1
|
Petković A, Chaudhury D. Encore: Behavioural animal models of stress, depression and mood disorders. Front Behav Neurosci 2022; 16:931964. [PMID: 36004305 PMCID: PMC9395206 DOI: 10.3389/fnbeh.2022.931964] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022] Open
Abstract
Animal studies over the past two decades have led to extensive advances in our understanding of pathogenesis of depressive and mood disorders. Among these, rodent behavioural models proved to be of highest informative value. Here, we present a comprehensive overview of the most popular behavioural models with respect to physiological, circuit, and molecular biological correlates. Behavioural stress paradigms and behavioural tests are assessed in terms of outcomes, strengths, weaknesses, and translational value, especially in the domain of pharmacological studies.
Collapse
Affiliation(s)
| | - Dipesh Chaudhury
- Laboratory of Neural Systems and Behaviour, Department of Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
2
|
Kwon HH, Neupane C, Shin J, Gwon DH, Yin Y, Shin N, Shin HJ, Hong J, Park JB, Yi Y, Kim DW, Kang JW. Calpain-2 as a Treatment Target in Prenatal Stress-induced Epileptic Spasms in Infant Rats. Exp Neurobiol 2019; 28:529-536. [PMID: 31495081 PMCID: PMC6751866 DOI: 10.5607/en.2019.28.4.529] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/21/2019] [Accepted: 07/08/2019] [Indexed: 12/23/2022] Open
Abstract
Stress can induce a serious epileptic encephalopathy that occurs during early infancy. Recent studies have revealed that prenatal stress exposure is a risk factor for the development of infantile spasms. Our previous work demonstrates that prenatal stress with betamethasone-induced alterations to the expression of the K+/Cl- co-transporter (KCC2) in gamma-aminobutyric acid (GABA) interneurons lowers the seizure threshold in exposed animals. Here, we further investigated the mechanisms involved in this KCC2 dysfunction and explored possible treatment options. We stressed Sprague-Dawley rats prenatally and further treated dams with betamethasone on gestational day 15, which increases seizure susceptibility and NMDA (N-Methyl-D-aspartate)-triggered spasms on postnatal day 15. In this animal model, first, we evaluated baseline calpain activity. Second, we examined the cleavage and dephosphorylation of KCC2. Finally, we checked the effect of a calpain inhibitor on seizure occurrence. The phosphorylated-N-methyl-Daspartate Receptor 2B (NR2B):non-phosphorylated NR2B ratio was found to be higher in the cortex of the prenatally stressed betamethasone model. We further found that the betamethasone model exhibited increased phosphorylation of calpain-2 and decreased phosphorylation of KCC2 and Glutamic acid decarboxylase 67 (GAD67). After using a calpain inhibitor in prenatal-stress rats, the seizure frequency decreased, while latency increased. GABAergic depolarization was further normalized in prenatal-stress rats treated with the calpain inhibitor. Our study suggests that calpain-dependent cleavage and dephosphorylation of KCC2 decreased the seizure threshold of rats under prenatal stress. Calpain-2 functions might, thus, be targeted in the future for the development of treatments for epileptic spasms.
Collapse
Affiliation(s)
- Hyeok Hee Kwon
- Department of Medical Science, Chungnam National University, Daejeon 35015, Korea.,Department of Anatomy, School of Medicine, Chungnam National University, Daejeon 35015, Korea.,Department of Pediatrics, Chungnam National University Hospital, Daejeon 35015, Korea
| | - Chiranjivi Neupane
- Department of Medical Science, Chungnam National University, Daejeon 35015, Korea.,Department of Physiology, School of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Juhee Shin
- Department of Medical Science, Chungnam National University, Daejeon 35015, Korea.,Department of Anatomy, School of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Do Hyeong Gwon
- Department of Medical Science, Chungnam National University, Daejeon 35015, Korea.,Department of Anatomy, School of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Yuhua Yin
- Department of Medical Science, Chungnam National University, Daejeon 35015, Korea.,Department of Anatomy, School of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Nara Shin
- Department of Medical Science, Chungnam National University, Daejeon 35015, Korea.,Department of Anatomy, School of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Hyo Jung Shin
- Department of Medical Science, Chungnam National University, Daejeon 35015, Korea.,Department of Anatomy, School of Medicine, Chungnam National University, Daejeon 35015, Korea.,Brain Research Institute, School of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Jinpyo Hong
- Department of Anatomy, School of Medicine, Chungnam National University, Daejeon 35015, Korea.,Brain Research Institute, School of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Jin Bong Park
- Department of Medical Science, Chungnam National University, Daejeon 35015, Korea.,Brain Research Institute, School of Medicine, Chungnam National University, Daejeon 35015, Korea.,Department of Physiology, School of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - YoonYoung Yi
- Department of Pediatrics, Chungnam National University Hospital, Daejeon 35015, Korea
| | - Dong Woon Kim
- Department of Medical Science, Chungnam National University, Daejeon 35015, Korea.,Department of Anatomy, School of Medicine, Chungnam National University, Daejeon 35015, Korea.,Brain Research Institute, School of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Joon Won Kang
- Department of Medical Science, Chungnam National University, Daejeon 35015, Korea.,Brain Research Institute, School of Medicine, Chungnam National University, Daejeon 35015, Korea.,Department of Pediatrics, Chungnam National University Hospital, Daejeon 35015, Korea
| |
Collapse
|
3
|
Silberman DM, Acosta GB, Zorrilla Zubilete MA. Long-term effects of early life stress exposure: Role of epigenetic mechanisms. Pharmacol Res 2016; 109:64-73. [PMID: 26774789 DOI: 10.1016/j.phrs.2015.12.033] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 12/27/2015] [Accepted: 12/28/2015] [Indexed: 12/12/2022]
Abstract
Stress is an adaptive response to demands of the environment and thus essential for survival. Exposure to stress during the first years of life has been shown to have profound effects on the growth and development of an adult individual. There are evidences demonstrating that stressful experiences during gestation or in early life can lead to enhanced susceptibility to mental disorders. Early-life stress triggers hypothalamic-pituitary-adrenocortical (HPA) axis activation and the associated neurochemical reactions following glucocorticoid release are accompanied by a rapid physiological response. An excessive response may affect the developing brain resulting in neurobehavioral and neurochemical changes later in life. This article reviews the data from experimental studies aimed to investigate hormonal, functional, molecular and epigenetic mechanisms involved in the stress response during early-life programming. We think these studies might prove useful for the identification of novel pharmacological targets for more effective treatments of mental disorders.
Collapse
Affiliation(s)
- Dafne M Silberman
- Centro de Estudios Farmacológicos y Botánicos (CEFYBO-CONICET), 1ª Cátedra de Farmacología, Facultad de Medicina, UBA, Paraguay 2155, Piso 15, C1121ABG Ciudad Autónoma de Buenos Aires, Argentina
| | - Gabriela B Acosta
- Instituto de Investigaciones Farmacológicas (ININFA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires (UBA), Junín 956, 5(to) piso, C1113AAD, Ciudad Autónoma de Buenos Aires, Argentina.
| | - María A Zorrilla Zubilete
- Centro de Estudios Farmacológicos y Botánicos (CEFYBO-CONICET), 1ª Cátedra de Farmacología, Facultad de Medicina, UBA, Paraguay 2155, Piso 15, C1121ABG Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
4
|
Maur DG, Pascuan CG, Genaro AM, Zorrilla-Zubilete MA. Involvement of Nitric Oxide, Neurotrophins and HPA Axis in Neurobehavioural Alterations Induced by Prenatal Stress. ADVANCES IN NEUROBIOLOGY 2015; 10:61-74. [PMID: 25287536 DOI: 10.1007/978-1-4939-1372-5_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Several studies suggest that negative emotions during pregnancy generate adverse effects on the cognitive, behavioural and emotional development of the descendants. The psychoneuroendocrine pathways involve the transplacentary passage of maternal glucocorticoids in order to influence directly on fetal growth and brain development.Nitric oxide is a gaseous neurotransmitter that plays an important role in the control of neural activity by diffusing into neurons and participates in learning and memory processes. It has been demonstrated that nitric oxide is involved in the regulation of corticosterone secretion. Thus, it has been found that the neuronal isoform of nitric oxide synthase (nNOS) is an endogenous inhibitor of glucocorticoid receptor (GR) in the hippocampus and that nNOS in the hippocampus may participate in the modulation of hypothalamic-pituitary-adrenal axis activity via GR.Neurotrophins are a family of secreted growth factors consisting of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin 3 (NT3) and NT4. Although initially described in the nervous system, they regulate processes such as cell survival, proliferation and differentiation in several other compartments. It has been demonstrated that the NO-citrulline cycle acts together with BDNF in maintaining the progress of neural differentiation.In the present chapter, we explore the interrelation between nitric oxide, glucocorticoids and neurotrophins in brain areas that are key structures in learning and memory processes. The participation of this interrelation in the behavioural and cognitive alterations induced in the offspring by maternal stress is also addressed.
Collapse
Affiliation(s)
- Damian G Maur
- Department of Pharmacology, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
5
|
Hampe CS, Petrosini L, De Bartolo P, Caporali P, Cutuli D, Laricchiuta D, Foti F, Radtke JR, Vidova V, Honnorat J, Manto M. Monoclonal antibodies to 65kDa glutamate decarboxylase induce epitope specific effects on motor and cognitive functions in rats. Orphanet J Rare Dis 2013; 8:82. [PMID: 23738610 PMCID: PMC3680042 DOI: 10.1186/1750-1172-8-82] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 05/29/2013] [Indexed: 01/02/2023] Open
Abstract
Background Stiff Person Syndrome (SPS) is a rare autoimmune movement disorder characterized by the presence of autoantibodies specific to the smaller isoform of glutamate decarboxylase (GAD65). A pathological role of these antibodies has been suggested by their capacity to inhibit GAD65 enzyme activity and by the observation that rats receiving cerebellar injections of GAD65Ab showed cerebellar motor hyperexcitability. To assess the effect of epitope-specific GAD65Ab on cognitive and motor functions, we conducted behavioral experiments in rats that received cerebellar injections with two distinct monoclonal GAD65Ab (b96.11 and b78). Methods Rats received three injections of GAD65Ab b96.11 (5 or 7 μg), GAD65Ab b78 (5 or 7 μg), or saline at the level of three cerebellar nuclei. Animals were submitted to neurological evaluation and Morris Water Maze (MWM) test. Cellular internalization of GAD65Ab was analyzed by Flow Cytometry, Fluorescence and Bright Field microscopy. Results Monoclonal GAD65Ab induced dose-dependent and epitope-specific effects on motor and cognitive functions. Injections of the higher dose altered motor and spatial procedural behaviors, while the lower dose induced only modest cerebellar motor symptoms and did not affect MWM performances. While b96.11 provoked immediate severe effects, which rapidly decreased, b78 induced moderate but prolonged effects. Both GAD65Ab were taken up by live cells in a dose-dependent manner. Conclusions Our findings support the hypothesis that epitope-specific GAD65Ab induce cerebellar dysfunction impairing motor and procedural abilities. This is the first demonstration of a critical role of cerebellar nuclei GAD65 enzyme in procedural spatial functions.
Collapse
Affiliation(s)
- Christiane S Hampe
- University of Washington, School of Medicine, SLU S-276, Seattle, WA 98109, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|