1
|
Ali S, Dwivedi Y. Early-Life Stress Influences the Transcriptional Activation of Alpha-2A Adrenergic Receptor and Associated Protein Kinase A Signaling Molecules in the Frontal Cortex of Rats. Mol Neurobiol 2025; 62:5297-5310. [PMID: 39532806 PMCID: PMC11880062 DOI: 10.1007/s12035-024-04578-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Early life is a highly sensitive period associated with profound changes in brain structure and function. Adverse experiences of early-life stress (ELS) are prominent risk factors for the precipitation of major depressive disorder (MDD). In recent years, dysfunction of the central noradrenergic (NA) system and subsequent deficits in norepinephrine (NE) signaling have gained increasing attention in the pathophysiology of MDD. However, the role of the α-2A adrenergic receptor and its downstream second messenger signaling system has not been investigated in connection to early-life stress-induced depression, limiting valuable insights into neurobiological mechanisms underlying this disorder. In this study, we used maternal separation (MS) as a rodent model of ELS to investigate whether ELS-induced depressive behavior is related to the α-2A adrenergic receptor and its associated second messenger signaling cascade. To do so, we studied expression levels of the α-2A adrenergic receptor (Adra2a), G alpha proteins (stimulatory subunit-Gαs [Gnas] and inhibitory subunit-Gαi [Gnai1 and Gnai2]), and downstream protein kinase A (PKA) catalytic [Prkarcα and Prkarcβ] and regulatory subunits [Prkar1α, Prkar1β, Prkar2α, and Prkar2β]) in the frontal cortex (FC) of MS rats. We found reduced sucrose preference in MS animals, along with reduced transcript levels of Adra2a, Gnai2, Prkar1β, and Prkarcβ. These findings suggest that ELS exposure may contribute to depression symptomatology via alterations in the expression of key genes involved in the NA system, highlighting potential mechanisms underlying ELS-induced depressive behavior.
Collapse
Affiliation(s)
- Sarah Ali
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, SC711 Sparks Center, 1720 2nd Avenue South, Birmingham, AL, USA
| | - Yogesh Dwivedi
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, SC711 Sparks Center, 1720 2nd Avenue South, Birmingham, AL, USA.
| |
Collapse
|
2
|
Higa GSV, Viana FJC, Francis-Oliveira J, Cruvinel E, Franchin TS, Marcourakis T, Ulrich H, De Pasquale R. Serotonergic neuromodulation of synaptic plasticity. Neuropharmacology 2024; 257:110036. [PMID: 38876308 DOI: 10.1016/j.neuropharm.2024.110036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/15/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Synaptic plasticity constitutes a fundamental process in the reorganization of neural networks that underlie memory, cognition, emotional responses, and behavioral planning. At the core of this phenomenon lie Hebbian mechanisms, wherein frequent synaptic stimulation induces long-term potentiation (LTP), while less activation leads to long-term depression (LTD). The synaptic reorganization of neuronal networks is regulated by serotonin (5-HT), a neuromodulator capable of modify synaptic plasticity to appropriately respond to mental and behavioral states, such as alertness, attention, concentration, motivation, and mood. Lately, understanding the serotonergic Neuromodulation of synaptic plasticity has become imperative for unraveling its impact on cognitive, emotional, and behavioral functions. Through a comparative analysis across three main forebrain structures-the hippocampus, amygdala, and prefrontal cortex, this review discusses the actions of 5-HT on synaptic plasticity, offering insights into its role as a neuromodulator involved in emotional and cognitive functions. By distinguishing between plastic and metaplastic effects, we provide a comprehensive overview about the mechanisms of 5-HT neuromodulation of synaptic plasticity and associated functions across different brain regions.
Collapse
Affiliation(s)
- Guilherme Shigueto Vilar Higa
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil; Departamento de Bioquímica, Instituto de Química (USP), Butantã, São Paulo, SP, 05508-900, Brazil
| | - Felipe José Costa Viana
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - José Francis-Oliveira
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Emily Cruvinel
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Thainá Soares Franchin
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Tania Marcourakis
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química (USP), Butantã, São Paulo, SP, 05508-900, Brazil
| | - Roberto De Pasquale
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
3
|
Li Y, Zhang B, Xu J, Jiang X, Jing L, Tian Y, Wang K, Zhang J. Inhibiting the JNK Signaling Pathway Attenuates Hypersensitivity and Anxiety-Like Behavior in a Rat Model of Non-specific Chronic Low Back Pain. J Mol Neurosci 2024; 74:73. [PMID: 39046556 DOI: 10.1007/s12031-024-02252-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 07/17/2024] [Indexed: 07/25/2024]
Abstract
Low back pain (LBP) has become a leading cause of disability worldwide. Astrocyte activation in the spinal cord plays an important role in the maintenance of latent sensitization of dorsal horn neurons in LBP. However, the role of spinal c-Jun N-terminal kinase (JNK) in astrocytes in modulating pain behavior of LBP model rats and its neurobiological mechanism have not been elucidated. Here, we investigate the role of the JNK signaling pathway on hypersensitivity and anxiety-like behavior caused by repetitive nerve growth factor (NGF) injections in male non-specific LBP model rats. LBP was produced by two injections (day 0, day 5) of NGF into multifidus muscle of the low backs of rats. We observed prolonged mechanical and thermal hypersensitivity in the low backs or hindpaws. Persistent anxiety-like behavior was observed, together with astrocyte, p-JNK, and neuronal activation and upregulated expression of monocyte chemoattractant protein-1 (MCP-1), and chemokine (C-X-C motif) ligand 1 (CXCL1) proteins in the spinal L2 segment. Second, the JNK inhibitor SP600125 was intrathecally administrated in rats from day 10 to day 12. It attenuated mechanical and thermal hypersensitivity of the low back or hindpaws and anxiety-like behavior. Meanwhile, SP600125 decreased astrocyte and neuronal activation and the expression of MCP-1 and CXCL1 proteins. These results showed that hypersensitivity and anxiety-like behavior induced by NGF in LBP rats could be attenuated by the JNK inhibitor, together with downregulation of spinal astrocyte activation, neuron activation, and inflammatory cytokines. Our results indicate that intervening with the spinal JNK signaling pathway presents an effective therapeutic approach to alleviating LBP.
Collapse
Affiliation(s)
- Yifan Li
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230000, Anhui Province, China
| | - Bingyu Zhang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230000, Anhui Province, China
| | - Jie Xu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230000, Anhui Province, China
| | - Xiao Jiang
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230000, China
| | - Liang Jing
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230000, China
| | - Yanghua Tian
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230000, Anhui Province, China
- The Second Affiliated Hospital of Anhui Medical University, Hefei, 230000, China
| | - Kai Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230000, Anhui Province, China
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230000, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230000, China
- Collaborative Innovation Center for Neuropsychiatric Disorders and Mental Health, Hefei, 230000, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, 230000, China
| | - Juanjuan Zhang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230000, Anhui Province, China.
| |
Collapse
|
4
|
Rajkumar RP. Resolving a paradox: antidepressants, neuroinflammation, and neurodegeneration. EXPLORATION OF NEUROPROTECTIVE THERAPY 2024:11-37. [DOI: 10.37349/ent.2024.00068] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2025]
Abstract
Depression is a known risk factor for dementia. Antidepressants are the most commonly used treatment for this condition, and are effective in at least half to two-thirds of cases. Extensive evidence from in vitro and animal models suggests that antidepressants have anti-inflammatory and neuroprotective properties. These effects have been shown to reduce the oxidative damage, amyloid aggregation, and expression of pro-inflammatory genes associated with animal models of neurodegenerative disorders. However, longitudinal research in humans has shown that antidepressants do not protect against dementia, and may even be associated with a risk of cognitive deterioration over time in older adults. The contrast between two sets of findings represents a paradox of significant clinical and public health significance, particularly when treating depression in late life. This review paper attempts to resolve this paradox by critically reviewing the medium- and long-term effects of antidepressants on peripheral immune-inflammatory responses, infection risk, gut microbiota, and neuroendocrine responses to stress, and how these effects may influence the risk of neurodegeneration. Briefly stated, it is possible that the peripheral actions of antidepressant medications may antagonize their beneficial effects against neuroinflammation. The implications of these findings are then explored with a particular focus on the development and testing of multimodal neuroprotective and anti-inflammatory treatments that could reduce the risk of Alzheimer’s and related dementias in patients suffering from depression.
Collapse
Affiliation(s)
- Ravi Philip Rajkumar
- Department of Psychiatry, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry 605006, Pondicherry, India
| |
Collapse
|
5
|
Immediate Early Gene c-fos in the Brain: Focus on Glial Cells. Brain Sci 2022; 12:brainsci12060687. [PMID: 35741573 PMCID: PMC9221432 DOI: 10.3390/brainsci12060687] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 12/13/2022] Open
Abstract
The c-fos gene was first described as a proto-oncogene responsible for the induction of bone tumors. A few decades ago, activation of the protein product c-fos was reported in the brain after seizures and other noxious stimuli. Since then, multiple studies have used c-fos as a brain activity marker. Although it has been attributed to neurons, growing evidence demonstrates that c-fos expression in the brain may also include glial cells. In this review, we collect data showing that glial cells also express this proto-oncogene. We present evidence demonstrating that at least astrocytes, oligodendrocytes, and microglia express this immediate early gene (IEG). Unlike neurons, whose expression changes used to be associated with depolarization, glial cells seem to express the c-fos proto-oncogene under the influence of proliferation, differentiation, growth, inflammation, repair, damage, plasticity, and other conditions. The collected evidence provides a complementary view of c-fos as an activity marker and urges the introduction of the glial cell perspective into brain activity studies. This glial cell view may provide additional information related to the brain microenvironment that is difficult to obtain from the isolated neuron paradigm. Thus, it is highly recommended that detection techniques are improved in order to better differentiate the phenotypes expressing c-fos in the brain and to elucidate the specific roles of c-fos expression in glial cells.
Collapse
|
6
|
Kushwaha R, Mishra J, Gupta AP, Gupta K, Vishwakarma J, Chattopadhyay N, Gayen JR, Kamthan M, Bandyopadhyay S. Rosiglitazone up-regulates glial fibrillary acidic protein via HB-EGF secreted from astrocytes and neurons through PPARγ pathway and reduces apoptosis in high-fat diet-fed mice. J Neurochem 2018; 149:679-698. [PMID: 30311190 DOI: 10.1111/jnc.14610] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 09/27/2018] [Accepted: 10/06/2018] [Indexed: 12/17/2022]
Abstract
The anti-diabetic drug and peroxisome proliferator-activated receptor-gamma (PPARγ) agonist, rosiglitazone, alters astrocyte activation; however, its mechanism remains less-known. We hypothesized participation of epidermal growth factor receptor (EGFR), known to control astrocyte reactivity. We first detected that rosiglitazone promoted glial fibrillary acidic protein (GFAP) expression in primary astrocytes as well as the mouse cerebral cortex, associated with increased EGFR activation. Screening for EGFR ligands revealed a rosiglitazone-mediated increase of heparin-binding epidermal growth factor (HB-EGF) in astrocytes, resulting in HB-EGF release into culture medium and mouse cerebrospinal fluid too. Treatment with HB-EGF-siRNA and EGFR inhibitors showed that the rosiglitazone-induced HB-EGF and p-EFGR were interdependent, which participated in GFAP increase. Interestingly, we observed that rosiglitazone could induce cellular and secreted-HB-EGF in neurons also, contributing toward the activated EGFR-induced GFAP in astrocytes. Probing whether these effects of rosiglitazone were PPARγ-linked, revealed potential PPARγ-responsive elements within HB-EGF gene. Moreover, gel-shift, site-directed mutagenesis, chromatin-immunoprecipitation and luciferase-reporter assays demonstrated a PPARγ-dependent HB-EGF transactivation. Subsequently, we examined effects of rosiglitazone in a high-fat diet-fed diabetes mouse model, and supporting observations in the normal cortical cells, identified a rosiglitazone-induced GFAP, astrocyte and neuronal HB-EGF and secreted-HB-EGF in the cerebral cortex of diabetic mice. Moreover, assessing relevance of increased HB-EGF and GFAP revealed an anti-apoptotic role of rosiglitazone in the cerebral cortex, supported by a GFAP-siRNA as well as HB-EGF-siRNA-mediated increase in cleaved-caspase 3 and 9 levels in the rosiglitazone-treated astrocyte-neuron coculture. Overall, our study indicates that rosiglitazone may protect the brain, via a PPARγ-dependent HB-EGF/EGFR signaling and increased GFAP.
Collapse
Affiliation(s)
- Rajesh Kushwaha
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR campus, Lucknow, India.,Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (IITR), Lucknow, India
| | - Juhi Mishra
- Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (IITR), Lucknow, India.,Babu Banarasi Das University, Lucknow, India
| | - Anand Prakash Gupta
- Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute (CDRI), Lucknow, India
| | - Keerti Gupta
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR campus, Lucknow, India.,Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (IITR), Lucknow, India
| | - Jitendra Vishwakarma
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR campus, Lucknow, India.,Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (IITR), Lucknow, India
| | - Naibedya Chattopadhyay
- Department of Endocrinology, CSIR-Central Drug Research Institute (CDRI), Lucknow, India
| | - Jiaur Rahaman Gayen
- Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute (CDRI), Lucknow, India
| | - Mohan Kamthan
- Environmental Biotechnology Laboratory, Environmental Toxicology Group, CSIR-IITR, Lucknow, India
| | - Sanghamitra Bandyopadhyay
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR campus, Lucknow, India.,Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (IITR), Lucknow, India
| |
Collapse
|
7
|
Shi Y, Peng XH, Li X, Luo GP, Wu MF. Neuroprotective role of dexmedetomidine pretreatment in cerebral ischemia injury via ADRA2A-mediated phosphorylation of ERK1/2 in adult rats. Exp Ther Med 2018; 16:5201-5209. [PMID: 30546415 PMCID: PMC6256861 DOI: 10.3892/etm.2018.6878] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 09/27/2018] [Indexed: 12/29/2022] Open
Abstract
Neuroprotective effects of dexmedetomidine (Dex) have been reported in various models of brain injury. However, to our knowledge, the neuroprotective mechanism of Dex pretreatment in rats remains unknown. The aim of the present study was to detect the expression of the α2A adrenergic receptor (ADRA2A) in focal ischemic brain tissues and to investigate the protective role and corresponding mechanism of Dex pretreatment in cerebral ischemia in rats. A hypoxia/reoxygenation (H/R) cell model in primary cultured astrocytes and a focal cerebral ischemia/reperfusion (I/R) model in adult rats were used. The expression of ADRA2A and extracellular signal-regulated kinases 1 and 2 (ERK1/2) in the primary cultured astrocytes and rat brain ischemic tissues was detected in the different conditions prior to and following Dex pretreatment using western blotting. The H/R model of primary cultured astrocytes and the focal cerebral I/R model in adult rats were successfully constructed. Under the normal oxygen conditions, 500 ng/ml Dex pretreatment increased the expression of ADRA2A and phosphorylated (p)-ERK1/2 in the astrocytes compared with in the control group. Hypoxic culture for 6 h and then reoxygenation for 24 h decreased the levels of p-ERK1/2 in the astrocytes compared with those in control group. This decrease was prevented by Dex pretreatment for 3 h. The hypoxic culture and then reoxygenation increased the expression of ADRA2A. Similarly, compared with those prior to Dex treatment, the levels of ADRA2A and p-ERK1/2 in the brain ischemic tissues following Dex treatment were increased. The levels of ADRA2A and p-ERK1/2 were 0.72±0.23 and 0.66±0.25 following Dex treatment, compared with 0.76±0.22 and 0.31±0.18, respectively, prior to Dex treatment. The effect of Dex pretreatment increasing p-ERK1/2 expression was attenuated by AG1478 pretreatment. In summary, Dex appeared to promote phosphorylation of ERK1/2 in astrocytes under H/R. As a specific agonist of ADRA2A, Dex may activate phosphorylation of ERK1/2 via ADRA2A in astrocytes. Thus, the neuroprotective role of Dex pretreatment against cerebral ischemic injury may function via ADRA2A-mediated phosphorylation of ERK1/2.
Collapse
Affiliation(s)
- Yanyan Shi
- Department of Anesthesia, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430033, P.R. China
| | - Xiao-Hong Peng
- Department of Anesthesia, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430033, P.R. China
| | - Xia Li
- Department of Anesthesia, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430033, P.R. China
| | - Gao-Ping Luo
- Department of Anesthesia, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430033, P.R. China
| | - Ming-Fu Wu
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
8
|
P2X7 Receptors Mediate CO-Induced Alterations in Gene Expression in Cultured Cortical Astrocytes—Transcriptomic Study. Mol Neurobiol 2018; 56:3159-3174. [DOI: 10.1007/s12035-018-1302-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 08/06/2018] [Indexed: 01/31/2023]
|
9
|
Hertz L, Rothman DL, Li B, Peng L. Response: Commentary: Chronic SSRI Stimulation of Astrocytic 5-HT2B Receptors Change Multiple Gene Expressions/Editings and Metabolism of Glutamate, Glucose and Glycogen: A Potential Paradigm Shift. Front Behav Neurosci 2015; 9:308. [PMID: 26617504 PMCID: PMC4643646 DOI: 10.3389/fnbeh.2015.00308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 10/30/2015] [Indexed: 11/18/2022] Open
Affiliation(s)
- Leif Hertz
- Laboratory of Brain Metabolic Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University Shenyang, China
| | - Douglas L Rothman
- Magnetic Resonance Research Center, Diagnostic Radiology and Biomedical Engineering, Yale University New Haven, CT, USA
| | - Baoman Li
- Laboratory of Brain Metabolic Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University Shenyang, China
| | - Liang Peng
- Laboratory of Brain Metabolic Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University Shenyang, China
| |
Collapse
|
10
|
Zhou J, Du T, Li B, Rong Y, Verkhratsky A, Peng L. Crosstalk Between MAPK/ERK and PI3K/AKT Signal Pathways During Brain Ischemia/Reperfusion. ASN Neuro 2015; 7:7/5/1759091415602463. [PMID: 26442853 PMCID: PMC4601130 DOI: 10.1177/1759091415602463] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) is linked to the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) and Raf/mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK1/2) signaling pathways. During brain ischemia/reperfusion, EGFR could be transactivated, which stimulates these intracellular signaling cascades that either protect cells or potentiate cell injury. In the present study, we investigated the activation of EGFR, PI3K/AKT, and Raf/MAPK/ERK1/2 during ischemia or reperfusion of the brain using the middle cerebral artery occlusion model. We found that EGFR was phosphorylated and transactivated during both ischemia and reperfusion periods. During ischemia, the activity of PI3K/AKT pathway was significantly increased, as judged from the strong phosphorylation of AKT; this activation was suppressed by the inhibitors of EGFR and Zn-dependent metalloproteinase. Ischemia, however, did not induce ERK1/2 phosphorylation, which was dependent on reperfusion. Coimmunoprecipitation of Son of sevenless 1 (SOS1) with EGFR showed increased association between the receptor and SOS1 in ischemia, indicating the inhibitory node downstream of SOS1. The inhibitory phosphorylation site of Raf-1 at Ser259, but not its stimulatory phosphorylation site at Ser338, was phosphorylated during ischemia. Furthermore, ischemia prompted the interaction between Raf-1 and AKT, while both the inhibitors of PI3K and AKT not only abolished AKT phosphorylation but also restored ERK1/2 phosphorylation. All these findings suggest that Raf/MAPK/ERK1/2 signal pathway is inhibited by AKT via direct phosphorylation and inhibition at Raf-1 node during ischemia. During reperfusion, we observed a significant increase of ERK1/2 phosphorylation but no change in AKT phosphorylation. Inhibitors of reactive oxygen species and phosphatase and tensin homolog restored AKT phosphorylation but abolished ERK1/2 phosphorylation, suggesting that the reactive oxygen species-dependent increase in phosphatase and tensin homolog activity in reperfusion period relieves ERK1/2 from inhibition of AKT.
Collapse
Affiliation(s)
- Jing Zhou
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, P. R. China
| | - Ting Du
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, P. R. China
| | - Baoman Li
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, P. R. China
| | - Yan Rong
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, P. R. China
| | - Alexei Verkhratsky
- Faculty of Life Science, The University of Manchester, UK Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain University of Nizhny Novgorod, Russia
| | - Liang Peng
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, P. R. China
| |
Collapse
|
11
|
Fuxe K, Agnati LF, Marcoli M, Borroto-Escuela DO. Volume Transmission in Central Dopamine and Noradrenaline Neurons and Its Astroglial Targets. Neurochem Res 2015; 40:2600-14. [PMID: 25894681 DOI: 10.1007/s11064-015-1574-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 03/16/2015] [Accepted: 04/04/2015] [Indexed: 12/11/2022]
Abstract
Already in the 1960s the architecture and pharmacology of the brainstem dopamine (DA) and noradrenaline (NA) neurons with formation of vast numbers of DA and NA terminal plexa of the central nervous system (CNS) indicated that they may not only communicate via synaptic transmission. In the 1980s the theory of volume transmission (VT) was introduced as a major communication together with synaptic transmission in the CNS. VT is an extracellular and cerebrospinal fluid transmission of chemical signals like transmitters, modulators etc. moving along energy gradients making diffusion and flow of VT signals possible. VT interacts with synaptic transmission mainly through direct receptor-receptor interactions in synaptic and extrasynaptic heteroreceptor complexes and their signaling cascades. The DA and NA neurons are specialized for extrasynaptic VT at the soma-dendrtitic and terminal level. The catecholamines released target multiple DA and adrenergic subtypes on nerve cells, astroglia and microglia which are the major cell components of the trophic units building up the neural-glial networks of the CNS. DA and NA VT can modulate not only the strength of synaptic transmission but also the VT signaling of the astroglia and microglia of high relevance for neuron-glia interactions. The catecholamine VT targeting astroglia can modulate the fundamental functions of astroglia observed in neuroenergetics, in the Glymphatic system, in the central renin-angiotensin system and in the production of long-distance calcium waves. Also the astrocytic and microglial DA and adrenergic receptor subtypes mediating DA and NA VT can be significant drug targets in neurological and psychiatric disease.
Collapse
Affiliation(s)
- Kjell Fuxe
- Department of Neuroscience, Karolinska Institutet, 17177, Stockholm, Sweden.
| | - Luigi F Agnati
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, 41100, Modena, Italy
| | - Manuela Marcoli
- Dipartimento di Farmacia, Sezione di Farmacologia e Tossicologia, Università di Genova, Viale Cembrano 4, 16148, Genoa, Italy.,Center of Excellence for Biomedical Research, Università di Genova, Viale Benedetto XV 5, 16132, Genoa, Italy
| | | |
Collapse
|
12
|
Song D, Du T. Ammonium activates ouabain-activated signalling pathway in astrocytes: therapeutic potential of ouabain antagonist. Curr Neuropharmacol 2014; 12:334-41. [PMID: 25342941 PMCID: PMC4207073 DOI: 10.2174/1570159x12666140828222115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 06/18/2014] [Accepted: 06/25/2014] [Indexed: 01/16/2023] Open
Abstract
The causal role of ammonium in hepatic encephalopathy was identified in 1930s. Astroglial cells are primary cellular elements of hepatic encephalopathy which conceptually, can be considered a toxic astrogliopathology. Previously we have reported that acute exposure to ammonium activated ouabain/Na,K-ATPase signalling pathway, which includes Src, EGF receptor, Raf, Ras, MEK and ERK1/2. Chronic incubation of astrocytes with ammonium increased production of endogenous ouabain-like compound. Ouabain antagonist canrenone abolished effects of ammonium on astrocytic swelling, ROS production, and upregulation of gene expression and function of TRPC1 and Cav1.2. However, ammonium induces multiple pathological modifications in astrocytes, and some of them may be not related to this signalling pathway. In this review, we focus on the effect of ammonium on ouabain/Na,K-ATPase signalling pathway and its involvement in ammonium-induced ROS production, cell swelling and aberration of Ca(2+) signals in astrocytes. We also briefly discuss Na,K-ATPase, EGF receptor, endogenous ouabain and ouabain antagonist.
Collapse
Affiliation(s)
- Dan Song
- Laboratory of Brain Metabolic Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, P. R. China
| | | |
Collapse
|
13
|
Neuropathologic implication of peripheral neuregulin-1 and EGF signals in dopaminergic dysfunction and behavioral deficits relevant to schizophrenia: their target cells and time window. BIOMED RESEARCH INTERNATIONAL 2014; 2014:697935. [PMID: 24949465 PMCID: PMC4052624 DOI: 10.1155/2014/697935] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Accepted: 04/10/2014] [Indexed: 01/01/2023]
Abstract
Neuregulin-1 and epidermal growth factor (EGF) are implicated in the pathogenesis of schizophrenia. To test the developmental hypothesis for schizophrenia, we administered these factors to rodent pups, juveniles, and adults and characterized neurobiological and behavioral consequences. These factors were also provided from their transgenes or infused into the adult brain. Here we summarize previous results from these experiments and discuss those from neuropathological aspects. In the neonatal stage but not the juvenile and adult stages, subcutaneously injected factors penetrated the blood-brain barrier and acted on brain neurons, which later resulted in persistent behavioral and dopaminergic impairments associated with schizophrenia. Neonatally EGF-treated animals exhibited persistent hyperdopaminergic abnormalities in the nigro-pallido-striatal system while neuregulin-1 treatment resulted in dopaminergic deficits in the corticolimbic dopamine system. Effects on GABAergic and glutamatergic systems were transient or limited. Even in the adult stage, intracerebral administration and transgenic expression of these factors produced similar but not identical behavioral impairments, although the effects of intracerebral administration were reversible. These findings suggest that dopaminergic development is highly vulnerable to circulating ErbB ligands in the pre- and perinatal stages. Once maldevelopment of the dopaminergic system is established during early development, dopamine-associating behavioral deficits become irreversible and manifest at postpubertal stages.
Collapse
|
14
|
Cai Y, Xu H, Yan J, Zhang L, Lu Y. Molecular targets and mechanism of action of dexmedetomidine in treatment of ischemia/reperfusion injury. Mol Med Rep 2014; 9:1542-50. [PMID: 24627001 DOI: 10.3892/mmr.2014.2034] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 02/17/2014] [Indexed: 01/13/2023] Open
Abstract
Dexmedetomidine (DEX), a highly specific α2-adrenergic agonist, which exhibits anaesthetic-sparing, analgesia and sympatholytic properties. DEX modulates gene expression, channel activation, transmitter release, inflammatory processes and apoptotic and necrotic cell death. It has also been demonstrated to have protective effects in a variety of animal models of ischemia/reperfusion (I/R) injury, including the intestine, myocardial, renal, lung, cerebral and liver. The broad spectrum of biological activities associated with DEX continues to expand, and its diverse effects suggest that it may offer a novel therapeutic approach for the treatment of human diseases with I/R involvement.
Collapse
Affiliation(s)
- Ye Cai
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Hui Xu
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Jia Yan
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Lei Zhang
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Yi Lu
- Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| |
Collapse
|
15
|
Role of glycogenolysis in stimulation of ATP release from cultured mouse astrocytes by transmitters and high K+ concentrations. ASN Neuro 2014; 6:e00132. [PMID: 24328680 PMCID: PMC3891497 DOI: 10.1042/an20130040] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
This study investigates the role of glycogenolysis in stimulated release of ATP as a transmitter from astrocytes. Within the last 20 years our understanding of brain glycogenolysis has changed from it being a relatively uninteresting process to being a driving force for essential brain functions like production of transmitter glutamate and homoeostasis of potassium ions (K+) after their release from excited neurons. Simultaneously, the importance of astrocytic handling of adenosine, its phosphorylation to ATP and release of some astrocytic ATP, located in vesicles, as an important transmitter has also become to be realized. Among the procedures stimulating Ca2+-dependent release of vesicular ATP are exposure to such transmitters as glutamate and adenosine, which raise intra-astrocytic Ca2+ concentration, or increase of extracellular K+ to a depolarizing level that opens astrocytic L-channels for Ca2+ and thereby also increase intra-astrocytic Ca2+ concentration, a prerequisite for glycogenolysis. The present study has confirmed and quantitated stimulated ATP release from well differentiated astrocyte cultures by glutamate, adenosine or elevated extracellular K+ concentrations, measured by a luciferin/luciferase reaction. It has also shown that this release is virtually abolished by an inhibitor of glycogenolysis as well as by inhibitors of transmitter-mediated signaling or of L-channel opening by elevated K+ concentrations. Stimulation of Ca2+-dependent astrocytic ATP release by glutamate, adenosine or high K+ concentration is abolished by inhibition of glycogenolysis, probably due to signaling inhibition. This is consistent with the K+-mediated pathway, but glycogenolysis-sensitive steps in the transmitter pathways are unknown.
Collapse
|
16
|
Dai H, Song D, Xu J, Li B, Hertz L, Peng L. Ammonia-induced Na,K-ATPase/ouabain-mediated EGF receptor transactivation, MAPK/ERK and PI3K/AKT signaling and ROS formation cause astrocyte swelling. Neurochem Int 2013; 63:610-25. [PMID: 24044899 DOI: 10.1016/j.neuint.2013.09.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Revised: 08/30/2013] [Accepted: 09/03/2013] [Indexed: 12/13/2022]
Abstract
Ammonia toxicity is clinically important and biologically poorly understood. We reported previously that 3mM ammonia chloride (ammonia), a relevant concentration for hepatic encephalopathy studies, increases production of endogenous ouabain and activity of Na,K-ATPase in astrocytes. In addition, ammonia-induced upregulation of gene expression of α2 isoform of Na,K-ATPase in astrocytes could be inhibited by AG1478, an inhibitor of the EGF receptor (EGFR), and by PP1, an inhibitor of Src, but not by GM6001, an inhibitor of metalloproteinase and shedding of growth factor, suggesting the involvement of endogenous ouabain-induced EGF receptor transactivation. In the present cell culture study, we investigated ammonia effects on phosphorylation of EGF receptor and its intracellular signal pathway towards MAPK/ERK1/2 and PI3K/AKT; interaction between EGF receptor, α1, and α2 isoforms of Na,K-ATPase, Src, ERK1/2, AKT and caveolin-1; and relevance of these signal pathways for ammonia-induced cell swelling, leading to brain edema, an often fatal complication of ammonia toxicity. We found that (i) ammonia increases EGF receptor phosphorylation at EGFR(845) and EGFR(1068); (ii) ammonia-induced ERK1/2 and AKT phosphorylation depends on the activity of EGF receptor and Src, but not on metalloproteinase; (iii) AKT phosphorylation occurs upstream of ERK1/2 phosphorylation; (iv) ammonia stimulates association between the α1 Na,K-ATPase isoform, Src, EGF receptor, ERK1/2, AKT and caveolin-1; (v) ammonia-induced ROS production might occur later than EGFR transactivation; (vi) both ammonia induced ERK phosphorylation and ROS production can be abolished by canrenone, an inhibitor of ouabain, and (vii) ammonia-induced cell swelling depends on signaling via the Na,K-ATPase/ouabain/Src/EGF receptor/PI3K-AKT/ERK1/2, but in response to 3mM ammonia it does not appear until after 12h. Based on literature data it is suggested that the delayed appearance of the ammonia-induced swelling at this concentration reflects required ouabain-induced oxidative damage of the ion and water cotransporter NKCC1. This information may provide new therapeutic targets for treatment of hyperammonic brain disorders.
Collapse
Affiliation(s)
- Hongliang Dai
- Department of Clinical Pharmacology, China Medical University, Shenyang, PR China
| | - Dan Song
- Department of Clinical Pharmacology, China Medical University, Shenyang, PR China
| | - Junnan Xu
- Department of Clinical Pharmacology, China Medical University, Shenyang, PR China
| | - Baoman Li
- Department of Clinical Pharmacology, China Medical University, Shenyang, PR China
| | - Leif Hertz
- Department of Clinical Pharmacology, China Medical University, Shenyang, PR China
| | - Liang Peng
- Department of Clinical Pharmacology, China Medical University, Shenyang, PR China.
| |
Collapse
|
17
|
Romero TRL, Pacheco DDF, Duarte IDG. Xylazine induced central antinociception mediated by endogenous opioids and μ-opioid receptor, but not δ-or κ-opioid receptors. Brain Res 2013; 1506:58-63. [PMID: 23485547 DOI: 10.1016/j.brainres.2013.02.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 02/13/2013] [Accepted: 02/18/2013] [Indexed: 01/07/2023]
Abstract
Endogenous opioids have been implicated in compound-induced antinociception, and our group previously suggested that xylazine induces peripheral antinociception by releasing endogenous opioids that act on their respective receptors. In this study, we investigated the involvement of endogenous opioids in α2-adrenoceptor agonist xylazine-induced central antinociception. The nociceptive threshold for thermal stimulation was measured in Swiss mice using the tail-flick test. The drugs were administered via the intracerebroventricular route. Probabilities less than 5% (p<0.05) were considered to be statistically significant (ANOVA/Bonferroni's test). Our results demonstrated that opioid receptor antagonist naloxone and μ-opioid receptor antagonist clocinnamox, but not δ-opioid receptor antagonist naltrindole and κ-opioid receptor antagonist nor-binaltorphimine, antagonized xylazine-induced central antinociception. These data provide evidence for the involvement of endogenous opioids and μ-opioid receptors in xylazine-induced central antinociception. In contrast, δ- and κ-opioid receptors do not appear to be involved in this effect. The results contribute to a greater understanding of the central antinociceptive mechanisms of a drug widely used in veterinary therapy.
Collapse
Affiliation(s)
- Thiago Roberto Lima Romero
- Department of Pharmacology, Institute of Biological Sciences, UFMG, Av. Antônio Carlos, 6627, CEP 31.270.100, Belo Horizonte, MG, Brazil
| | | | | |
Collapse
|
18
|
Rietz A, Spiers J. The relationship between the MMP system, adrenoceptors and phosphoprotein phosphatases. Br J Pharmacol 2012; 166:1225-43. [PMID: 22364165 DOI: 10.1111/j.1476-5381.2012.01917.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The MMPs and their inhibitors [tissue inhibitor of MMPs (TIMPs)] form the mainstay of extracellular matrix homeostasis. They are expressed in response to numerous stimuli including cytokines and GPCR activation. This review highlights the importance of adrenoceptors and phosphoprotein phosphatases (PPP) in regulating MMPs in the cardiovascular system, which may help explain some of the beneficial effects of targeting the adrenoceptor system in tissue remodelling and will establish emerging crosstalk between these three systems. Although α- and β-adrenoceptor activation increases MMP but decreases TIMP expression, MMPs are implicated in the growth stimulatory effects of adrenoceptor activation through transactivation of epidermal growth factor receptor. Furthermore, they have recently been found to catalyse the proteolysis of β-adrenoceptors and modulate vascular tone. While the mechanisms underpinning these effects are not well defined, reversible protein phosphorylation by kinases and phosphatases may be key. In particular, PPP (Ser/Thr phosphatases) are not only critical in resensitization and internalization of adrenoceptors but also modulate MMP expression. The interrelationship is complex as isoprenaline (ISO) inhibits okadaic acid [phosphoprotein phosphatase type 1/phosphoprotein phosphatase type 2A (PP2A) inhibitor]-mediated MMP expression. While this may be simply due to its ability to transiently increase PP2A activity, there is evidence for MMP-9 that ISO prevents okadaic acid-mediated expression of MMP-9 through a β-arrestin, NF-κB-dependent pathway, which is abolished by knock-down of PP2A. It is essential that crosstalk between MMPs, adrenoceptors and PPP are investigated further as it will provide important insight into how adrenoceptors modulate cardiovascular remodelling, and may identify new targets for pharmacological manipulation of the MMP system.
Collapse
Affiliation(s)
- A Rietz
- Department of Pharmacology and Therapeutics, Trinity College Dublin, Dublin, Ireland
| | | |
Collapse
|
19
|
Chandley M, Ordway G. Noradrenergic Dysfunction in Depression and Suicide. THE NEUROBIOLOGICAL BASIS OF SUICIDE 2012. [DOI: 10.1201/b12215-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
20
|
Maurya SK, Rai A, Rai NK, Deshpande S, Jain R, Mudiam MKR, Prabhakar YS, Bandyopadhyay S. Cypermethrin Induces Astrocyte Apoptosis by the Disruption of the Autocrine/Paracrine Mode of Epidermal Growth Factor Receptor Signaling. Toxicol Sci 2011; 125:473-87. [DOI: 10.1093/toxsci/kfr303] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
21
|
Cai L, Du T, Song D, Li B, Hertz L, Peng L. Astrocyte ERK phosphorylation precedes K+-induced swelling but follows hypotonicity-induced swelling. Neuropathology 2010; 31:250-64. [DOI: 10.1111/j.1440-1789.2010.01172.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
5-HT2B receptors are expressed on astrocytes from brain and in culture and are a chronic target for all five conventional ‘serotonin-specific reuptake inhibitors’. ACTA ACUST UNITED AC 2010; 6:113-25. [DOI: 10.1017/s1740925x10000141] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In well-differentiated primary cultures of mouse astrocytes, which express no serotonin transporter (SERT), the ‘serotonin-specific reuptake inhibitor’ (SSRI) fluoxetine leads acutely to 5-HT2B receptor-mediated, transactivation-dependent phosphorylation of extracellular regulated kinases 1/2 (ERK1/2) with an EC50 of ~5 μM, and chronically to ERK1/2 phosphorylation-dependent upregulation of mRNA and protein expression of calcium-dependent phospholipase A2 (cPLA2) with ten-fold higher affinity. This affinity is high enough that fluoxetine given therapeutically may activate astrocytic 5-HT2B receptors (Li et al., 2008, 2009). We now confirm the expression of 5-HT2B receptors in astrocytes freshly dissociated from mouse brain and isolated by fluorescence-activated cell sorting (FACS) and investigate in cultured cells if the effects of fluoxetine are shared by all five conventional SSRIs with sufficiently high affinity to be relevant for mechanism(s) of action of SSRIs. Phosphorylated and total ERK1/2 and mRNA and protein expression of cPLA2a were determined by Western blot and reverse transcription polymerase chain reaction (RT-PCR). Paroxetine, which differs widely from fluoxetine in affinity for SERT and for another 5-HT2 receptor, the 5-HT2C receptor, acted acutely and chronically like fluoxetine. One micromolar of paroxetine, fluvoxamine or sertraline increased cPLA2a expression during chronic treatment; citalopram had a similar effect at 0.1–0.5 μM; these are therapeutically relevant concentrations.
Collapse
|
23
|
Li B, Zhang S, Li M, Hertz L, Peng L. Serotonin increases ERK1/2 phosphorylation in astrocytes by stimulation of 5-HT2B and 5-HT2C receptors. Neurochem Int 2010; 57:432-9. [PMID: 20450948 DOI: 10.1016/j.neuint.2010.04.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2009] [Revised: 03/24/2010] [Accepted: 04/26/2010] [Indexed: 11/29/2022]
Abstract
We have previously shown that fluoxetine causes ERK(1/2) phosphorylation in cultured mouse astrocytes mediated exclusively by stimulation of 5-HT(2B) receptors (Li et al., 2008b). This raises the question whether this is also the case for serotonin (5-HT) itself. In the present study serotonin was found to induce ERK(1/2) phosphorylation by stimulation of 5-HT(2B) receptors with high affinity (EC(50): 20-30 pM), and by stimulation of 5-HT(2C) receptor with low affinity (EC(50): 1 microM or higher). ERK(1/2) phosphorylation induced by stimulation of either 5-HT(2B) or 5-HT(2C) receptors was mediated by epidermal growth factor (EGF) receptor transactivation (Peng et al., this issue), shown by the inhibitory effect of AG1478, an inhibitor of the EGF receptor tyrosine kinase, and GM6001, an inhibitor of Zn-dependent metalloproteinases, and thus of 5-HT(2B) receptor-mediated EGF receptor agonist release. It is discussed that the high potency of the 5-HT(2B)-mediated effect is consistent with literature data for binding affinity of serotonin to cloned human 5-HT(2B) receptors and with observations of low extracellular concentrations of serotonin in brain, which would allow a demonstrated moderate and modality-dependent increase in specific brain areas to activate 5-HT(2B) receptors. In contrast the relevance of the observed 5-HT(2C) receptors on astrocytes is questioned.
Collapse
Affiliation(s)
- Baoman Li
- Department of Clinical Pharmacology, China Medical University, Heping District, Shenyang, PR China
| | | | | | | | | |
Collapse
|
24
|
Xue Z, Li B, Gu L, Hu X, Li M, Butterworth RF, Peng L. Increased Na, K-ATPase alpha2 isoform gene expression by ammonia in astrocytes and in brain in vivo. Neurochem Int 2010; 57:395-403. [PMID: 20447429 DOI: 10.1016/j.neuint.2010.04.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2009] [Revised: 03/28/2010] [Accepted: 04/27/2010] [Indexed: 10/19/2022]
Abstract
In mouse astrocyte cultures identical to those used in the present study ammonia increases the production of ouabain-like compounds and Na, K-ATPase activity (Kala et al., 2000). Increased activity of Na, K-ATPase could be the result of enhanced production of ouabain-like compounds, since cultured rat astrocytes react to prolonged exposure to a high concentration of ouabain with an upregulation of the Na, K-ATPase alpha(1) isoform (Hosoi et al., 1997). However, unlike astrocytes in brain in vivo and mouse primary cultures, cultured rat astrocytes do not express the astrocyte-specific alpha(2) isoform, which shows a higher affinity for ouabain (EC(50) approximately 0.1 microM) than the alpha(1) isoform (EC(50) approximately 10 microM). In the present study we have investigated (i) effects of ammonia on mRNA and protein expression of alpha(1) and alpha(2) isoforms in primary cultures of mouse astrocytes; (ii) effects of hyperammonia obtained by urease injection on mRNA and protein expression of alpha(1) and alpha(2) isoforms in the brain in vivo; and (iii) effect on observed upregulation of gene expression of AG1478, an inhibitor of the EGF receptor-tyrosine kinase, PP1, an inhibitor of Src, and GM6001, an inhibitor of Zn(2+)-dependent metalloproteinases in the cultured cells. It was established that alpha(2) mRNA and protein expression, but not alpha(1) expression, was upregulated in cultured astrocytes by 1-4 days of exposure to 3 or 5 mM ammonia and that similar upregulation, contrasted by a downregulation of the neuronal alpha(3) subunit occurred in the hyperammonemic brain. Based on the effects of the inhibitors and literature data it is concluded that ammonia activates formation of an endogenous ouabain-like compound, which binds to the Na, K-ATPase, activating Src, which in turn stimulates the receptor-tyrosine kinase of the EGF receptor, leading to activation of the Ras, Raf, MEK pathway and phosphorylation of ERK(1/2), which eventually causes upregulation of alpha(2) gene expression.
Collapse
Affiliation(s)
- Zhanxia Xue
- Department of Clinical Pharmacology, China Medical University, Shenyang, PR China
| | | | | | | | | | | | | |
Collapse
|