1
|
Villa RF, Ferrari F, Gorini A. Effects of Chronic Hypertension on the Energy Metabolism of Cerebral Cortex Mitochondria in Normotensive and in Spontaneously Hypertensive Rats During Aging. Neuromolecular Med 2024; 26:2. [PMID: 38393429 DOI: 10.1007/s12017-023-08772-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 12/02/2023] [Indexed: 02/25/2024]
Abstract
In this study the subcellular modifications undergone by cerebral cortex mitochondrial metabolism in chronic hypertension during aging were evaluated. The catalytic properties of regulatory energy-linked enzymes of Tricarboxylic Acid Cycle (TCA), Electron Transport Chain (ETC) and glutamate metabolism were assayed on non-synaptic mitochondria (FM, located in post-synaptic compartment) and on intra-synaptic mitochondria of pre-synaptic compartment, furtherly divided in "light" (LM) and "heavy" (HM) mitochondria, purified form cerebral cortex of normotensive Wistar Kyoto Rats (WKY) versus Spontaneously Hypertensive Rats (SHR) at 6, 12 and 18 months. During physiological aging, the metabolic machinery was differently expressed in pre- and post-synaptic compartments: LM and above all HM were more affected by aging, displaying lower ETC activities. In SHR at 6 months, FM and LM showed an uncoupling between TCA and ETC, likely as initial adaptive response to hypertension. During pathological aging, HM were particularly affected at 12 months in SHR, as if the adaptive modifications in FM and LM at 6 months granted a mitochondrial functional balance, while at 18 months all the neuronal mitochondria displayed decreased metabolic fluxes versus WKY. This study describes the effects of chronic hypertension on cerebral mitochondrial energy metabolism during aging through functional proteomics of enzymes at subcellular levels, i.e. in neuronal soma and synapses. In addition, this represents the starting point to envisage an experimental physiopathological model which could be useful also for pharmacological studies, to assess drug actions during the development of age-related pathologies that could coexist and/or are provoked by chronic hypertension.
Collapse
Affiliation(s)
- Roberto Federico Villa
- Department of Biology and Biotechnology, Laboratory of Pharmacology and Molecular Medicine of Central Nervous System, University of Pavia, Via Ferrata, 9, 27100, Pavia, Italy.
| | - Federica Ferrari
- Department of Biology and Biotechnology, Laboratory of Pharmacology and Molecular Medicine of Central Nervous System, University of Pavia, Via Ferrata, 9, 27100, Pavia, Italy
- School of Neurology, Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi. 21, 27100, Pavia, Italy
| | - Antonella Gorini
- Department of Biology and Biotechnology, Laboratory of Pharmacology and Molecular Medicine of Central Nervous System, University of Pavia, Via Ferrata, 9, 27100, Pavia, Italy
| |
Collapse
|
2
|
Cai J, Yang Z, Huang Y, Jian J, Tang J. Effects of Chinese herbal medicines on growth performance, intestinal flora, immunity and serum metabolites of hybrid grouper (Epinephelus fuscoguttatus♀×Epinephelus lanceolatu♂). FISH & SHELLFISH IMMUNOLOGY 2023; 140:108946. [PMID: 37453492 DOI: 10.1016/j.fsi.2023.108946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
The immunomodulatory roles of Chinese herbal Medicine (CHM) in aquatic animals have been well-recorded. However, how CHM impacts the intestinal microbiota and serum metabolism is not fully understood. In this study, the effects of different additive levels of CHM on the growth performance, immunity, intestinal flora and serum metabolism of hybrid grouper (♀Epinephelus fuscoguttatus × ♂Epinephelus lanceolatu) were investigated. The addition of 0.5%, 1.0%, 1.5% and 2.0% Chinese herbal medicine compound to feed could significantly improve the weight gain rate (WGR), specific growth rate (SGR) and survival rate (SR) of grouper, reduced feed coefficient, while had no significant difference on morphometric parameter. The most significant improvement for the parameters above was observed in 1.5% group. Different addition levels of CHM could also significantly enhance the activities of ACP, AKP, SOD, CAT and LZM in serum. Accordingly, the supplementation of CHM significantly induced up-regulation of immune genes such as IL-8, IL-1β, TNF-α, Nrf2, Lzm in the liver, spleen and head kidney of grouper, improved the resistance of grouper to V. harveyi as well. The intestinal flora analysis showed that at the phylum level, the main dominant species of intestinal microorganisms were Firmicutes, Proteobacteria, Bacteroidota, Actinobacteriota, Gemmatimonadota, Desulfobacterota, Fusobacteriota and Myxococcota. At the genus level, the high abundance was Lactobacillus, Streptococcus, Bacteroides, Escherichia, Romboutsia, Sphingomonas and Muribaculaceae. The abundance of probiotics (such as Lachnospiraceae, Lactobacillaceae, Streptococcaceae, etc) in CHM-supplement groups were higher (highest in 1.5% group) compared with control group. Moreover, a total of 11 common differential metabolic pathways were screened by LC-MS metabolism analysis of serum, they were Neuroactive ligand-receptor interaction, Purine metabolism, Linoleic acid, Glycerophospholipid metabolism, Taurine and hypotaurine metabolism, Arginine and proline metabolism, ABC transporters, Aminoacyl-tRNA biosynthesis, Arachidonic acid metabolism, Drug metabolism-cytochrome P450, alpha-Linolenic acid metabolism. Also, three common differential metabolites (PI(20:4(5Z,8Z,11Z,14Z)/18:1(11Z)), PC(20:3(8Z,11Z,14Z)/22:1(13Z)), PC(22:0/20:4(5Z,8Z,11Z,14Z)) associated with intestinal health, growth and disease resistance was found. These data will contributes to a comprehensive understand for the regulatory roles of CHM on fish, which is also beneficial for the disease control and sustainable development of aquaculture.
Collapse
Affiliation(s)
- Jia Cai
- College of Fisheries, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, 524088, PR China; Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Academy of Sciences, Nanning, 530007, PR China
| | - Zhenggao Yang
- College of Fisheries, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, 524088, PR China
| | - Yu Huang
- College of Fisheries, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, 524088, PR China
| | - Jichang Jian
- College of Fisheries, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, 524088, PR China.
| | - Jufen Tang
- College of Fisheries, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, 524088, PR China.
| |
Collapse
|
3
|
Brain Bioenergetics in Chronic Hypertension: Risk Factor for Acute Ischemic Stroke. Biochem Pharmacol 2022; 205:115260. [PMID: 36179931 DOI: 10.1016/j.bcp.2022.115260] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/23/2022]
Abstract
Chronic hypertension is one of the key modifiable risk factors for acute ischemic stroke, also contributing to determine greater neurological deficits and worse functional outcome when an acute cerebrovascular event would occur. A tight relationship exists between cerebrovascular autoregulation, neuronal activity and brain bioenergetics. In chronic hypertension, progressive adaptations of these processes occur as an attempt to cope with the demanding necessity of brain functions, creating a new steady-state homeostatic condition. However, these adaptive modifications are insufficient to grant an adequate response to possible pathological perturbations of the established fragile hemodynamic and metabolic homeostasis. In this narrative review, we will discuss the main mechanisms by which alterations in brain bioenergetics and mitochondrial function in chronic hypertension could lead to increased risk of acute ischemic stroke, stressing the interconnections between hemodynamic factors (i.e. cerebral autoregulation and neurovascular coupling) and metabolic processes. Both experimental and clinical pieces of evidence will be discussed. Moreover, the potential role of mitochondrial dysfunction in determining, or at least sustaining, the pathogenesis and progression of chronic neurogenic hypertension will be considered. In the perspective of novel therapeutic strategies aiming at improving brain bioenergetics, we propose some determinant factors to consider in future studies focused on the cause-effect relationships between chronic hypertension and brain bioenergetic abnormalities (and vice versa), so to help translational research in this so-far unfilled gap.
Collapse
|
4
|
Villa RF, Gorini A, Ferrari F. Clonidine and Brain Mitochondrial Energy Metabolism: Pharmacodynamic Insights Beyond Receptorial Effects. Neurochem Res 2022; 47:1429-1441. [DOI: 10.1007/s11064-022-03541-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 12/27/2022]
|
5
|
Ferrari F, Viscardi P, Gorini A, Villa RF. Synaptic ATPases system of rat frontal cerebral cortex during aging. Neurosci Lett 2019; 694:74-79. [DOI: 10.1016/j.neulet.2018.11.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 11/01/2018] [Accepted: 11/19/2018] [Indexed: 01/28/2023]
|
6
|
Ferrari F, Gorini A, Hoyer S, Villa RF. Glutamate metabolism in cerebral mitochondria after ischemia and post-ischemic recovery during aging: relationships with brain energy metabolism. J Neurochem 2018; 146:416-428. [PMID: 29779216 DOI: 10.1111/jnc.14464] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 05/11/2018] [Accepted: 05/14/2018] [Indexed: 12/17/2022]
Abstract
Glutamate is involved in cerebral ischemic injury, but its role has not been completely clarified and studies are required to understand how to minimize its detrimental effects, contemporarily boosting the positive ones. In fact, glutamate is not only a neurotransmitter, but primarily a key metabolite for brain bioenergetics. Thus, we investigated the relationships between glutamate and brain energy metabolism in an in vivo model of complete cerebral ischemia of 15 min and during post-ischemic recovery after 1, 24, 48, 72, and 96 h in 1-year-old adult and 2-year-old aged rats. The maximum rates (Vmax ) of glutamate dehydrogenase (GlDH), glutamate-oxaloacetate transaminase, and glutamate-pyruvate transaminase were assayed in somatic mitochondria (FM) and in intra-synaptic 'Light' mitochondria and intra-synaptic 'Heavy' mitochondria ones purified from cerebral cortex, distinguishing post- and pre-synaptic compartments. During ischemia, none of the enzymes were modified in adult animals. In aged ones, glutamate-oxaloacetate transaminase was increased in FM and GlDH in intra-synaptic 'Heavy' mitochondria, stimulating glutamate catabolism. During post-ischemic recovery, FM did not show modifications at both ages while, in intra-synaptic mitochondria of adult animals, glutamate catabolism was increased after 1 h of recirculation and decreased after 48 and 72 h, whereas it remained decreased up to 96 h in aged rats. These results, with those previously published about Krebs' cycle and Electron Transport Chain (Villa et al., [2013] Neurochem. Int. 63, 765-781), demonstrate that: (i) Vmax of energy-linked enzymes are different in the various cerebral mitochondria, which (ii) respond differently to ischemia and post-ischemic recovery, also (iii) with respect to aging.
Collapse
Affiliation(s)
- Federica Ferrari
- Laboratory of Pharmacology and Molecular Medicine of Central Nervous System, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Antonella Gorini
- Laboratory of Pharmacology and Molecular Medicine of Central Nervous System, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Siegfried Hoyer
- Laboratory of Pharmacology and Molecular Medicine of Central Nervous System, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy.,Department of Pathology, University Clinic, University of Heidelberg, Heidelberg, Germany
| | - Roberto Federico Villa
- Laboratory of Pharmacology and Molecular Medicine of Central Nervous System, Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| |
Collapse
|
7
|
Villa RF, Ferrari F, Bagini L, Gorini A, Brunello N, Tascedda F. Mitochondrial energy metabolism of rat hippocampus after treatment with the antidepressants desipramine and fluoxetine. Neuropharmacology 2017; 121:30-38. [DOI: 10.1016/j.neuropharm.2017.04.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 04/10/2017] [Accepted: 04/14/2017] [Indexed: 01/26/2023]
|
8
|
Filipović D, Costina V, Perić I, Stanisavljević A, Findeisen P. Chronic fluoxetine treatment directs energy metabolism towards the citric acid cycle and oxidative phosphorylation in rat hippocampal nonsynaptic mitochondria. Brain Res 2017; 1659:41-54. [DOI: 10.1016/j.brainres.2017.01.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 12/24/2016] [Accepted: 01/12/2017] [Indexed: 01/12/2023]
|
9
|
Ferrari F, Villa RF. The Neurobiology of Depression: an Integrated Overview from Biological Theories to Clinical Evidence. Mol Neurobiol 2016; 54:4847-4865. [DOI: 10.1007/s12035-016-0032-y] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 08/01/2016] [Indexed: 12/21/2022]
|
10
|
Villa RF, Ferrari F, Gorini A, Brunello N, Tascedda F. Effect of desipramine and fluoxetine on energy metabolism of cerebral mitochondria. Neuroscience 2016; 330:326-34. [DOI: 10.1016/j.neuroscience.2016.05.051] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/24/2016] [Accepted: 05/25/2016] [Indexed: 12/14/2022]
|
11
|
Grieb P, Jünemann A, Rekas M, Rejdak R. Citicoline: A Food Beneficial for Patients Suffering from or Threated with Glaucoma. Front Aging Neurosci 2016; 8:73. [PMID: 27092075 PMCID: PMC4824764 DOI: 10.3389/fnagi.2016.00073] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/28/2016] [Indexed: 12/13/2022] Open
Abstract
Oral form of citicoline, a nootropic and neuroprotective drug in use for almost five decades, recently was pronounced a food supplement in both USA and EU. The idea of adding citicoline to topical treatment of primary open angle glaucoma (POAG) aimed at decreasing intraocular pressure (IOP) appeared as a logical consequence of accepting neurodegenerative character of this disease. Experimental data, and also few clinical studies indicate that this substance has potential to counteract some important pathological mechanisms which seem to contribute to POAG initiation and progression, such as excitotoxicity and oxidative stress.
Collapse
Affiliation(s)
- Pawel Grieb
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre, Polish Academy of Sciences Warsaw, Poland
| | - Anselm Jünemann
- Department of Ophthalmology, University of Rostock Rostock, Germany
| | - Marek Rekas
- Department of Ophthalmology, Military Institute of Medicine Warsaw, Poland
| | - Robert Rejdak
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre, Polish Academy of SciencesWarsaw, Poland; Department of General Ophthalmology, Medical University of LublinLublin, Poland
| |
Collapse
|
12
|
Neuroprotection for ischaemic stroke: Current status and challenges. Pharmacol Ther 2015; 146:23-34. [DOI: 10.1016/j.pharmthera.2014.09.003] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 09/02/2014] [Indexed: 12/31/2022]
|
13
|
Ferrari F, Gorini A, Villa RF. Energy Metabolism of Synaptosomes from Different Neuronal Systems of Rat Cerebellum During Aging: A Functional Proteomic Characterization. Neurochem Res 2014; 40:172-85. [DOI: 10.1007/s11064-014-1482-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 11/03/2014] [Accepted: 11/18/2014] [Indexed: 01/06/2023]
|
14
|
Hernández-Esquivel L, Pavón N, Buelna-Chontal M, González-Pacheco H, Belmont J, Chávez E. Citicoline (CDP-choline) protects myocardium from ischemia/reperfusion injury via inhibiting mitochondrial permeability transition. Life Sci 2013; 96:53-8. [PMID: 24389400 DOI: 10.1016/j.lfs.2013.12.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 12/03/2013] [Accepted: 12/17/2013] [Indexed: 01/09/2023]
Abstract
AIMS Oxidative stress emerges after reperfusion of an organ following an ischemic period and results in tissue damage. In the heart, an amplified generation of reactive oxygen species and a significant Ca(2+) accumulation cause ventricular arrhythmias and mitochondrial dysfunction. This occurs in consequence of increased non-specific permeability. A number of works have shown that permeability transition is a common substrate that underlies the reperfusion-induced heart injury. The aim of this work was to explore the possibility that CDP-choline may circumvent heart damage and mitochondrial permeability transition. MAIN METHODS Rats were injected i.p. with CDP-choline at 20 mg/kg body weight. Heart electric behavior was followed during a closure/opening cycle of the left coronary descendent artery. Heart mitochondria were isolated from rats treated with CDP-choline, and their function was evaluated by analyzing Ca(2+) movements, achievement of a high level of the transmembrane potential, and respiratory control. Oxidative stress was estimated following the activity of the enzymes cis-aconitase and superoxide dismutase, as well as the disruption of mitochondrial DNA. KEY FINDINGS This study shows that CDP-choline avoided ventricular arrhythmias and drop of blood pressure. Results also show that mitochondria, isolated from CDP-choline-treated rats, maintained selective permeability, retained accumulated Ca(2+), an elevated value of transmembrane potential, and a high ratio of respiratory control. Furthermore, activity of cis-aconitase enzyme and mDNA structure were preserved. SIGNIFICANCE This work introduces CDP-choline as a useful tool to preserve heart function from reperfusion damage by inhibiting mitochondrial permeability transition.
Collapse
Affiliation(s)
- Luz Hernández-Esquivel
- Departamento de Bioquímica, Instituto Nacional de Cardiología, Ignacio Chávez, Mexico, D. F. Mexico
| | - Natalia Pavón
- Departamento de Farmacología, Instituto Nacional de Cardiología, Ignacio Chávez, Mexico, D. F. Mexico
| | - Mabel Buelna-Chontal
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología, Ignacio Chávez, Mexico, D. F. Mexico
| | | | - Javier Belmont
- Departamento de Bioquímica, Instituto Nacional de Cardiología, Ignacio Chávez, Mexico, D. F. Mexico
| | - Edmundo Chávez
- Departamento de Bioquímica, Instituto Nacional de Cardiología, Ignacio Chávez, Mexico, D. F. Mexico.
| |
Collapse
|
15
|
Villa RF, Ferrari F, Gorini A. Functional Proteomics Related to Energy Metabolism of Synaptosomes from Different Neuronal Systems of Rat Hippocampus during Aging. J Proteome Res 2013; 12:5422-35. [DOI: 10.1021/pr400834g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Roberto F. Villa
- Department of Biology and
Biotechnology - Laboratory of Pharmacology and Molecular Medicine
of Central Nervous System, University of Pavia, Via Ferrata, 9, 27100 Pavia, Italy
| | - Federica Ferrari
- Department of Biology and
Biotechnology - Laboratory of Pharmacology and Molecular Medicine
of Central Nervous System, University of Pavia, Via Ferrata, 9, 27100 Pavia, Italy
| | - Antonella Gorini
- Department of Biology and
Biotechnology - Laboratory of Pharmacology and Molecular Medicine
of Central Nervous System, University of Pavia, Via Ferrata, 9, 27100 Pavia, Italy
| |
Collapse
|
16
|
Energy metabolism of cerebral mitochondria during aging, ischemia and post-ischemic recovery assessed by functional proteomics of enzymes. Neurochem Int 2013; 63:765-81. [PMID: 24128653 DOI: 10.1016/j.neuint.2013.10.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 09/13/2013] [Accepted: 10/07/2013] [Indexed: 11/23/2022]
Abstract
Stroke is a leading cause of death and disability, but most of the therapeutic approaches failed in clinical trials. The energy metabolism alterations, due to marked ATP decline, are strongly related to stroke and, at present, their physiopathological roles are not fully understood. Thus, the aim of this study was to evaluate the effects of aging on ischemia-induced changes in energy mitochondrial transduction and the consequences on overall brain energy metabolism in an in vivo experimental model of complete cerebral ischemia of 15min duration and during post-ischemic recirculation after 1, 24, 48, 72 and 96h, in 1year "adult" and 2year-old "aged" rats. The maximum rate (Vmax) of citrate synthase, malate dehydrogenase, succinate dehydrogenase for Krebs' cycle; NADH-cytochrome c reductase and cytochrome oxidase for electron transfer chain (ETC) were assayed in non-synaptic "free" mitochondria and in two populations of intra-synaptic mitochondria, i.e., "light" and "heavy" mitochondria. The catalytic activities of enzymes markedly differ according to: (a) mitochondrial type (non-synaptic, intra-synaptic), (b) age, (c) acute effects of ischemia and (d) post-ischemic recirculation at different times. Enzyme activities changes are injury maturation events and strictly reflect the bioenergetic state of the tissue in each specific experimental condition respect to the energy demand, as shown by the comparative evaluation of the energy-linked metabolites and substrates content. Remarkably, recovery of mitochondrial function was more difficult for intra-synaptic mitochondria in "aged" rats, but enzyme activities of energy metabolism tended to normalize in all mitochondrial populations after 96h of recirculation. This observation is relevant for Therapy, indicating that mitochondrial enzymes may be important metabolic factors for the responsiveness of ischemic penumbra towards the restore of cerebral functions.
Collapse
|
17
|
Villa R, Ferrari F, Gorini A. ATP-ases of synaptic plasma membranes in striatum: Enzymatic systems for synapses functionality by in vivo administration of l-acetylcarnitine in relation to Parkinson’s Disease. Neuroscience 2013; 248:414-26. [DOI: 10.1016/j.neuroscience.2013.06.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 06/13/2013] [Indexed: 11/17/2022]
|