus, gestational stress altered neural circuits involved in the neuroendocrine response to acute stress in early adulthood.
Collapse
Affiliation(s)
- Alicia A Walf
- Life Sciences Research, The University at Albany-SUNY Albany, NY, USA
| | | |
Collapse
|
21
|
Sánchez P, Torres JM, Castro B, Olmo A, del Moral RG, Ortega E. Expression of steroid 5α-reductase isozymes in prostate of adult rats after environmental stress. FEBS J 2012; 280:93-101. [DOI: 10.1111/febs.12052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Revised: 09/13/2012] [Accepted: 10/15/2012] [Indexed: 12/01/2022]
Affiliation(s)
- Pilar Sánchez
- Department of Biochemistry and Molecular Biology, Faculty of Medicine; University of Granada; Spain
| | | | - Beatriz Castro
- Department of Biochemistry and Molecular Biology, Faculty of Medicine; University of Granada; Spain
| | - Asunción Olmo
- Department of Pathology; San Cecilio University Hospital and School of Medicine, University of Granada; Spain
| | - Raimundo G. del Moral
- Department of Pathology; San Cecilio University Hospital and School of Medicine, University of Granada; Spain
| | | |
Collapse
|
22
|
Gunn BG, Brown AR, Lambert JJ, Belelli D. Neurosteroids and GABA(A) Receptor Interactions: A Focus on Stress. Front Neurosci 2011; 5:131. [PMID: 22164129 PMCID: PMC3230140 DOI: 10.3389/fnins.2011.00131] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 11/14/2011] [Indexed: 11/13/2022] Open
Abstract
Since the pioneering discovery of the rapid CNS depressant actions of steroids by the "father of stress," Hans Seyle 70 years ago, brain-derived "neurosteroids" have emerged as powerful endogenous modulators of neuronal excitability. The majority of the intervening research has focused on a class of naturally occurring steroids that are metabolites of progesterone and deoxycorticosterone, which act in a non-genomic manner to selectively augment signals mediated by the main inhibitory receptor in the CNS, the GABA(A) receptor. Abnormal levels of such neurosteroids associate with a variety of neurological and psychiatric disorders, suggesting that they serve important physiological and pathophysiological roles. A compelling case can be made to implicate neurosteroids in stress-related disturbances. Here we will critically appraise how brain-derived neurosteroids may impact on the stress response to acute and chronic challenges, both pre- and postnatally through to adulthood. The pathological implications of such actions in the development of psychiatric disturbances will be discussed, with an emphasis on the therapeutic potential of neurosteroids for the treatment of stress-associated disorders.
Collapse
Affiliation(s)
- Benjamin G Gunn
- Division of Neuroscience, Medical Research Institute, Ninewells Hospital and Medical School, Ninewells Hospital, University of Dundee Dundee, UK
| | | | | | | |
Collapse
|
23
|
Bortolato M, Devoto P, Roncada P, Frau R, Flore G, Saba P, Pistritto G, Soggiu A, Pisanu S, Zappala A, Ristaldi MS, Tattoli M, Cuomo V, Marrosu F, Barbaccia ML. Isolation rearing-induced reduction of brain 5α-reductase expression: relevance to dopaminergic impairments. Neuropharmacology 2011; 60:1301-8. [PMID: 21256141 DOI: 10.1016/j.neuropharm.2011.01.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 01/05/2011] [Accepted: 01/10/2011] [Indexed: 11/16/2022]
Abstract
Isolation rearing (IR), a well-established rat model of early chronic psychosocial stress, engenders marked behavioral alterations related to changes of dopamine (DA) neurotransmission in cortical and subcortical brain regions. Stress-induced shifts in γ-aminobutyric acid (GABA)-ergic signaling have been implicated in the dysregulation of DA release. The neurosteroid 3α-hydroxy-5α-pregnan-20-one (allopregnanolone/AP), synthesized from progesterone by the action of the rate-limiting enzyme 5α-reductase (5AR), is a potent positive allosteric modulator of GABA(A) receptor function. Thus, alterations of 5AR activity/expression may impact upon DA neurotransmission. We studied the effects of IR on the 5AR expression/function and extracellular concentrations of DA and its metabolite 3,4-dihydroxyphenylacetic acid (DOPAC) in the rat nucleus accumbens (NAcc) and medial prefrontal cortex (mPFC). Immediately after weaning, male rats were subjected to either IR or social rearing (SR) conditions for 5-8 weeks. Compared to SR, IR rats exhibited significantly lower protein expression of 5AR isoforms (1 and 2) in both brain regions and reduced brain, but not plasma, content of AP and allotetrahydrodeoxycorticosterone, the 5α-reduced metabolite of deoxycorticosterone. IR-exposed rats also exhibited higher levels of DA and DOPAC in the NAcc shell, but not in mPFC, when compared to SR rats. The 5AR inhibitor finasteride (FIN, 100 mg/kg, i.p.) enhanced DA and DOPAC content in the NAcc shell of SR, but not IR rats. FIN, however, elicited equivalent increases in DA and DOPAC levels in the mPFC of both groups. These results show that IR induces changes in expression/activity of brain 5AR which, in a brain-region specific manner, may partially underlie the alterations in DA signaling induced by this manipulation. This article is part of a Special Issue entitled 'Trends in neuropharmacology: in memory of Erminio Costa'.
Collapse
Affiliation(s)
- Marco Bortolato
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90031, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Cohen RE, Wade J. Distribution of Two Isozymes of 5α-Reductase in the Brains of Adult Male and Female Green Anole Lizards. BRAIN, BEHAVIOR AND EVOLUTION 2010; 76:279-88. [DOI: 10.1159/000322096] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Accepted: 10/15/2010] [Indexed: 11/19/2022]
|
25
|
McKendry AA, Palliser HK, Yates DM, Walker DW, Hirst JJ. The effect of betamethasone treatment on neuroactive steroid synthesis in a foetal Guinea pig model of growth restriction. J Neuroendocrinol 2010; 22:166-74. [PMID: 20041984 DOI: 10.1111/j.1365-2826.2009.01949.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
There are ongoing concerns that antenatal corticosteroids, which are administered to women at high risk of delivering preterm to reduce the incidence of respiratory distress syndrome, have adverse effects on foetal brain development and subsequent effects on behaviour and learning, when administered as repeated courses. The present study aimed to examine whether repeated betamethasone treatment alters the expression of the key-rate limiting enzyme, 5alpha-reductase, in the synthetic pathway of the potent neuroactive steroid allopregnanolone in the brain and placenta and whether this effect is potentiated in growth restricted foetuses. To investigate this, pregnant guinea pigs carrying either control (sham surgery) or growth-restricted foetuses were treated with vehicle or betamethasone (1 mg/kg/day) for 4 days prior to sacrifice (65d). Placental insufficiency was induced by the ablation of uterine artery branches supplying each placenta at mid gestation, resulting in foetal growth restriction characterised by 'brain sparing'. Real-time reverse transcriptase polymerase chain reaction was used to determine relative 5alpha-reductase type 1 and 2 mRNA expression in the placenta and brain. Immunohistochemistry was used to examine the glial fibrillary acidic protein (GFAP) expression in the subcortical white matter, CA1 and dentate regions of the hippocampus. 5alpha-reductase type 2 mRNA expression in the brain was markedly reduced by betamethasone treatment in male foetuses compared to vehicle-treated controls but not in female foetuses. In addition, 5alpha-reductase type 1 expression in the brain was increased by growth restriction and/or betamethasone treatment in female foetuses but expression in males foetuses did not increase. 5alpha-reductase type 2 expression in the placenta was markedly reduced by betamethasone treatment compared to vehicle-treated control. Intrauterine growth restriction and betamethasone treatment reduced GFAP expression in the CA1 region of the hippocampus in the brains of male but not female foetuses. These data indicate that betamethasone treatment suppresses placental expression and has sexually dimorphic effects on expression of neuroactive steroid synthetic enzymes in the brain. These actions may lead to adverse effects on the developing brain, particularly in male foetuses, such as the observed effects on GFAP expression.
Collapse
Affiliation(s)
- A A McKendry
- Mothers & Babies Research Centre and School of Biomedical Sciences, University of Newcastle, Newcastle, NSW, Australia.
| | | | | | | | | |
Collapse
|
26
|
Childs E, Van Dam NT, de Wit H. Effects of acute progesterone administration upon responses to acute psychosocial stress in men. Exp Clin Psychopharmacol 2010; 18:78-86. [PMID: 20158297 PMCID: PMC4351805 DOI: 10.1037/a0018060] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Animal studies suggest that neuroactive steroids, in particular progesterone and its metabolites, have stress-dampening effects. However, few studies have explored these effects in humans. In this study, we investigated the effects of acute progesterone administration on responses to the Trier Social Stress Test (TSST). Healthy men participated in the TSST 3.5 hrs after intramuscular injection of 0, 50, or 100 mg progesterone (N = 16, 14, and 14). We measured cardiovascular (heart rate, blood pressure), hormonal (plasma adrenocorticotrophic hormone, cortisol, and noradrenaline), and subjective (e.g., anxiety, arousal) responses to stress in the three groups. Before the TSST, progesterone injections increased plasma levels without altering physiological or subjective states. Stress produced its expected physiological and subjective effects among placebo-treated individuals. Progesterone 50 mg attenuated peak increases in plasma cortisol and reduced changes in negative mood and alertness after stress, yet it increased plasma noradrenaline and systolic blood pressure. Progesterone 100 mg also attenuated stress-induced increases in alertness and arousal, yet it potentiated stress-induced increases in diastolic pressure. Thus, progesterone dampened some of the psychological effects of stress but produced inconsistent effects on physiological stress responses.
Collapse
Affiliation(s)
- Emma Childs
- Department of Psychiatry and Behavioral Neurosciences, The University of Chicago, 5841 South Maryland Avenue, Chicago, IL 60637, USA.
| | | | | |
Collapse
|
27
|
Yehuda R, Bierer LM, Sarapas C, Makotkine I, Andrew R, Seckl JR. Cortisol metabolic predictors of response to psychotherapy for symptoms of PTSD in survivors of the World Trade Center attacks on September 11, 2001. Psychoneuroendocrinology 2009; 34:1304-13. [PMID: 19411143 PMCID: PMC2785023 DOI: 10.1016/j.psyneuen.2009.03.018] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 03/27/2009] [Accepted: 03/30/2009] [Indexed: 11/18/2022]
Abstract
BACKGROUND A proportion of subjects with symptoms of posttraumatic stress disorder (PTSD) are unresponsive to specialized psychotherapy, but a biological basis for this has not been described. To observe whether differences in cortisol or its metabolites predict or correlate with response to therapy for PTSD symptoms, cortisol and its metabolites were measured from urine samples at pre-treatment, at the conclusion of psychotherapy, and at 3-month follow-up. METHODS 28 survivors of the World Trade Center attacks on September 11, 2001 seeking psychological treatment for PTSD symptoms received four sessions of either exposure therapy or supportive counseling, followed by up to 10 sessions of prolonged exposure in a specialized PTSD treatment program at a private hospital serving the New York City metropolitan area. 24-h mean integrated cortisol excretion was assessed by radioimmunoassay (RIA); urinary free cortisol and metabolites cortisone, 5alpha-tetrahydrocortisol (5alpha-THF), 5beta-tetrahydrocortisol, and tetrahydrocortisone were assessed by gas chromatography-mass spectrometry (GC-MS); and indices of enzyme activity for 5alpha- and 5beta-reductase and for the 11beta-hydroxysteroid dehydrogenases were derived from the metabolite and glucocorticoid measures. RESULTS 5alpha-Reductase activity was significantly lower at pre-treatment among non-responders, whereas there were no significant pre-treatment differences between responders and non-responders in any other hormone or metabolite level. In repeated measures analyses across the three time points, 5alpha-reductase activity, as well as 5alpha-THF and total glucocorticoids, significantly differed between responders and non-responders. For urinary cortisol measured by RIA, there was a significant groupxtime interaction indicating that, although not different at pre-treatment, urinary cortisol levels declined over time in the non-responder group, such that by follow-up, lowered cortisol significantly distinguished non-responders from responders. Indices of 5alpha-reductase activity, including 5alpha-THF and total glucocorticoids, were significantly negatively correlated with avoidance symptom severity at pre-treatment. At follow-up, indices of 5alpha-reductase activity were significantly negatively correlated with severity of all three PTSD symptom clusters and with total PTSD severity scores. CONCLUSION Lower 5alpha-reductase activity is associated with avoidance severity and predicts non-responsiveness to psychological treatment for PTSD symptomatology. Relatively diminished 5alpha-reductase activity may mark a state of primary vulnerability, perhaps via attenuated peripheral catabolism of cortisol resulting in the suppression of hypothalamic-pituitary-adrenal axis responsiveness. Lower cortisol levels appear later in the progression to chronic, treatment-resistant PTSD.
Collapse
Affiliation(s)
- Rachel Yehuda
- Traumatic Stress Studies Division, Mount Sinai School of Medicine and James J. Peters Veterans Affairs Medical Center, Psychiatry 116/A - OOMH, Bronx, NY 10468-3904, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Brunton PJ, McKay AJ, Ochedalski T, Piastowska A, Rebas E, Lachowicz A, Russell JA. Central opioid inhibition of neuroendocrine stress responses in pregnancy in the rat is induced by the neurosteroid allopregnanolone. J Neurosci 2009; 29:6449-60. [PMID: 19458216 PMCID: PMC6665894 DOI: 10.1523/jneurosci.0708-09.2009] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Revised: 04/08/2009] [Accepted: 04/09/2009] [Indexed: 12/31/2022] Open
Abstract
The hypothalamus-pituitary-adrenal (HPA) axis is the major neuroendocrine stress response system. Corticotropin-releasing hormone (CRH) neurons in the parvocellular paraventricular nucleus (pPVN) play a key role in coordinating responses of this system to stressors. The cytokine interleukin-1beta (IL-1beta), mimicking infection, robustly activates these CRH neurons via a noradrenergic input arising from the nucleus tractus solitarii (NTS). In late pregnancy, HPA axis responses to stressors, including IL-1beta, are attenuated by a central opioid mechanism that auto-inhibits noradrenaline release in the PVN. Here we show that the neuroactive progesterone metabolite allopregnanolone induces these changes in HPA responsiveness to IL-1beta in pregnancy. In late pregnancy, inhibition of 5alpha-reductase (an allopregnanolone-synthesizing enzyme) with finasteride restored HPA axis responses (rapidly increased pPVN CRH mRNA expression, ACTH, and corticosterone secretion) to IL-1beta. Conversely, allopregnanolone reduced HPA responses in virgin rats. In late pregnancy, activity of the allopregnanolone-synthesizing enzymes (5alpha-reductase and 3alpha-hydroxysteroid dehydrogenase) was increased in the hypothalamus as was mRNA expression in the NTS and PVN. Naloxone, an opioid antagonist, restores HPA axis responses to IL-1beta in pregnancy but had no additional effect after finasteride, indicating a causal connection between allopregnanolone and the endogenous opioid mechanism. Indeed, allopregnanolone induced opioid inhibition over HPA responses to IL-1beta in virgin rats. Furthermore, in virgin rats, allopregnanolone treatment increased, whereas in pregnant rats finasteride decreased proenkephalin-A mRNA expression in the NTS. Thus, in pregnancy, allopregnanolone induces opioid inhibition over HPA axis responses to immune challenge. This novel opioid-mediated mechanism of allopregnanolone action may alter regulation of other brain systems in pregnancy.
Collapse
Affiliation(s)
- Paula J Brunton
- Laboratory of Neuroendocrinology, Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
29
|
Effects of Sulpiride on Prolactin and mRNA Levels of Steroid 5α-reductase Isozymes in Adult Rat Brain. Neurochem Res 2007; 33:820-5. [DOI: 10.1007/s11064-007-9512-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Accepted: 09/13/2007] [Indexed: 10/22/2022]
|