1
|
Orjuela A, Lakey-Beitia J, Mojica-Flores R, Hegde ML, Lans I, Alí-Torres J, Rao KS. Computational Evaluation of Interaction Between Curcumin Derivatives and Amyloid-β Monomers and Fibrils: Relevance to Alzheimer's Disease. J Alzheimers Dis 2021; 82:S321-S333. [PMID: 33337368 DOI: 10.3233/jad-200941] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
BACKGROUND The most important hallmark in the neuropathology of Alzheimer's disease (AD) is the formation of amyloid-β (Aβ) fibrils due to the misfolding/aggregation of the Aβ peptide. Preventing or reverting the aggregation process has been an active area of research. Naturally occurring products are a potential source of molecules that may be able to inhibit Aβ42 peptide aggregation. Recently, we and others reported the anti-aggregating properties of curcumin and some of its derivatives in vitro, presenting an important therapeutic avenue by enhancing these properties. OBJECTIVE To computationally assess the interaction between Aβ peptide and a set of curcumin derivatives previously explored in experimental assays. METHODS The interactions of ten ligands with Aβ monomers were studied by combining molecular dynamics and molecular docking simulations. We present the in silico evaluation of the interaction between these derivatives and the Aβ42 peptide, both in the monomeric and fibril forms. RESULTS The results show that a single substitution in curcumin could significantly enhance the interaction between the derivatives and the Aβ42 monomers when compared to a double substitution. In addition, the molecular docking simulations showed that the interaction between the curcumin derivatives and the Aβ42 monomers occur in a region critical for peptide aggregation. CONCLUSION Results showed that a single substitution in curcumin improved the interaction of the ligands with the Aβ monomer more so than a double substitution. Our molecular docking studies thus provide important insights for further developing/validating novel curcumin-derived molecules with high therapeutic potential for AD.
Collapse
Affiliation(s)
- Adrian Orjuela
- Departamento de Química, Universidad Nacional de Colombia, Bogotá DC, Colombia
| | - Johant Lakey-Beitia
- Centre for Biodiversity and Drug Discovery, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Clayton, City of Knowledge, Panama
| | - Randy Mojica-Flores
- Centre for Biodiversity and Drug Discovery, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Clayton, City of Knowledge, Panama
| | - Muralidhar L Hegde
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, USA.,Weill Medical College of Cornell University, New York, NY, USA
| | - Isaias Lans
- Biophysics of Tropical Diseases, Max Planck Tandem Group, University of Antioquia, Medellín, Colombia
| | - Jorge Alí-Torres
- Departamento de Química, Universidad Nacional de Colombia, Bogotá DC, Colombia
| | - K S Rao
- Centre for Neuroscience, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Clayton, City of Knowledge, Panama
| |
Collapse
|
2
|
Lakey-Beitia J, Vasquez V, Mojica-Flores R, Fuentes C AL, Murillo E, Hedge ML, Rao KS. Pouteria sapota (Red Mamey Fruit): Chemistry and Biological Activity of Carotenoids. Comb Chem High Throughput Screen 2021; 25:1134-1147. [PMID: 33645478 DOI: 10.2174/1386207324666210301093711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Red mamey fruit known as P. sapota, comes from trees found in Mesoamerica and Asia. This fruit is considered a nutraceutical food due to it's a food and has multiple beneficial health including anti-amyloidogenic activity and potential anti-tumorigenic property. Red mamey fruit contain a variety of carotenoids including novel ketocarotenoids such as sapotexanthin and cryptocapsin. A ketocarotenoid is a chemical compound with a carbonyl group present in the β-ring or in the double bond chain of a carotenoid. In red mamey, the 3'-deoxy-k-end group in sapotexanthin has proved to be an important pro-vitamin A source, which is essential for maintaining a healthy vision and cognitive processes. OBJECTIVE Summarize the chemistry and biological activity of the studied carotenoids present in this fruit until now. METHOD An exhaustive extraction is the most usual methodology to isolate and thoroughly characterize the carotenoids present in this fruit. High performance liquid chromatography is used to determine the profile of total carotenoid and its purity. Atmospheric pressure chemical ionization is used to determine the molecular weight of carotenoid. Nuclear magnetic resonance is used to determine the structure of carotenoids. RESULT For each 100 g of fresh weight, 0.12 mg of total carotenoid from this fruit can be obtained. Out of the more than 47 reported carotenoids in red mamey, only 34 have a detailed characterization. CONCLUSION it is important to continue studying the chemical composition and biological activity of this unique tropical fruit with commercial and nutritional value.
Collapse
Affiliation(s)
- Johant Lakey-Beitia
- Centre for Biodiversity and Drug Discovery, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Clayton, City of Knowledge, 0843-01103. Panama
| | - Velmarini Vasquez
- Centre for Neuroscience, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Clayton, City of Knowledge, 0843-01103. Panama
| | - Randy Mojica-Flores
- Centre for Biodiversity and Drug Discovery, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Clayton, City of Knowledge, 0843-01103. Panama
| | - Arelys L Fuentes C
- Centre for Biodiversity and Drug Discovery, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Clayton, City of Knowledge, 0843-01103. Panama
| | - Enrique Murillo
- Department of Biochemistry, Faculty of Exact Natural Sciences and Technology, University of Panama, Panama City. Panama
| | - Muralidhar L Hedge
- Department of Neurosurgery, Houston Methodist Research Institute, Houston, Texas, 77030. United States
| | - K S Rao
- Centre for Neuroscience, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Clayton, City of Knowledge, 0843-01103. Panama
| |
Collapse
|
3
|
Lakey-Beitia J, Burillo AM, Penna GL, Hegde ML, Rao K. Polyphenols as Potential Metal Chelation Compounds Against Alzheimer's Disease. J Alzheimers Dis 2021; 82:S335-S357. [PMID: 32568200 PMCID: PMC7809605 DOI: 10.3233/jad-200185] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease affecting more than 50 million people worldwide. The pathology of this multifactorial disease is primarily characterized by the formation of amyloid-β (Aβ) aggregates; however, other etiological factors including metal dyshomeostasis, specifically copper (Cu), zinc (Zn), and iron (Fe), play critical role in disease progression. Because these transition metal ions are important for cellular function, their imbalance can cause oxidative stress that leads to cellular death and eventual cognitive decay. Importantly, these transition metal ions can interact with the amyloid-β protein precursor (AβPP) and Aβ42 peptide, affecting Aβ aggregation and increasing its neurotoxicity. Considering how metal dyshomeostasis may substantially contribute to AD, this review discusses polyphenols and the underlying chemical principles that may enable them to act as natural chelators. Furthermore, polyphenols have various therapeutic effects, including antioxidant activity, metal chelation, mitochondrial function, and anti-amyloidogenic activity. These combined therapeutic effects of polyphenols make them strong candidates for a moderate chelation-based therapy for AD.
Collapse
Affiliation(s)
- Johant Lakey-Beitia
- Centre for Biodiversity and Drug Discovery, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Clayton, City of Knowledge, Panama
| | - Andrea M. Burillo
- Centre for Biodiversity and Drug Discovery, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Clayton, City of Knowledge, Panama
| | - Giovanni La Penna
- National Research Council, Institute of Chemistry of Organometallic Compounds, Sesto Fiorentino (FI), Italy
| | - Muralidhar L. Hegde
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX, USA
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, USA
- Weill Medical College of Cornell University, New York, NY, USA
| | - K.S. Rao
- Centre for Neuroscience, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Clayton, City of Knowledge, Panama
- Zhongke Jianlan Medical Institute, Hangzhou, Republic of China
| |
Collapse
|
4
|
Carotenoids as Novel Therapeutic Molecules Against Neurodegenerative Disorders: Chemistry and Molecular Docking Analysis. Int J Mol Sci 2019; 20:ijms20225553. [PMID: 31703296 PMCID: PMC6888440 DOI: 10.3390/ijms20225553] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/02/2019] [Accepted: 11/04/2019] [Indexed: 01/25/2023] Open
Abstract
Alzheimer's disease (AD) is the most devastating neurodegenerative disorder that affects the aging population worldwide. Endogenous and exogenous factors are involved in triggering this complex and multifactorial disease, whose hallmark is Amyloid-β (Aβ), formed by cleavage of amyloid precursor protein by β- and γ-secretase. While there is no definitive cure for AD to date, many neuroprotective natural products, such as polyphenol and carotenoid compounds, have shown promising preventive activity, as well as helping in slowing down disease progression. In this article, we focus on the chemistry as well as structure of carotenoid compounds and their neuroprotective activity against Aβ aggregation using molecular docking analysis. In addition to examining the most prevalent anti-amyloidogenic carotenoid lutein, we studied cryptocapsin, astaxanthin, fucoxanthin, and the apocarotenoid bixin. Our computational structure-based drug design analysis and molecular docking simulation revealed important interactions between carotenoids and Aβ via hydrogen bonding and van der Waals interactions, and shows that carotenoids are powerful anti-amyloidogenic molecules with a potential role in preventing AD, especially since most of them can cross the blood-brain barrier and are considered nutraceutical compounds. Our studies thus illuminate mechanistic insights on how carotenoids inhibit Aβ aggregation. The potential role of carotenoids as novel therapeutic molecules in treating AD and other neurodegenerative disorders are discussed.
Collapse
|
5
|
Magisetty O, Dowlathabad MR, Raichurkar KP, Mannar SN. First magenetic resonance imaging studies on aluminium maltolate-treated aged New Zealand rabbits: an Alzheimer's animal model. Psychogeriatrics 2016; 16:263-7. [PMID: 26419490 DOI: 10.1111/psyg.12158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 02/23/2015] [Accepted: 08/12/2015] [Indexed: 11/29/2022]
Abstract
BACKGROUND Alzheimer's disease is a devastative neurodegenerative disorder. To date, there has been no animal model that could unravel the complete disease pathology. Magnetic resonance imaging has played a pivotal role in the quantitative assessment of brain tissue atrophy for a few decades. In particular, temporal lobe atrophy and ventricular dilatation have been found to be sensitive in Alzheimer's disease. METHODS The present study focused on the replication of these crucial pathological events to enable disease progression to be diagnosed at an early stage and stopped through the use of potential therapeutic strategies. RESULT The objective of this study was to show temporal lobe atrophy and ventricular dilatation in aluminium maltolate-treated aged New Zealand rabbit, and our study was able to demonstrate this for the first time. CONCLUSION The present study makes this animal model a substantial one for further molecular level studies and opens up new targets for potential therapeutic strategies.
Collapse
Affiliation(s)
- Obulesu Magisetty
- Department of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki-305-8573, Japan
| | | | | | | |
Collapse
|
6
|
Hohsfield LA, Daschil N, Orädd G, Strömberg I, Humpel C. Vascular pathology of 20-month-old hypercholesterolemia mice in comparison to triple-transgenic and APPSwDI Alzheimer's disease mouse models. Mol Cell Neurosci 2015; 63:83-95. [PMID: 25447943 DOI: 10.1016/j.mcn.2014.10.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 10/02/2014] [Accepted: 10/27/2014] [Indexed: 10/24/2022] Open
Abstract
Several studies have shown that elevated plasma cholesterol levels (i.e. hypercholesterolemia) serve as a risk factor for late-onset Alzheimer's disease (AD). However, it remains unclear how hypercholesterolemia may contribute to the onset and progression of AD pathology. In order to determine the role of hypercholesterolemia at various stages of AD, we evaluated the effects of high cholesterol diet (5% cholesterol) in wild-type (WT; C57BL6) and triple-transgenic AD (3xTg-AD; Psen1, APPSwe, tauB301L) mice at 7, 14, and 20 months. The transgenic APP-Swedish/Dutch/Iowa AD mouse model (APPSwDI) was used as a control since these animals are more pathologically-accelerated and are known to exhibit extensive plaque deposition and cerebral amyloid angiopathy. Here, we describe the effects of high cholesterol diet on: (1) cognitive function and stress, (2) AD-associated pathologies, (3) neuroinflammation, (4) blood–brain barrier disruption and ventricle size, and (5) vascular dysfunction. Our data show that high dietary cholesterol increases weight, slightly impairs cognitive function, promotes glial cell activation and complement-related pathways, enhances the infiltration of blood-derived proteins and alters vascular integrity, however, it does not induce AD-related pathologies. While normal-fed 3xTg-AD mice display a typical AD-like pathology in addition to severe cognitive impairment and neuroinflammation at 20 months of age, vascular alterations are less pronounced. No microbleedings were seen by MRI, however, the ventricle size was enlarged. Triple-transgenic AD mice, on the other hand, fed a high cholesterol diet do not survive past 14 months of age. Our data indicates that cholesterol does not markedly potentiate AD-related pathology, nor does it cause significant impairments in cognition. However, it appears that high cholesterol diet markedly increases stress-related plasma corticosterone levels as well as some vessel pathologies. Together, our findings represent the first demonstration of prolonged high cholesterol diet and the examination of its effects at various stages of cerebrovascular- and AD-related disease.
Collapse
|
7
|
Schreurs BG, Smith-Bell CA, Lemieux SK. Dietary cholesterol increases ventricular volume and narrows cerebrovascular diameter in a rabbit model of Alzheimer's disease. Neuroscience 2013; 254:61-9. [PMID: 24045100 PMCID: PMC3830722 DOI: 10.1016/j.neuroscience.2013.09.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 08/26/2013] [Accepted: 09/05/2013] [Indexed: 12/29/2022]
Abstract
Using structural magnetic resonance imaging in a clinical scanner at 3.0T, we describe results showing that following 12weeks on a diet of 2% cholesterol, rabbits experience a significant increase in the volume of the third ventricle compared to rabbits on a diet of 0% cholesterol. Using time-of-flight magnetic resonance angiography, we find cholesterol-fed rabbits also experience a decrease in the diameter of a number of cerebral blood vessels including the basilar, posterior communicating, and internal carotid arteries. Taken together, these data confirm that, despite the inability of dietary cholesterol to cross the blood-brain barrier, it does significantly enlarge ventricular volume and decrease cerebrovascular diameter in the rabbit - effects that are also seen in patients with Alzheimer's disease.
Collapse
Affiliation(s)
- B G Schreurs
- Department of Physiology and Pharmacology, and the Blanchette Rockefeller Neurosciences Institute, West Virginia University, Morgantown, WV, United States.
| | | | | |
Collapse
|
8
|
Alzheimer's disease biomarkers: correspondence between human studies and animal models. Neurobiol Dis 2013; 56:116-30. [PMID: 23631871 DOI: 10.1016/j.nbd.2013.04.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 04/11/2013] [Accepted: 04/18/2013] [Indexed: 01/05/2023] Open
Abstract
Alzheimer's disease (AD) represents an escalating global threat as life expectancy and disease prevalence continue to increase. There is a considerable need for earlier diagnoses to improve clinical outcomes. Fluid biomarkers measured from cerebrospinal fluid (CSF) and blood, or imaging biomarkers have considerable potential to assist in the diagnosis and management of AD. An additional important utility of biomarkers is in novel therapeutic development and clinical trials to assess efficacy and side effects of therapeutic interventions. Because many biomarkers are initially examined in animal models, the extent to which markers translate from animals to humans is an important issue. The current review highlights many existing and pipeline biomarker approaches, focusing on the degree of correspondence between AD patients and animal models. The review also highlights the need for greater translational correspondence between human and animal biomarkers.
Collapse
|
9
|
Deci S, Lemieux SK, Smith-Bell CA, Sparks DL, Schreurs BG. Cholesterol increases ventricular volume in a rabbit model of Alzheimer's disease. J Alzheimers Dis 2012; 29:283-92. [PMID: 22232012 DOI: 10.3233/jad-2011-111415] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
One of the hallmarks of Alzheimer's disease is a significant increase in ventricular volume. To date we and others have shown that a cholesterol-fed rabbit model of Alzheimer's disease displays as many as fourteen different pathological markers of Alzheimer's disease including amyloid-β accumulation, thioflavin-S staining, blood brain barrier breach, microglia activation, cerebrovasculature changes, and alterations in learning and memory. Using structural magnetic resonance imaging at 3T, we now report that cholesterol-fed rabbits also show a significant increase in ventricular volume following 10 weeks on a diet of 2% cholesterol. The increase in volume is attributable in large part to increases in the size of the third ventricle. These changes are accompanied by significant increases in the number of amyloid-β immuno-positive cells in the cortex and hippocampus. Increases in the number of amyloid-β neurons in the cortex also occurred with the addition of 0.24 ppm copper to the drinking water. Together with a list of other pathological markers, the current results add further validity to the value of the cholesterol-fed rabbit as a non-transgenic animal model of Alzheimer's disease.
Collapse
Affiliation(s)
- Stephen Deci
- Department of Physiology and Pharmacology and the Blanchette Rockefeller Neurosciences Institute, West Virginia University, Morgantown, WV 26506, USA.
| | | | | | | | | |
Collapse
|