1
|
Pozdnyakova N, Krisanova N, Pastukhov A, Dudarenko M, Tarasenko A, Borysov A, Kalynovska L, Paliienko K, Borisova T. Multipollutant reciprocal neurological hazard from smoke particulate matter and heavy metals cadmium and lead in brain nerve terminals. Food Chem Toxicol 2024; 185:114449. [PMID: 38215962 DOI: 10.1016/j.fct.2024.114449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/14/2024]
Abstract
Heavy metals, Cd2+ and Pb2+, and carbonaceous air pollution particulate matter are hazardous neurotoxicants. Here, a capability of water-suspended smoke particulate matter preparations obtained from poplar wood (WPs) and polypropylene fibers (medical facemasks) (MPs) to influence Cd2+/Pb2+-induced neurotoxicity, and vice versa, was monitored using biological system, i.e. isolated presynaptic rat cortex nerve terminals. Combined application of Pb2+ and WPs/MPs to nerve terminals in an acute manner revealed that smoke preparations did not change a Pb2+-induced increase in the extracellular levels of excitatory neurotransmitter L-[14C]glutamate and inhibitory one [3H]GABA, thereby demonstrating additive result and no interference of neurotoxic effects of Pb2+ and particulate matter. Whereas, both smoke preparations decreased a Cd2+-induced increase in the extracellular level of L-[14C]glutamate and [3H]GABA in nerve terminals. In fluorimetric measurements, the metals and smoke preparations demonstrated additive effects on the membrane potential of nerve terminals causing membrane depolarisation. WPs/MPs-induced reduction of spontaneous ROS generation was mitigated by Cd2+ and Pb2+. Therefore, a potential variety of multipollutant heavy metal-/airborne particulate-induced effects on key presynaptic processes was revealed. Multipollutant reciprocal neurological hazard through disturbance of the excitation-inhibition balance, membrane potential and ROS generation was evidenced. This multipollutant approach and data contribute to up-to-date environmental quality/health risk estimation.
Collapse
Affiliation(s)
- Natalia Pozdnyakova
- The Department of Neurochemistry, The Palladin Institute of Biochemistry, The National Academy of Sciences of Ukraine, 9 Leontovicha st, Kyiv, 01054, Ukraine
| | - Nataliya Krisanova
- The Department of Neurochemistry, The Palladin Institute of Biochemistry, The National Academy of Sciences of Ukraine, 9 Leontovicha st, Kyiv, 01054, Ukraine
| | - Artem Pastukhov
- The Department of Neurochemistry, The Palladin Institute of Biochemistry, The National Academy of Sciences of Ukraine, 9 Leontovicha st, Kyiv, 01054, Ukraine.
| | - Marina Dudarenko
- The Department of Neurochemistry, The Palladin Institute of Biochemistry, The National Academy of Sciences of Ukraine, 9 Leontovicha st, Kyiv, 01054, Ukraine
| | - Alla Tarasenko
- The Department of Neurochemistry, The Palladin Institute of Biochemistry, The National Academy of Sciences of Ukraine, 9 Leontovicha st, Kyiv, 01054, Ukraine
| | - Arsenii Borysov
- The Department of Neurochemistry, The Palladin Institute of Biochemistry, The National Academy of Sciences of Ukraine, 9 Leontovicha st, Kyiv, 01054, Ukraine
| | - Liliia Kalynovska
- The Department of Neurochemistry, The Palladin Institute of Biochemistry, The National Academy of Sciences of Ukraine, 9 Leontovicha st, Kyiv, 01054, Ukraine
| | - Konstantin Paliienko
- The Department of Neurochemistry, The Palladin Institute of Biochemistry, The National Academy of Sciences of Ukraine, 9 Leontovicha st, Kyiv, 01054, Ukraine
| | - Tatiana Borisova
- The Department of Neurochemistry, The Palladin Institute of Biochemistry, The National Academy of Sciences of Ukraine, 9 Leontovicha st, Kyiv, 01054, Ukraine
| |
Collapse
|
2
|
Kalev-Zylinska ML, Morel-Kopp MC, Ward CM, Hearn JI, Hamilton JR, Bogdanova AY. Ionotropic glutamate receptors in platelets: opposing effects and a unifying hypothesis. Platelets 2020; 32:998-1008. [PMID: 33284715 DOI: 10.1080/09537104.2020.1852542] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Ionotropic glutamate receptors include α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPAR), kainate receptors (KAR), and N-methyl-D-aspartate receptors (NMDAR). All function as cation channels; AMPAR and KAR are more permeable to sodium and NMDAR to calcium ions. Compared to the brain, receptor assemblies in platelets are unusual, suggesting distinctive functionalities.There is convincing evidence that AMPAR and KAR amplify platelet function and thrombus formation in vitro and in vivo. Transgenic mice lacking GluA1 and GluK2 (AMPAR and KAR subunits, respectively) have longer bleeding times and prolonged time to thrombosis in an arterial model. In humans, rs465566 KAR gene polymorphism associates with altered in vitro platelet responses suggesting enhanced aspirin effect. The NMDAR contribution to platelet function is less well defined. NMDA at low concentrations (≤10 μM) inhibits platelet aggregation and high concentrations (≥100 μM) have no effect. However, open NMDAR channel blockers interfere with platelet activation and aggregation induced by other agonists in vitro; anti-GluN1 antibodies interfere with thrombus formation under high shear rates ex vivo; and rats vaccinated with GluN1 develop iron deficiency anemia suggestive of mild chronic bleeding. In this review, we summarize data on glutamate receptors in platelets and propose a unifying model that reconciles some of the opposing effects observed.
Collapse
Affiliation(s)
- Maggie L Kalev-Zylinska
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine & Pathology, University of Auckland, Auckland, New Zealand.,Department of Pathology and Laboratory Medicine, LabPlus Haematology, Auckland City Hospital, Auckland, New Zealand
| | - Marie-Christine Morel-Kopp
- Department of Haematology and Transfusion Medicine, Royal North Shore Hospital, Sydney, Australia.,Northern Blood Research Centre, Kolling Institute, University of Sydney, Sydney, Australia
| | - Christopher M Ward
- Department of Haematology and Transfusion Medicine, Royal North Shore Hospital, Sydney, Australia.,Northern Blood Research Centre, Kolling Institute, University of Sydney, Sydney, Australia
| | - James I Hearn
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine & Pathology, University of Auckland, Auckland, New Zealand
| | - Justin R Hamilton
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
| | - Anna Y Bogdanova
- Red Blood Cell Research Group, Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zürich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland
| |
Collapse
|
3
|
Human miR-26a-5p regulates the glutamate transporter SLC1A1 (EAAT3) expression. Relevance in multiple sclerosis. Biochim Biophys Acta Mol Basis Dis 2017; 1864:317-323. [PMID: 28962897 DOI: 10.1016/j.bbadis.2017.09.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 09/08/2017] [Accepted: 09/25/2017] [Indexed: 12/14/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system, characterized by chronic inflammation, demyelination and scarring as well as a broad spectrum of signs and symptoms. MicroRNA plays pivotal roles in cellular and developmental processes by regulating gene expression at the post-transcriptional level. Increasing evidence suggests the involvement of microRNAs in the pathogenesis of neurodegenerative diseases, including MS. We have already found that the expression of a specific miRNA, hsa-mir-26a-5p (miR-26a), changed during INF-β treatment in responder Relapsing-Remitting MS patients. Functional annotations of mir-26a targets revealed that a number of genes were implicated in Glutamate Receptor Signaling pathway, which is notoriously altered in neurodegenerative diseases as MS. In this study, the different potential targets were subjected to a validation test based on luciferase reporter constructs transfected in an oligodendroglial cell line. In this functional screening, miR-26a was able to interact with SLC1A1 3' UTR suppressing the reporter activity. Transfection of a miR-26a mimic was then shown to decrease the endogenous SLC1A1 mRNA. Afterward, we have evaluated in blood platelets from interferon-β treated Multiple Sclerosis patients the expression of miR-26a and SLC1A1, finding not only their converse expression, but also a responsiveness to interferon-β therapy. Overall, these data suggest that mir-26a and SLC1A1 may play a role in the MS pathogenesis, and may be potential targets for the development of new biomarkers and/or therapeutic tools.
Collapse
|
4
|
Borisova T, Nazarova A, Dekaliuk M, Krisanova N, Pozdnyakova N, Borysov A, Sivko R, Demchenko AP. Neuromodulatory properties of fluorescent carbon dots: Effect on exocytotic release, uptake and ambient level of glutamate and GABA in brain nerve terminals. Int J Biochem Cell Biol 2015; 59:203-15. [DOI: 10.1016/j.biocel.2014.11.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 11/12/2014] [Accepted: 11/28/2014] [Indexed: 11/24/2022]
|
5
|
Soldatkin O, Nazarova A, Krisanova N, Borуsov A, Kucherenko D, Kucherenko I, Pozdnyakova N, Soldatkin A, Borisova T. Monitoring of the velocity of high-affinity glutamate uptake by isolated brain nerve terminals using amperometric glutamate biosensor. Talanta 2014; 135:67-74. [PMID: 25640127 DOI: 10.1016/j.talanta.2014.12.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 12/17/2014] [Accepted: 12/21/2014] [Indexed: 10/24/2022]
Abstract
Glutamate is the major excitatory neurotransmitter in the central nervous system, which is involved in the main aspects of normal brain functioning. High-affinity Na(+)-dependent glutamate transporters is key proteins, which transport extracellular glutamate to the cytoplasm of nerve cells, thereby preventing continuous activation of glutamate receptors, and thus the development of neurotoxicity. Disturbance in glutamate uptake is involved in the pathogenesis of major neurological disorders. Amperometric biosensors are the most promising and successful among electrochemical biosensors. In this study, we developed (1) amperometric glutamate biosensor, (2) methodological approach for the analysis of glutamate uptake in liquid samples of isolated rat brain nerve terminals (synaptosomes). The basal level of glutamate, the initial velocity of glutamate uptake and time-dependent accumulation of glutamate by synaptosomes were determined using developed glutamate biosensor. Comparative analysis of the data with those obtained by radioactive analysis, spectrofluorimetry and ion exchange chromatography was performed. Therefore, the methodological approach for monitoring of the velocity of glutamate uptake, which takes into consideration the definite level of endogenous glutamate in nerve terminals, was developed using glutamate biosensor.
Collapse
Affiliation(s)
- O Soldatkin
- Laboratory of Biomolecular Electronics, Department of Translation Mechanisms of Genetic Information, Institute of Molecular Biology and Genetics, NAS of Ukraine, 150 Zabolotnogo Str., Kyiv 03680, Ukraine.
| | - A Nazarova
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha Street, Kyiv 01601, Ukraine
| | - N Krisanova
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha Street, Kyiv 01601, Ukraine
| | - A Borуsov
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha Street, Kyiv 01601, Ukraine
| | - D Kucherenko
- Institute of High Technologies, Taras Shevchenko National University of Kyiv, 64, Volodymyrska Str., Kyiv 01003, Ukraine
| | - I Kucherenko
- Laboratory of Biomolecular Electronics, Department of Translation Mechanisms of Genetic Information, Institute of Molecular Biology and Genetics, NAS of Ukraine, 150 Zabolotnogo Str., Kyiv 03680, Ukraine
| | - N Pozdnyakova
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha Street, Kyiv 01601, Ukraine
| | - A Soldatkin
- Laboratory of Biomolecular Electronics, Department of Translation Mechanisms of Genetic Information, Institute of Molecular Biology and Genetics, NAS of Ukraine, 150 Zabolotnogo Str., Kyiv 03680, Ukraine; Institute of High Technologies, Taras Shevchenko National University of Kyiv, 64, Volodymyrska Str., Kyiv 01003, Ukraine
| | - T Borisova
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha Street, Kyiv 01601, Ukraine
| |
Collapse
|
6
|
Shatursky OY, Kasatkina LA, Rodik RV, Cherenok SO, Shkrabak AA, Veklich TO, Borisova TA, Kosterin SO, Kalchenko VI. Anion carrier formation by calix[4]arene-bis-hydroxymethylphosphonic acid in bilayer membranes. Org Biomol Chem 2014; 12:9811-21. [DOI: 10.1039/c4ob01886a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
7
|
Wang H, Liu S, Tang Z, Liu J. Some cross-talks between immune cells and epilepsy should not be forgotten. Neurol Sci 2014; 35:1843-9. [PMID: 25253631 DOI: 10.1007/s10072-014-1955-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 09/14/2014] [Indexed: 11/25/2022]
Abstract
Recent studies have reported that immune cells were not always found in brain specimens from epileptic patients, then should we stop investigating the relationship between these cells and epilepsy? The answer is no! In addition to immunocyte infiltration in brain parenchyma, a flurry of papers have demonstrated that there were significant alterations in peripheral blood cells (PBCs) immediately after seizure onset, especially changes in some specific transporters of neurotransmitters expressed on the membrane of immunocyte. These transporters may regulate neuronal excitability in mature neurons. Besides, many researchers did find activated leukocytes adhered to the endothelium of blood brain barrier or infiltrated into the brain parenchyma in several types of epilepsy both in human and animal studies; moreover, it is worth noting that different immune cells play different roles in epilepsy development, which was indicated by in vitro and in vivo evidence. This review is going to summarize available evidence supporting changes in PBCs after seizures, and will also focus on some specific effects of immune cells on epilepsy development.
Collapse
Affiliation(s)
- Hong Wang
- Dalian Municipal Central Hospital, No. 2 VIP Ward, Shahekou District, Dalian, 116000, Liaoning Province, China
| | | | | | | |
Collapse
|
8
|
Borisova T, Krisanova N, Borуsov A, Sivko R, Ostapchenko L, Babic M, Horak D. Manipulation of isolated brain nerve terminals by an external magnetic field using D-mannose-coated γ-Fe2O3 nano-sized particles and assessment of their effects on glutamate transport. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2014; 5:778-88. [PMID: 24991515 PMCID: PMC4077395 DOI: 10.3762/bjnano.5.90] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 05/12/2014] [Indexed: 06/03/2023]
Abstract
The manipulation of brain nerve terminals by an external magnetic field promises breakthroughs in nano-neurotechnology. D-Mannose-coated superparamagnetic nanoparticles were synthesized by coprecipitation of Fe(II) and Fe(III) salts followed by oxidation with sodium hypochlorite and addition of D-mannose. Effects of D-mannose-coated superparamagnetic maghemite (γ-Fe2O3) nanoparticles on key characteristics of the glutamatergic neurotransmission were analysed. Using radiolabeled L-[(14)C]glutamate, it was shown that D-mannose-coated γ-Fe2O3 nanoparticles did not affect high-affinity Na(+)-dependent uptake, tonic release and the extracellular level of L-[(14)C]glutamate in isolated rat brain nerve terminals (synaptosomes). Also, the membrane potential of synaptosomes and acidification of synaptic vesicles was not changed as a result of the application of D-mannose-coated γ-Fe2O3 nanoparticles. This was demonstrated with the potential-sensitive fluorescent dye rhodamine 6G and the pH-sensitive dye acridine orange. The study also focused on the analysis of the potential use of these nanoparticles for manipulation of nerve terminals by an external magnetic field. It was shown that more than 84.3 ± 5.0% of L-[(14)C]glutamate-loaded synaptosomes (1 mg of protein/mL) incubated for 5 min with D-mannose-coated γ-Fe2O3 nanoparticles (250 µg/mL) moved to an area, in which the magnet (250 mT, gradient 5.5 Т/m) was applied compared to 33.5 ± 3.0% of the control and 48.6 ± 3.0% of samples that were treated with uncoated nanoparticles. Therefore, isolated brain nerve terminals can be easily manipulated by an external magnetic field using D-mannose-coated γ-Fe2O3 nanoparticles, while the key characteristics of glutamatergic neurotransmission are not affected. In other words, functionally active synaptosomes labeled with D-mannose-coated γ-Fe2O3 nanoparticles were obtained.
Collapse
Affiliation(s)
- Tatiana Borisova
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha Street, Kiev, 01601, Ukraine
| | - Natalia Krisanova
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha Street, Kiev, 01601, Ukraine
| | - Arsenii Borуsov
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha Street, Kiev, 01601, Ukraine
- The Biological Faculty, Taras Shevchenko National University of Kyiv, 64 Volodymyrska Str, Kiev, Ukraine
| | - Roman Sivko
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha Street, Kiev, 01601, Ukraine
| | - Ludmila Ostapchenko
- The Biological Faculty, Taras Shevchenko National University of Kyiv, 64 Volodymyrska Str, Kiev, Ukraine
| | - Michal Babic
- The Department of Polymer Particles, Institute of Macromolecular Chemistry AS CR, Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic
| | - Daniel Horak
- The Department of Polymer Particles, Institute of Macromolecular Chemistry AS CR, Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic
| |
Collapse
|
9
|
Borysov A, Krisanova N, Chunihin O, Ostapchenko L, Pozdnyakova N, Borisova T. A comparative study of neurotoxic potential of synthesized polysaccharide-coated and native ferritin-based magnetic nanoparticles. Croat Med J 2014; 55:195-205. [PMID: 24891278 PMCID: PMC4049204 DOI: 10.3325/cmj.2014.55.195] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 05/15/2014] [Indexed: 11/14/2022] Open
Abstract
AIM To analyze the neurotoxic potential of synthesized magnetite nanoparticles coated by dextran, hydroxyethyl starch, oxidized hydroxyethyl starch, and chitosan, and magnetic nanoparticles combined with ferritin as a native protein. METHODS The size of nanoparticles was analyzed using photon correlation spectroscopy, their effects on the conductance of planar lipid membrane by planar lipid bilayer technique, membrane potential and acidification of synaptic vesicles by spectrofluorimetry, and glutamate uptake and ambient level of glutamate in isolated rat brain nerve terminals (synaptosomes) by radiolabeled assay. RESULTS Uncoated synthesized magnetite nanoparticles and nanoparticles coated by different polysaccharides had no significant effect on synaptic vesicle acidification, the initial velocity of L-[(14)C]glutamate uptake, ambient level of L-[(14)C]glutamate and the potential of the plasma membrane of synaptosomes, and conductance of planar lipid membrane. Native ferritin-based magnetic nanoparticles had no effect on the membrane potential but significantly reduced L-[(14)C]glutamate transport in synaptosomes and acidification of synaptic vesicles. CONCLUSIONS Our study indicates that synthesized magnetite nanoparticles in contrast to ferritin have no effects on the functional state and glutamate transport of nerve terminals, and so ferritin cannot be used as a prototype, analogue, or model of polysaccharide-coated magnetic nanoparticle in toxicity risk assessment and manipulation of nerve terminals by external magnetic fields. Still, the ability of ferritin to change the functional state of nerve terminals in combination with its magnetic properties suggests its biotechnological potential.
Collapse
Affiliation(s)
| | | | | | | | | | - Tatiana Borisova
- Tatiana Borisova, Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha Street, Kiev, 01601, Ukraine,
| |
Collapse
|
10
|
Krisanova N, Sivko R, Kasatkina L, Borуsov A, Borisova T. Excitotoxic potential of exogenous ferritin and apoferritin: Changes in ambient level of glutamate and synaptic vesicle acidification in brain nerve terminals. Mol Cell Neurosci 2014; 58:95-104. [DOI: 10.1016/j.mcn.2013.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 11/04/2013] [Accepted: 12/02/2013] [Indexed: 12/14/2022] Open
|
11
|
Glutamate release from platelets: Exocytosis versus glutamate transporter reversal. Int J Biochem Cell Biol 2013; 45:2585-95. [DOI: 10.1016/j.biocel.2013.08.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 08/02/2013] [Accepted: 08/07/2013] [Indexed: 11/22/2022]
|
12
|
Krisanova N, Kasatkina L, Sivko R, Borysov A, Nazarova A, Slenzka K, Borisova T. Neurotoxic potential of lunar and martian dust: influence on em, proton gradient, active transport, and binding of glutamate in rat brain nerve terminals. ASTROBIOLOGY 2013; 13:679-692. [PMID: 23919751 PMCID: PMC3746286 DOI: 10.1089/ast.2012.0950] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 05/11/2013] [Indexed: 06/02/2023]
Abstract
The harmful effects of lunar dust (LD) on directly exposed tissues are documented in the literature, whereas researchers are only recently beginning to consider its effects on indirectly exposed tissues. During inhalation, nano-/microsized particles are efficiently deposited in nasal, tracheobronchial, and alveolar regions and transported to the central nervous system. The neurotoxic potential of LD and martian dust (MD) has not yet been assessed. Glutamate is the main excitatory neurotransmitter involved in most aspects of normal brain function, whereas disturbances in glutamate homeostasis contribute to the pathogenesis of major neurological disorders. The research was focused on the analysis of the effects of LD/MD simulants (JSC-1a/JSC, derived from volcanic ash) on the key characteristics of glutamatergic neurotransmission. The average size of LD and MD particles (even minor fractions) before and after sonication was determined by dynamic light scattering. With the use of radiolabeled l-[(14)C]glutamate, it was shown that there is an increase in l-[(14)C]glutamate binding to isolated rat brain nerve terminals (synaptosomes) in low [Na(+)] media and at low temperature in the presence of LD. MD caused significantly lesser changes under the same conditions, whereas nanoparticles of magnetite had no effect at all. Fluorimetric experiments with potential-sensitive dye rhodamine 6G and pH-sensitive dye acridine orange showed that the potential of the plasma membrane of the nerve terminals and acidification of synaptic vesicles were not altered by LD/MD (and nanoparticles of magnetite). Thus, the unique effect of LD to increase glutamate binding to the nerve terminals was shown. This can have deleterious effects on extracellular glutamate homeostasis in the central nervous system and cause alterations in the ambient level of glutamate, which is extremely important for proper synaptic transmission. During a long-term mission, a combination of constant irritation due to dust particles, inflammation, stress, low gravity and microgravity, radiation, UV, and so on may consequently change the effects of the dust and aggravate neurological consequences.
Collapse
Affiliation(s)
- Natalia Krisanova
- Department of Neurochemistry, Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kiev, Ukraine
| | | | | | | | | | | | | |
Collapse
|
13
|
Krisanova N, Sivko R, Kasatkina L, Borisova T. Neuroprotection by lowering cholesterol: A decrease in membrane cholesterol content reduces transporter-mediated glutamate release from brain nerve terminals. Biochim Biophys Acta Mol Basis Dis 2012; 1822:1553-61. [DOI: 10.1016/j.bbadis.2012.06.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 05/22/2012] [Accepted: 06/11/2012] [Indexed: 01/05/2023]
|