1
|
Manzoor S, Hoda N. A comprehensive review of monoamine oxidase inhibitors as Anti-Alzheimer's disease agents: A review. Eur J Med Chem 2020; 206:112787. [PMID: 32942081 DOI: 10.1016/j.ejmech.2020.112787] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 07/22/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023]
Abstract
Monoamine oxidases (MAO-A and MAO-B) are mammalian flavoenzyme, which catalyze the oxidative deamination of several neurotransmitters like norepinephrine, dopamine, tyramine, serotonin, and some other amines. The oxidative deamination produces several harmful side products like ammonia, peroxides, and aldehydes during the biochemical reaction. The concentration of biochemical neurotransmitter alteration in the brain by MAO is directly related with several neurological disorders like Alzheimer's disease and Parkinson's disease (PD). Activated MAO also contributes to the amyloid beta (Aβ) aggregation by two successive cleft β-secretase and γ-secretase of amyloid precursor protein (APP). Additionally, activated MAO is also involved in aggregation of neurofibrillary tangles and cognitive destruction through the cholinergic neuronal damage and disorder of the cholinergic system. MAO inhibition has general anti-Alzheimer's disease effect as a consequence of oxidative stress reduction prompted by MAO enzymes. In this review, we outlined and addressed recent understanding on MAO enzymes such as their structure, physiological function, catalytic mechanism, and possible therapeutic goals in AD. In addition, it also highlights the current development and discovery of potential MAO inhibitors (MAOIs) from various chemical scaffolds.
Collapse
Affiliation(s)
- Shoaib Manzoor
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, 110025, India
| | - Nasimul Hoda
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
2
|
Nyarko JNK, Quartey MO, Baker GB, Mousseau DD. Can Animal Models Inform on the Relationship between Depression and Alzheimer Disease? CANADIAN JOURNAL OF PSYCHIATRY. REVUE CANADIENNE DE PSYCHIATRIE 2019; 64:18-29. [PMID: 29685068 PMCID: PMC6364140 DOI: 10.1177/0706743718772514] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The focus on the β-amyloid (Aβ) peptide in clinical Alzheimer disease (AD) as well as in animal models of AD has perhaps biased our understanding of what contributes to the heterogeneity in disease onset and progression. Part of this heterogeneity could reflect the various neuropsychiatric risk factors that present with common symptomatology and can predispose the brain to AD-like changes. One such risk factor is depression. Animal models, particularly mouse models carrying variants of AD-related gene(s), many of which lead to an accumulation of Aβ, suggest that a fundamental shift in depression-related monoaminergic systems (including serotonin and noradrenaline) is a strong indicator of the altered cellular function associated with the earlier(est) stages of AD-related pathology. These changes in monoaminergic neurochemistry could provide for relevant targets for intervention in clinical AD and/or could support a polypharmacy strategy, which might include the targeting of Aβ, in vulnerable populations. Future studies must also include female mice as well as male mice in animal model studies on the relationship between depression and AD.
Collapse
Affiliation(s)
- Jennifer N K Nyarko
- 1 Cell Signalling Laboratory, Department of Psychiatry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Maa O Quartey
- 1 Cell Signalling Laboratory, Department of Psychiatry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Glen B Baker
- 2 Department of Psychiatry, Neuroscience and Mental Health Institute, Neurochemical Research Unit, University of Alberta, Edmonton, Alberta, Canada
| | - Darrell D Mousseau
- 1 Cell Signalling Laboratory, Department of Psychiatry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
3
|
Quartey MO, Nyarko JNK, Pennington PR, Heistad RM, Klassen PC, Baker GB, Mousseau DD. Alzheimer Disease and Selected Risk Factors Disrupt a Co-regulation of Monoamine Oxidase-A/B in the Hippocampus, but Not in the Cortex. Front Neurosci 2018; 12:419. [PMID: 29997470 PMCID: PMC6029266 DOI: 10.3389/fnins.2018.00419] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/01/2018] [Indexed: 01/09/2023] Open
Abstract
Monoamine oxidase-A (MAO-A) and MAO-B have both been implicated in the pathology of Alzheimer disease (AD). We examined 60 autopsied control and AD donor brain samples to determine how well MAO function aligned with two major risk factors for AD, namely sex and APOE ε4 status. MAO-A activity was increased in AD cortical, but not hippocampal, samples. In contrast, MAO-B activity was increased in both regions (with a strong input from female donors) whether sample means were compared based on: (a) diagnosis alone; (b) diagnosis-by-APOE ε4 status (i.e., carriers vs. non-carriers of the ε4 allele); or (c) APOE ε4 status alone (i.e., ignoring ‘diagnosis’ as a variable). Sample means strictly based on the donor’s sex did not reveal any difference in either MAO-A or MAO-B activity. Unexpectedly, we found that cortical MAO-A and MAO-B activities were highly correlated in both males and females (if focussing strictly on the donor’s sex), while in the hippocampus, any correlation was lost in female samples. Stratifying for sex-by-APOE ε4 status revealed a strong correlation between cortical MAO-A and MAO-B activities in both non-carriers and carriers of the allele, but any correlation in hippocampal samples was lost in carriers of the allele. A diagnosis of AD disrupted the correlation between MAO-A and MAO-B activities in the hippocampus, but not the cortex. We observed a novel region-dependent co-regulation of MAO-A and MAO-B mRNAs (but not proteins), while a lack of correlation between MAO activities and the respective proteins corroborated previous reports. Overexpression of human APOE4 increased MAO activity (but not mRNA/protein) in C6 and in HT-22 cell cultures. We identified a novel co-regulation of MAO-A and MAO-B activities that is spared from any influence of risk factors for AD or AD itself in the cortex, but vulnerable to these same factors in the hippocampus. Sex- and region-dependent abilities to buffer influences on brain MAO activities could have significant bearing on ambiguous outcomes when monoaminergic systems are targeted in clinical populations.
Collapse
Affiliation(s)
- Maa O Quartey
- Cell Signalling Laboratory, Department of Psychiatry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jennifer N K Nyarko
- Cell Signalling Laboratory, Department of Psychiatry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Paul R Pennington
- Cell Signalling Laboratory, Department of Psychiatry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ryan M Heistad
- Cell Signalling Laboratory, Department of Psychiatry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Paula C Klassen
- The Pharmacology-Physiology Honours Program, University of Saskatchewan, Saskatoon, SK, Canada
| | - Glen B Baker
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Darrell D Mousseau
- Cell Signalling Laboratory, Department of Psychiatry, University of Saskatchewan, Saskatoon, SK, Canada.,The Pharmacology-Physiology Honours Program, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
4
|
Van Schoors J, Lens C, Maes K, Michotte Y, Smolders I, Van Eeckhaut A. Reassessment of the antioxidative mixture for the challenging electrochemical determination of dopamine, noradrenaline and serotonin in microdialysis samples. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 998-999:63-71. [DOI: 10.1016/j.jchromb.2015.06.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 05/18/2015] [Accepted: 06/12/2015] [Indexed: 10/23/2022]
|
5
|
Ion-pair ultra-high performance liquid chromatographic analysis of monoamines: Peak-splitting at high flow rates. J Chromatogr A 2013; 1321:73-9. [DOI: 10.1016/j.chroma.2013.10.070] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 10/21/2013] [Accepted: 10/22/2013] [Indexed: 11/22/2022]
|
6
|
Dubal DB, Broestl L, Worden K. Sex and gonadal hormones in mouse models of Alzheimer's disease: what is relevant to the human condition? Biol Sex Differ 2012; 3:24. [PMID: 23126652 PMCID: PMC3524653 DOI: 10.1186/2042-6410-3-24] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 09/27/2012] [Indexed: 11/10/2022] Open
Abstract
Biologic sex and gonadal hormones matter in human aging and diseases of aging such as Alzheimer's - and the importance of studying their influences relates directly to human health. The goal of this article is to review the literature to date on sex and hormones in mouse models of Alzheimer's disease (AD) with an exclusive focus on interpreting the relevance of findings to the human condition. To this end, we highlight advances in AD and in sex and hormone biology, discuss what these advances mean for merging the two fields, review the current mouse model literature, raise major unresolved questions, and offer a research framework that incorporates human reproductive aging for future studies aimed at translational discoveries in this important area. Unraveling human relevant pathways in sex and hormone-based biology may ultimately pave the way to novel and urgently needed treatments for AD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Dena B Dubal
- Laboratory of Neuroscience and Aging Research, Department of Neurology, Sandler Neurosciences Center, Room 212B, University of California, San Francisco, San Francisco, CA 94158, USA.
| | | | | |
Collapse
|