1
|
Popovic M, Zaja R, Fent K, Smital T. Molecular characterization of zebrafish Oatp1d1 (Slco1d1), a novel organic anion-transporting polypeptide. J Biol Chem 2013; 288:33894-33911. [PMID: 24126916 DOI: 10.1074/jbc.m113.518506] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The organic anion-transporting polypeptide (OATP/Oatp) superfamily includes a group of polyspecific transporters that mediate transport of large amphipathic, mostly anionic molecules across cell membranes of eukaryotes. OATPs/Oatps are involved in the disposition and elimination of numerous physiological and foreign compounds. However, in non-mammalian species, the functional properties of Oatps remain unknown. We aimed to elucidate the role of Oatp1d1 in zebrafish to gain insights into the functional and structural evolution of the OATP1/Oatp1 superfamily. We show that diversification of the OATP1/Oatp1 family occurs after the emergence of jawed fish and that the OATP1A/Oatp1a and OATP1B/Oatp1b subfamilies appeared at the root of tetrapods. The Oatp1d subfamily emerged in teleosts and is absent in tetrapods. The zebrafish Oatp1d1 is similar to mammalian OATP1A/Oatp1a and OATP1B/Oatp1b members, with the main physiological role in transport and balance of steroid hormones. Oatp1d1 activity is dependent upon pH gradient, which could indicate bicarbonate exchange as a mode of transport. Our analysis of evolutionary conservation and structural properties revealed that (i) His-79 in intracellular loop 3 is conserved within OATP1/Oatp1 family and is crucial for the transport activity; (ii) N-glycosylation impacts membrane targeting and is conserved within the OATP1/Oatp1 family with Asn-122, Asn-133, Asn-499, and Asn-512 residues involved; (iii) the evolutionarily conserved cholesterol recognition interaction amino acid consensus motif is important for membrane localization; and (iv) Oatp1d1 is present in dimeric and possibly oligomeric form in the cell membrane. In conclusion, we describe the first detailed characterization of a new Oatp transporter in zebrafish, offering important insights into the functional evolution of the OATP1/Oatp1 family and the physiological role of Oatp1d1.
Collapse
Affiliation(s)
- Marta Popovic
- Laboratory for Molecular Ecotoxicology, Division for Marine and Environmental Research, Rudjer Boskovic Institute, Bijenicka 54, 10 000 Zagreb, Croatia
| | - Roko Zaja
- Laboratory for Molecular Ecotoxicology, Division for Marine and Environmental Research, Rudjer Boskovic Institute, Bijenicka 54, 10 000 Zagreb, Croatia
| | - Karl Fent
- School of Life Sciences, University of Applied Sciences Northwestern Switzerland, Gründenstrasse 40, CH-4132 Muttenz, Switzerland; Department of Environmental System Sciences, Swiss Federal Institute of Technology (ETHZ), CH-8092 Zürich, Switzerland
| | - Tvrtko Smital
- Laboratory for Molecular Ecotoxicology, Division for Marine and Environmental Research, Rudjer Boskovic Institute, Bijenicka 54, 10 000 Zagreb, Croatia.
| |
Collapse
|
2
|
Abstract
The solute carrier 6 (SLC6) family of the human genome comprises transporters for neurotransmitters, amino acids, osmolytes and energy metabolites. Members of this family play critical roles in neurotransmission, cellular and whole body homeostasis. Malfunction or altered expression of these transporters is associated with a variety of diseases. Pharmacological inhibition of the neurotransmitter transporters in this family is an important strategy in the management of neurological and psychiatric disorders. This review provides an overview of the biochemical and pharmacological properties of the SLC6 family transporters.
Collapse
Affiliation(s)
- Stefan Bröer
- Research School of Biology, Australian National University, Canberra, ACT, Australia.
| | | |
Collapse
|
3
|
McLane MW, McCann U, Ricaurte G. Identifying the serotonin transporter signal in Western blot studies of the neurotoxic potential of MDMA and related drugs. Synapse 2011; 65:1368-72. [PMID: 21633976 DOI: 10.1002/syn.20958] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Accepted: 04/27/2011] [Indexed: 12/26/2022]
Abstract
A number of published studies have questioned the serotonin neurotoxic potential of 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy") and related drugs (fenfluramine, p-chloroamphetamine) based upon results from Western blot studies using a custom synthesized serotonin transporter (SERT) antibody that found no reduction in the abundance of a 50kDa protein after substituted amphetamine treatment. The purpose of this study was to collect Western blot data using the same SERT antibody used in those studies, but with positive and negative controls to identify the SERT protein signal. A 63-68 kDa band that had the regional distribution expected of rat brain SERT, was decreased by 5,7-DHT, and was absent in SERT KO animals was identified as the SERT protein. Significant, lasting decreases in the abundance of the 63-68 kDa band were evident in the rat brain after treatment with MDMA and related drugs (FEN, PCA). Thus, when the band corresponding to the SERT protein is identified in Western blots through the use of positive and negative controls, reduced abundance of the SERT protein can be readily demonstrated after substituted amphetamine treatment. These data provide further evidence of lasting loss of the SERT protein after exposure to MDMA and other substituted amphetamines.
Collapse
Affiliation(s)
- Michael W McLane
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21224, USA
| | | | | |
Collapse
|
4
|
Field JR, Henry LK, Blakely RD. Transmembrane domain 6 of the human serotonin transporter contributes to an aqueously accessible binding pocket for serotonin and the psychostimulant 3,4-methylene dioxymethamphetamine. J Biol Chem 2010; 285:11270-80. [PMID: 20159976 PMCID: PMC2857005 DOI: 10.1074/jbc.m109.093658] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 02/04/2010] [Indexed: 01/07/2023] Open
Abstract
The plasma membrane serotonin (5-HT) transporter (SERT, SLC6A4) clears 5-HT after release at nerve termini and is targeted by both antidepressant medications and psychostimulants (e.g. MDMA, cocaine). Homology modeling of human SERT (hSERT), based on high resolution structures of the microbial SLC6 family member LeuT(Aa), along with biochemical studies of wild type and mutant transporters, predicts transmembrane (TM) domains 1, 3, 6, and 8 comprise the 5-HT-binding pocket. We utilized the substituted cysteine accessibility method along with surface and site-specific biotinylation to probe TM6 for aqueous accessibility and differential interactions with 5-HT and psychostimulants. Our results are consistent with TM6 being composed of an aqueous-accessible, alpha-helical extracellular domain (TM6a) that is separated by a central, unwound section from a cytoplasmically localized domain (TM6b) with limited aqueous accessibility. The substitution G338C appears to lock hSERT in an outward-facing conformation that, although accessible to aminoethylmethanethiosulfonate-biotin, 5-HT, and citalopram, is incapable of inward 5-HT transport. Transport of 5-HT by G338C can be partially restored by the TM1 mutation Y95F. With regard to methanethiosulfonate (MTS) inactivation of uptake, TM6a Cys mutants demonstrate Na(+)-dependent [2-(trimethylammonium)ethyl]-MTS sensitivity. Studies with the centrally located substitution S336C reveal features of a common binding pocket for 5-HT and 3,4-methylenedioxymethamphetamine (MDMA). Interestingly, the substitution I333C reveals an MDMA-induced conformation not observed with 5-HT. In the context of prior studies on TM1, our findings document shared and unique features of TM6 contributing to hSERT aqueous accessibility, ligand recognition, and conformational dynamics.
Collapse
Affiliation(s)
| | - L. Keith Henry
- the Department of Pharmacology, Physiology, and Therapeutics, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58203
| | - Randy D. Blakely
- From the Departments of Pharmacology and
- Psychiatry and
- Center for Molecular Neuroscience, Vanderbilt University Medical Center, Nashville, Tennessee 37232-8548 and
| |
Collapse
|
5
|
Kosel D, Heiker JT, Juhl C, Wottawah CM, Blüher M, Mörl K, Beck-Sickinger AG. Dimerization of adiponectin receptor 1 is inhibited by adiponectin. J Cell Sci 2010; 123:1320-8. [PMID: 20332107 DOI: 10.1242/jcs.057919] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AdipoR1 and AdipoR2 are newly discovered members of the huge family of seven-transmembrane receptors, but both receptors are structurally and functionally different from G-protein-coupled receptors. Little is known about the oligomerization of the AdipoRs. Here, we show the presence of endogenous AdipoR1 dimers in various cell lines and human muscle tissue. To directly follow and localize the dimerization, we applied bimolecular fluorescence complementation (BiFC) in combination with flow cytometry. We visualized and quantified AdipoR1 homodimers in HEK293 cells. Moreover, we identified a GxxxG dimerization motif in the fifth transmembrane domain of the AdipoR1. By mutating both glycine residues to phenylalanine or glutamic acid, we were able to modulate the dimerization of AdipoR1, implicating a role for the GxxxG motif in AdipoR1 dimerization. Furthermore, we tested whether the AdipoR1 ligand adiponectin had any influence on receptor dimerization. Interestingly, we found that adiponectin decreases the receptor dimerization in a concentration-dependent manner. This effect is mainly mediated by segments of the collagen-like domain of full-length adiponectin. Accordingly, this is the first direct read-out signal of adiponectin at the AdipoR1 receptor, which revealed the involvement of specific amino acids of both the receptor and the ligand to modulate the quaternary structure of the AdipoR1.
Collapse
Affiliation(s)
- David Kosel
- Faculty of Biosciences, Institute of Biochemistry, Leipzig University, Brüderstr 34, 04103 Leipzig, Germany
| | | | | | | | | | | | | |
Collapse
|
6
|
Structural and functional importance of transmembrane domain 3 (TM3) in the aspartate:alanine antiporter AspT: topology and function of the residues of TM3 and oligomerization of AspT. J Bacteriol 2009; 191:2122-32. [PMID: 19181816 DOI: 10.1128/jb.00830-08] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AspT, the aspartate:alanine antiporter of Tetragenococcus halophilus, a membrane protein of 543 amino acids with 10 putative transmembrane (TM) helices, is the prototype of the aspartate:alanine exchanger (AAE) family of transporters. Because TM3 (isoleucine 64 to methionine 85) has many amino acid residues that are conserved among members of the AAE family and because TM3 contains two charged residues and four polar residues, it is thought to be located near (or to form part of) the substrate translocation pathway that includes the binding site for the substrates. To elucidate the role of TM3 in the transport process, we carried out cysteine-scanning mutagenesis. The substitutions of tyrosine 75 and serine 84 had the strongest inhibitory effects on transport (initial rates of l-aspartate transport were below 15% of the rate for cysteine-less AspT). Considerable but less-marked effects were observed upon the replacement of methionine 70, phenylalanine 71, glycine 74, arginine 76, serine 83, and methionine 85 (initial rates between 15% and 30% of the rate for cysteine-less AspT). Introduced cysteine residues at the cytoplasmic half of TM3 could be labeled with Oregon green maleimide (OGM), whereas cysteines close to the periplasmic half (residues 64 to 75) were not labeled. These results suggest that TM3 has a hydrophobic core on the periplasmic half and that hydrophilic residues on the cytoplasmic half of TM3 participate in the formation of an aqueous cavity in membranes. Furthermore, the presence of l-aspartate protected the cysteine introduced at glycine 62 against a reaction with OGM. In contrast, l-aspartate stimulated the reactivity of the cysteine introduced at proline 79 with OGM. These results demonstrate that TM3 undergoes l-aspartate-induced conformational alterations. In addition, nonreducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis analyses and a glutaraldehyde cross-linking assay suggest that functional AspT forms homo-oligomers as a functional unit.
Collapse
|
7
|
Hou Z, Matherly LH. Oligomeric structure of the human reduced folate carrier: identification of homo-oligomers and dominant-negative effects on carrier expression and function. J Biol Chem 2008; 284:3285-3293. [PMID: 19019821 DOI: 10.1074/jbc.m807206200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ubiquitously expressed reduced folate carrier (RFC) is the major transport system for folate cofactors in mammalian cells and tissues. Previous considerations of RFC structure and mechanism were based on the notion that RFC monomers were sufficient to mediate transport of folate and antifolate substrates. The present study examines the possibility that human RFC (hRFC) exists as higher order homo-oligomers. By chemical cross-linking, transiently expressed hRFC in hRFC-null HeLa (R5) cells with the homobifunctional cross-linker 1,3-propanediyl bis-methanethiosulfonate and Western blotting, hRFC species with molecular masses of hRFC homo-oligomers were identified. Hemagglutinin- and Myc epitope-tagged hRFC proteins expressed in R5 cells were co-immunoprecipitated from both membrane particulate and surface-enriched membrane fractions, indicating that oligomeric hRFC is expressed at the cell surface. By co-expression of wild type and inactive mutant S138C hRFCs, combined with surface biotinylation and confocal microscopy, a dominant-negative phenotype was demonstrated involving greatly decreased cell surface expression of both mutant and wild type carrier caused by impaired intracellular trafficking. For another hRFC mutant (R373A), expression of oligomeric wild type-mutant hRFC was accompanied by a significant and disproportionate loss of wild type activity unrelated to the level of surface carrier. Collectively, our results demonstrate the existence of hRFC homo-oligomers. They also establish the likely importance of these higher order hRFC structures to intracellular trafficking and carrier function.
Collapse
Affiliation(s)
- Zhanjun Hou
- Developmental Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan 48201
| | - Larry H Matherly
- Developmental Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan 48201; Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, Michigan 48201; Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan 48201.
| |
Collapse
|