1
|
Baghcheghi Y, Razazpour F, Seyedi F, Arefinia N, Hedayati-Moghadam M. Exploring the molecular mechanisms of PPARγ agonists in modulating memory impairment in neurodegenerative disorders. Mol Biol Rep 2024; 51:945. [PMID: 39215798 DOI: 10.1007/s11033-024-09850-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
Neurodegenerative diseases are characterized by progressive memory impairment and cognitive decline. This review aims to unravel the molecular mechanisms involved in the enhancement of memory function and mitigation of memory impairment through the activation of PPARγ agonists in neurodegenerative diseases. The findings suggest that PPARγ agonists modulate various molecular pathways involved in memory formation and maintenance. Activation of PPARγ enhances synaptic plasticity, promotes neuroprotection, suppresses neuroinflammation, attenuates oxidative stress, and regulates amyloid-beta metabolism. The comprehensive understanding of these molecular mechanisms would facilitate the development of novel therapeutic approaches targeting PPARγ to improve memory function and ultimately to alleviate the burden of neurodegenerative diseases. Further research, including clinical trials, is warranted to explore the efficacy, safety, and optimal use of specific PPARγ agonists as potential therapeutic agents in the treatment of memory impairments associated with neurodegenerative diseases.
Collapse
Affiliation(s)
- Yousef Baghcheghi
- Bio Environmental Health Hazards Research Center, Jiroft University of Medical Sciences, Jiroft, Iran
- Student Research Committee, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Fateme Razazpour
- Student Research Committee, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Fatemeh Seyedi
- Department of Anatomical Sciences, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Nasir Arefinia
- Bio Environmental Health Hazards Research Center, Jiroft University of Medical Sciences, Jiroft, Iran
- Student Research Committee, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Mahdiyeh Hedayati-Moghadam
- Student Research Committee, Jiroft University of Medical Sciences, Jiroft, Iran.
- Department of Physiology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran.
| |
Collapse
|
2
|
Li J, Chen S, Wang F, Zhang J, Zeyghami MA, Koohsar F, Ayatollahi AA, Amini A. Effect of Rosiglitazone, the Peroxisome Proliferator-Activated Receptor (PPAR)-γ Agonist, on Apoptosis, Inflammatory Cytokines and Oxidative Stress in pentylenetetrazole-Induced Seizures in Kindled Mice. Neurochem Res 2023:10.1007/s11064-023-03951-7. [PMID: 37204549 DOI: 10.1007/s11064-023-03951-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 04/10/2023] [Accepted: 05/09/2023] [Indexed: 05/20/2023]
Abstract
A growing body of evidence has shown that seizure can trigger inflammatory cascades through increasing the expression of several inflammatory cytokines. It has been proved that peroxisome proliferator-activated receptor-γ agonists have immunomodulatory, anti-inflammatory, and neuroprotective effects beyond the putative hypoglycemic effects. Thus, we investigated the inhibitory effect of rosiglitazone on the development of pentylenetetrazol (PTZ)-induced kindling via affecting the inflammatory pathway. Male C57BL/6 mice were randomly divided into vehicle group (0.1% DMSO), PTZ-group and rosiglitazone-PTZ-group. Kindling was induced by the administration of PTZ (40 mg/kg, i.p) every other day and mice were observed for 20 min after each PTZ injection. Twenty-four hours after the last dose, animals were euthanized and hippocampus was isolated. The level of Malondialdehyde (MDA), Superoxide Dismutase (SOD), and Catalase (CAT) activity were quantified in hippocampus by biochemical methods. The protein levels of IL-1β, IL-6, IL-10, IFN-γ, TNF-α, caspase-3, iNOS, PPAR-γ, Bcl-2, or Bax factors were measured with western blotting. Also, the quantitative real-time PCR were used to evaluate the mRNA expression of those factors. Pretreatment with rosiglitazone significantly prevented the progression of kindling in comparison with control group. The rosiglitazone significantly decreased the MDA level and increased the CAT, and SOD levels in the rosiglitazone treated mice compared to those in the PTZ group (P < 0.01). Using real-time PCR and Western blotting assay, similar results were obtained. The expression levels of IL-1β, IL-6, IL-10, IFN-γ, TNF-α, Bax or PPAR-γ were significantly changed in the brain. The results of this study suggest that effect of rosiglitazone may be crucial in its ability to protect against the neuronal damage caused by PTZ induced seizure.
Collapse
Affiliation(s)
- Jinliang Li
- Department of Pediatrics, Central People's Hospital of Zhanjiang, Zhanjiang, 524045, Guangdong, China
| | - Suping Chen
- Department of Pediatrics, Central People's Hospital of Zhanjiang, Zhanjiang, 524045, Guangdong, China
| | - Feilong Wang
- Department of Pediatrics, Central People's Hospital of Zhanjiang, Zhanjiang, 524045, Guangdong, China
| | - Jingyu Zhang
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Zhanjiang, 524045, Guangdong, China.
| | - Mohammad Ali Zeyghami
- Neuroscience Research Center, Department of Pharmacology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Faramarz Koohsar
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ali Asghar Ayatollahi
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Abolfazl Amini
- Department of Medical Biotechnology, Faculty of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
3
|
Kumar S, Mehan S, Narula AS. Therapeutic modulation of JAK-STAT, mTOR, and PPAR-γ signaling in neurological dysfunctions. J Mol Med (Berl) 2023; 101:9-49. [PMID: 36478124 DOI: 10.1007/s00109-022-02272-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/10/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022]
Abstract
The cytokine-activated Janus kinase (JAK)-signal transducer and activator of transcription (STAT) cascade is a pleiotropic pathway that involves receptor subunit multimerization. The mammalian target of rapamycin (mTOR) is a ubiquitously expressed serine-threonine kinase that perceives and integrates a variety of intracellular and environmental stimuli to regulate essential activities such as cell development and metabolism. Peroxisome proliferator-activated receptor-gamma (PPARγ) is a prototypical metabolic nuclear receptor involved in neural differentiation and axon polarity. The JAK-STAT, mTOR, and PPARγ signaling pathways serve as a highly conserved signaling hub that coordinates neuronal activity and brain development. Additionally, overactivation of JAK/STAT, mTOR, and inhibition of PPARγ signaling have been linked to various neurocomplications, including neuroinflammation, apoptosis, and oxidative stress. Emerging research suggests that even minor disruptions in these cellular and molecular processes can have significant consequences manifested as neurological and neuropsychiatric diseases. Of interest, target modulators have been proven to alleviate neuronal complications associated with acute and chronic neurological deficits. This research-based review explores the therapeutic role of JAK-STAT, mTOR, and PPARγ signaling modulators in preventing neuronal dysfunctions in preclinical and clinical investigations.
Collapse
Affiliation(s)
- Sumit Kumar
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Punjab, Moga, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Punjab, Moga, India.
| | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC, 27516, USA
| |
Collapse
|
4
|
Senn L, Costa AM, Avallone R, Socała K, Wlaź P, Biagini G. Is the peroxisome proliferator-activated receptor gamma a putative target for epilepsy treatment? Current evidence and future perspectives. Pharmacol Ther 2023; 241:108316. [PMID: 36436690 DOI: 10.1016/j.pharmthera.2022.108316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
The peroxisome proliferator-activated receptor gamma (PPARγ), which belongs to the family of nuclear receptors, has been mainly studied as an important factor in metabolic disorders. However, in recent years the potential role of PPARγ in different neurological diseases has been increasingly investigated. Especially, in the search of therapeutic targets for patients with epilepsy the question of the involvement of PPARγ in seizure control has been raised. Epilepsy is a chronic neurological disorder causing a major impact on the psychological, social, and economic conditions of patients and their families, besides the problems of the disease itself. Considering that the world prevalence of epilepsy ranges between 0.5% - 1.0%, this condition is the fourth for importance among the other neurological disorders, following migraine, stroke, and dementia. Among others, temporal lobe epilepsy (TLE) is the most common form of epilepsy in adult patients. About 65% of individuals who receive antiseizure medications (ASMs) experience seizure independence. For those in whom seizures still recur, investigating PPARγ could lead to the development of novel ASMs. This review focuses on the most important findings from recent investigations about the potential intracellular PPARγ-dependent processes behind different compounds that exhibited anti-seizure effects. Additionally, recent clinical investigations are discussed along with the promising results found for PPARγ agonists and the ketogenic diet (KD) in various rodent models of epilepsy.
Collapse
Affiliation(s)
- Lara Senn
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; PhD School of Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Anna-Maria Costa
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Rossella Avallone
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Katarzyna Socała
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, PL 20-033 Lublin, Poland
| | - Piotr Wlaź
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, PL 20-033 Lublin, Poland
| | - Giuseppe Biagini
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy.
| |
Collapse
|
5
|
Roginskaya AI, Dyomina AV, Kovalenko AA, Zakharova MV, Schwarz AP, Melik-Kasumov TB, Zubareva OE. Effect of Anakinra on the Gene Expression of Receptors Activated by the Peroxisome Proliferator in the Rat Brain in the Lithium Pilocarpine Model of Epilepsy. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022020260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Seizer L, Rahimi S, Santos-Sierra S, Drexel M. Expression of toll like receptor 8 (TLR8) in specific groups of mouse hippocampal interneurons. PLoS One 2022; 17:e0267860. [PMID: 35507634 PMCID: PMC9067651 DOI: 10.1371/journal.pone.0267860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/16/2022] [Indexed: 11/18/2022] Open
Abstract
Toll-like receptors (TLR) are one of the main constituents of the innate immune system in mammals. They can detect conserved microbial structures (pathogen-associated molecular patterns) and host-derived ligands that are produced during cellular stress and damage (danger-associated molecular patterns) and may then initiate an intracellular signaling cascade leading to the expression of pro-inflammatory cytokines and immediate immune responses. Some TLR (TLR1, 2, 4, 5, and 6) are expressed on the cell surface while others (TLR3, 7, 8 and 9) are present on the surface of endosomes and their ligands require internalization before recognition is possible. Several TLR have also been detected in neurons where they may serve functions that are not related to immune responses. TLR2, 3, and 4 have been described in cortical neurons and, for TLR4, a seizure-promoting role in epilepsies associated with inflammation has been shown. TLR3, 7, and 8 expressed in neurons seem to influence the growth or withdrawal of neurites and robust activation of TLR8 in neurons may even induce neuronal death. The goal of the current study was to investigate the expression of TLR8 in the hippocampus of mice during postnatal development and in adulthood. We focused on three functionally distinct groups of GABAergic interneurons characterized by the expression of the molecular markers parvalbumin, somatostatin, or calretinin, and we applied double fluorescence immunohistochemistry and cell counts to quantify co-expression of TLR8 in the three groups of GABA-interneurons across hippocampal subregions. We found subregion-specific differences in the expression of TLR8 in these interneurons. During postnatal development, TLR8 was detected only in mice older than P5. While only a small fraction of hippocampal calretinin-positive interneurons expressed TLR8, most parvalbumin-positive interneurons in all hippocampal subregions co-expressed TLR8. Somatostatin-positive interneurons co-expressing TLR8 were mainly present in hippocampal sector CA3 but rare in the dentate gyrus and CA1. High expression of TLR8 in parvalbumin-interneurons may contribute to their high vulnerability in human temporal lobe epilepsy.
Collapse
Affiliation(s)
- Lennart Seizer
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
- Institute of Psychology, University of Innsbruck, Innsbruck, Austria
| | - Sadegh Rahimi
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Meinrad Drexel
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
7
|
Du K, He M, Zhao D, Wang Y, Ma C, Liang H, Wang W, Min D, Xue L, Guo F. Mechanism of cell death pathways in status epilepticus and related therapeutic agents. Biomed Pharmacother 2022; 149:112875. [PMID: 35367755 DOI: 10.1016/j.biopha.2022.112875] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/15/2022] [Accepted: 03/23/2022] [Indexed: 11/30/2022] Open
Abstract
The most severe form of epilepsy, status epilepticus (SE), causes brain damage and results in the development of recurring seizures. Currently, the management of SE remains a clinical challenge because patients do not respond adequately to conventional treatments. Evidence suggests that neural cell death worsens the occurrence and progression of SE. The main forms of cell death are apoptosis, necroptosis, pyroptosis, and ferroptosis. Herein, these mechanisms of neuronal death in relation to SE and the alleviation of SE by potential modulators that target neuronal death have been reviewed. An understanding of these pathways and their possible roles in SE may assist in the development of SE therapies and in the discovery of new agents.
Collapse
Affiliation(s)
- Ke Du
- Department of Pharmacology, School of Pharmaceutical Science, China Medical University, Shenyang 110001, China
| | - Miao He
- Department of Pharmaceutical Toxicology, School of Pharmaceutical Science, China Medical University, Shenyang 110001, China
| | - Dongyi Zhao
- Department of Pharmaceutical Toxicology, School of Pharmaceutical Science, China Medical University, Shenyang 110001, China
| | - Yuting Wang
- Department of Pharmaceutical Toxicology, School of Pharmaceutical Science, China Medical University, Shenyang 110001, China
| | - Chao Ma
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hongyue Liang
- Department of Pharmaceutical Toxicology, School of Pharmaceutical Science, China Medical University, Shenyang 110001, China
| | - Wuyang Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 209Tongshan Rd, Xuzhou 221002, China
| | - Dongyu Min
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang 110032, China.
| | - Lei Xue
- China Department of Oral and Maxillofacial Surgery, School of Stomatology, China Medical University, Shenyang, China.
| | - Feng Guo
- Department of Pharmaceutical Toxicology, School of Pharmaceutical Science, China Medical University, Shenyang 110001, China.
| |
Collapse
|
8
|
Zhong K, Qian C, Lyu R, Wang X, Hu Z, Yu J, Ma J, Ye Y. Anti-Epileptic Effect of Crocin on Experimental Temporal Lobe Epilepsy in Mice. Front Pharmacol 2022; 13:757729. [PMID: 35431921 PMCID: PMC9009530 DOI: 10.3389/fphar.2022.757729] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 03/01/2022] [Indexed: 11/23/2022] Open
Abstract
Temporal lobe epilepsy (TLE) is a common kind of refractory epilepsy. More than 30% TLE patients were multi-drug resistant. Some patients may even develop into status epilepticus (SE) because of failing to control seizures. Thus, one of the avid goals for anti-epileptic drug development is to discover novel potential compounds to treat TLE or even SE. Crocin, an effective component of Crocus sativus L., has been applied in several epileptogenic models to test its anti-epileptic effect. However, it is still controversial and its effect on TLE remains unclear. Therefore, we investigated the effects of crocin on epileptogenesis, generalized seizures (GS) in hippocampal rapid electrical kindling model as well as SE and spotaneous recurrent seizure (SRS) in pilocarpine-induced TLE model in ICR mice in this study. The results showed that seizure stages and cumulative afterdischarge duration were significantly depressed by crocin (20 and 50 mg/kg) during hippocampal rapid kindling acquisition. And crocin (100 mg/kg) significantly reduced the incidence of GS and average seizure stages in fully kindled animals. In pilocarpine-induced TLE model, the latency of SE was significantly prolonged and the mortality of SE was significantly decreased by crocin (100 mg/kg), which can also significantly suppress the number of SRS. The underlying mechanism of crocin may be involved in the protection of neurons, the decrease of tumor necrosis factor-α in the hippocampus and the increase of brain derived neurotrophic factor in the cortex. In conclusion, crocin may be a potential and promising anti-epileptic compound for treatment of TLE.
Collapse
Affiliation(s)
- Kai Zhong
- Department of Pharmacology, School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Chengyu Qian
- Department of Pharmacology, School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Rui Lyu
- Department of Pharmacology, School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Xinyi Wang
- Department of Pharmacology, School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Zhe Hu
- Department of Pharmacology, School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Jie Yu
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jing Ma
- Department of Pharmacy, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yilu Ye
- Department of Pharmacology, School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
9
|
Repurposing Peroxisome Proliferator-Activated Receptor Agonists in Neurological and Psychiatric Disorders. Pharmaceuticals (Basel) 2021; 14:ph14101025. [PMID: 34681249 PMCID: PMC8538250 DOI: 10.3390/ph14101025] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/15/2022] Open
Abstract
Common pathophysiological mechanisms have emerged for different neurological and neuropsychiatric conditions. In particular, mechanisms of oxidative stress, immuno-inflammation, and altered metabolic pathways converge and cause neuronal and non-neuronal maladaptative phenomena, which underlie multifaceted brain disorders. The peroxisome proliferator-activated receptors (PPARs) are nuclear receptors modulating, among others, anti-inflammatory and neuroprotective genes in diverse tissues. Both endogenous and synthetic PPAR agonists are approved treatments for metabolic and systemic disorders, such as diabetes, fatty liver disease, and dyslipidemia(s), showing high tolerability and safety profiles. Considering that some PPAR-acting drugs permeate through the blood-brain barrier, the possibility to extend their scope from the periphery to central nervous system has gained interest in recent years. Here, we review preclinical and clinical evidence that PPARs possibly exert a neuroprotective role, thereby providing a rationale for repurposing PPAR-targeting drugs to counteract several diseases affecting the central nervous system.
Collapse
|
10
|
Prowse N, Hayley S. Microglia and BDNF at the crossroads of stressor related disorders: Towards a unique trophic phenotype. Neurosci Biobehav Rev 2021; 131:135-163. [PMID: 34537262 DOI: 10.1016/j.neubiorev.2021.09.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 12/16/2022]
Abstract
Stressors ranging from psychogenic/social to neurogenic/injury to systemic/microbial can impact microglial inflammatory processes, but less is known regarding their effects on trophic properties of microglia. Recent studies do suggest that microglia can modulate neuronal plasticity, possibly through brain derived neurotrophic factor (BDNF). This is particularly important given the link between BDNF and neuropsychiatric and neurodegenerative pathology. We posit that certain activated states of microglia play a role in maintaining the delicate balance of BDNF release onto neuronal synapses. This focused review will address how different "activators" influence the expression and release of microglial BDNF and address the question of tropomyosin receptor kinase B (TrkB) expression on microglia. We will then assess sex-based differences in microglial function and BDNF expression, and how microglia are involved in the stress response and related disorders such as depression. Drawing on research from a variety of other disorders, we will highlight challenges and opportunities for modulators that can shift microglia to a "trophic" phenotype with a view to potential therapeutics relevant for stressor-related disorders.
Collapse
Affiliation(s)
- Natalie Prowse
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada.
| | - Shawn Hayley
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada.
| |
Collapse
|
11
|
Zubareva OE, Melik-Kasumov TB. The Gut–Brain Axis and Peroxisome Proliferator-Activated Receptors in the Regulation of Epileptogenesis. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021040013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Zhang R, Liu C, Li Y, Chen L, Xiang J. Tenacissoside H promotes neurological recovery of cerebral ischaemia/reperfusion injury in mice by modulating inflammation and oxidative stress via TrkB pathway. Clin Exp Pharmacol Physiol 2021; 48:757-769. [PMID: 32799328 DOI: 10.1111/1440-1681.13398] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 12/11/2022]
Abstract
Cerebral ischaemia/reperfusion (I/R)-induced acute brain injury remains a troublesome condition in clinical practice. The present study aimed to investigate the protective effect of tenacissoside H (TH) on I/R-induced cerebral injury in mice. Here, a mouse model of middle cerebral artery occlusion (MCAO) was established by an improved Longa-Zea method. TH was given by intraperitoneal injection once a day within 1 week before establishing the mouse MCAO model. The neurological functions of mice were evaluated and the apoptosis of neurons was also detected by the TUNEL method and Nissl's staining. ELISA and western blot were used to detect the expression of inflammatory factors, oxidation factors and proteins in the cerebral ischaemic cortex. The results revealed that TH dose-dependently reduced neurological impairment, neuron apoptosis and brain oedema induced by MCAO. Furthermore, TH attenuated the expression of pro-inflammatory cytokines (including interleukin (IL)-1β, IL-6 and tumour necrosis factor (TNF)-α), iNOS and nuclear factor (NF)-κB while increased production of anti-inflammatory cytokines (IL-4, IL-10 and BDNF) and proteins of tropomyosin-related kinase receptor B (TrkB) and PPARγ. Nevertheless, after the addition of TrkB inhibitor, the effects of TH above were mostly restrained. In conclusion, TH can protect mice against I/R-induced neurological impairments via modulating inflammation and oxidative stress through TrkB signalling.
Collapse
Affiliation(s)
- Rui Zhang
- Department of NICU, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Cui Liu
- Department of Cardiovascular Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yang Li
- Department of NICU, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Liang Chen
- Interventional Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus (Shanghai Fengxian District Central Hospital), Shanghai, China
| | - Jianfeng Xiang
- Interventional Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus (Shanghai Fengxian District Central Hospital), Shanghai, China
| |
Collapse
|
13
|
Palazzo RP, Torres ILS, Grefenhagen ÁI, da Silva BB, de Meireles LCF, de Vargas KC, Alves Z, Pereira Silva LO, Siqueira IR. Early life exposure to hypercaloric diet impairs eating behavior during weaning: The role of BDNF signaling and astrocyte marks. Int J Dev Neurosci 2020; 80:667-678. [PMID: 32926590 DOI: 10.1002/jdn.10063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/08/2020] [Accepted: 08/28/2020] [Indexed: 11/10/2022] Open
Abstract
Literature shows that gestational and/or lactational exposure to hypercaloric diets induces long term effects on eating behavior and the involvement of neurochemical mechanisms. We hypothesized that the effects of hypercaloric diets in early development phases can precede an overweight or an obesity status. The aim of the present study was to evaluate the impact of gestational and lactational exposure to cafeteria diet on eating behavior and neurochemical parameters, BDNF signaling, epigenetic and astrocyte marks in the hippocampus and olfactory bulb during the weaning phase. Pregnant female rats were randomized between standard and cafeteria diet, the respective diet was maintained through the lactational period. The framework of feeding pattern, meal, and its microstructure, was observed in postnatal day 20. Exposure to cafeteria diet increased the number of meals, associated with a lower first inter-meal interval and higher consumption in both genders, without any changes in body weight. Diet exposure also reduced the number of grooming, a behavior typically found at the end of meals. Hypercaloric diet exposure reduced BDNF levels in the olfactory bulb and hippocampus from rats of both sexes and increased the content of the TrkB receptor in hippocampi. It was observed an increase in HDAC5 levels, an epigenetic mark. Still, early exposure to the hypercaloric diet reduced hippocampal GFAP and PPARγ levels, without any effect on NeuN content, indicating that alterations in astrocytes can precede those neuronal outcomes. Our results showed that changes in interrelated neurochemical signaling, BDNF, and astrocyte marks, induced by hypercaloric diet in early stages of development may be related to impairment in the temporal distribution of eating pattern and consequent amounts of consumed food during the weaning phase.
Collapse
Affiliation(s)
- Roberta Passos Palazzo
- Programa de Pós-Graduação em Ciências Biológicas: Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Iraci L S Torres
- Programa de Pós-Graduação em Ciências Biológicas: Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Unidade de Experimentação Animal e Grupo de Pesquisa e Pós-Graduação, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Ágnis Iohana Grefenhagen
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Bruno Batista da Silva
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Kethleen Costa de Vargas
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Zingara Alves
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Lenir Orlandi Pereira Silva
- Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Ionara Rodrigues Siqueira
- Programa de Pós-Graduação em Ciências Biológicas: Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
14
|
Hong S, Xin Y, JiaWen W, ShuQin Z, GuiLian Z, HaiQin W, Zhen G, HongWei R, YongNan L. The P2X7 receptor in activated microglia promotes depression- and anxiety-like behaviors in lithium -pilocarpine induced epileptic rats. Neurochem Int 2020; 138:104773. [PMID: 32531197 DOI: 10.1016/j.neuint.2020.104773] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/17/2020] [Accepted: 05/20/2020] [Indexed: 12/14/2022]
Abstract
Depressive and anxious behaviors are the most common psychiatric symptoms of epilepsy, and may aggravate the epileptic condition and affect the patient's quality of life. Accumulating data obtained from both experimental animal models and patients have convincingly shown a critical role of P2X7 receptor (P2X7R) during depression and anxiety. Our study showed for the first time that the P2X7R is involved in promoting depression- and anxiety-like behaviors in lithium pilocarpine-induced epileptic rats. More importantly, direct anti-depressive and anti-anxiety effects were produced by the P2X7R antagonist Brilliant Blue G (BBG) is in this study, and the effect was similar to that of the classic anti-depressant and anti-anxiety drug fluoxetine. We also found that BBG did not affect the development of spontaneous recurrent seizures (SRS) and had a neuroprotective effect via inhibition of microglial activation after status epilepticus (SE). Thus, our data provide evidence that the P2X7R in activated microglia promotes depression- and anxiety-like behaviors in lithium-pilocarpine induced epileptic rats. Since previous studies have indicated that some anti-depression and anti-anxiety drugs may exacerbate seizures, our data support that the P2X7R is a promising therapeutic target for epilepsy associated with depression and anxiety.
Collapse
Affiliation(s)
- Sun Hong
- Department of Neurology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China.
| | - Yu Xin
- Department of Neurology, People's Liberation Army 401 Hospital, Qingdao, Shandong, 266071, China
| | - Wu JiaWen
- Department of Dermatology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China
| | - Zhan ShuQin
- Department of Neurology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China
| | - Zhang GuiLian
- Department of Neurology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China
| | - Wu HaiQin
- Department of Neurology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China
| | - Gao Zhen
- Department of Neurology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China
| | - Reng HongWei
- Department of Neurology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China
| | - Li YongNan
- Department of Neurology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, 150001, Heilongjiang Province, China
| |
Collapse
|
15
|
Tan C, Liu X, Peng W, Wang H, Zhou W, Jiang J, Wei X, Mo L, Chen Y, Chen L. Seizure-induced impairment in neuronal ketogenesis: Role of zinc-α2-glycoprotein in mitochondria. J Cell Mol Med 2020; 24:6833-6845. [PMID: 32340079 PMCID: PMC7299723 DOI: 10.1111/jcmm.15337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 01/11/2020] [Accepted: 04/12/2020] [Indexed: 12/14/2022] Open
Abstract
Ketone bodies (KBs) were known to suppress seizure. Untraditionally, neurons were recently reported to utilize fatty acids and produce KBs, but the effect of seizure on neuronal ketogenesis has not been researched. Zinc‐α2‐glycoprotein (ZAG) was reported to suppress seizure via unclear mechanism. Interestingly, ZAG was involved in fatty acid β‐oxidation and thus may exert anti‐epileptic effect by promoting ketogenesis. However, this promotive effect of ZAG on neuronal ketogenesis has not been clarified. In this study, we performed immunoprecipitation and mass spectrometry to identify potential interaction partners with ZAG. The mechanisms of how ZAG translocated into mitochondria were determined by quantitative coimmunoprecipitation after treatment with apoptozole, a heat shock cognate protein 70 (HSC70) inhibitor. ZAG level was modulated by lentivirus in neurons or adeno‐associated virus in rat brains. Seizure models were induced by magnesium (Mg2+)‐free artificial cerebrospinal fluid in neurons or intraperitoneal injection of pentylenetetrazole kindling in rats. Ketogenesis was determined by cyclic thio‐NADH method in supernatant of neurons or brain homogenate. The effect of peroxisome proliferator–activated receptor γ (PPARγ) on ZAG expression was examined by Western blot, quantitative real‐time polymerase chain reaction (qRT‐PCR) and chromatin immunoprecipitation qRT‐PCR. We found that seizure induced ketogenesis deficiency via a ZAG‐dependent mechanism. ZAG entered mitochondria through a HSC70‐dependent mechanism, promoted ketogenesis by binding to four β‐subunits of long‐chain L‐3‐hydroxyacyl‐CoA dehydrogenase (HADHB) and alleviated ketogenesis impairment in a neuronal seizure model and pentylenetetrazole‐kindled epileptic rats. Additionally, PPARγ activation up‐regulated ZAG expression by binding to promoter region of AZGP1 gene and promoted ketogenesis through a ZAG‐dependent mechanism.
Collapse
Affiliation(s)
- Changhong Tan
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xi Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wuxue Peng
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hui Wang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wen Zhou
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jin Jiang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xin Wei
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lijuan Mo
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yangmei Chen
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lifen Chen
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
16
|
Therajaran P, Hamilton JA, O'Brien TJ, Jones NC, Ali I. Microglial polarization in posttraumatic epilepsy: Potential mechanism and treatment opportunity. Epilepsia 2020; 61:203-215. [PMID: 31943156 DOI: 10.1111/epi.16424] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 12/17/2022]
Abstract
Owing to the complexity of the pathophysiological mechanisms driving epileptogenesis following traumatic brain injury (TBI), effective preventive treatment approaches are not yet available for posttraumatic epilepsy (PTE). Neuroinflammation appears to play a critical role in the pathogenesis of the acquired epilepsies, including PTE, but despite a large preclinical literature demonstrating the ability of anti-inflammatory treatments to suppress epileptogenesis and chronic seizures, no anti-inflammatory treatment approaches have been clinically proven to date. TBI triggers robust inflammatory cascades, suggesting that they may be relevant for the pathogenesis of PTE. A major cell type involved in such cascades is the microglial cells-brain-resident immune cells that become activated after brain injury. When activated, these cells can oscillate between different phenotypes, and such polarization states are associated with the release of various pro- and anti-inflammatory mediators that may influence brain repair processes, and also differentially contribute to the development of PTE. As the molecular mechanisms and key signaling molecules associated with microglial polarization in brain are discovered, strategies are now emerging that can modulate this polarization, promoting this as a potential therapeutic strategy for PTE. In this review, we discuss the relevant literature regarding the polarization of brain-resident immune cells following TBI and attempt to put into perspective a role in epilepsy pathogenesis. Finally, we explore potential strategies that could polarize microglia/macrophages toward a neuroprotective phenotype to mitigate PTE development.
Collapse
Affiliation(s)
- Peravina Therajaran
- Department of Medicine (Royal Melbourne Hospital), Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia
| | - John A Hamilton
- Department of Medicine (Royal Melbourne Hospital), Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia
| | - Terence J O'Brien
- Department of Medicine (Royal Melbourne Hospital), Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia.,Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia
| | - Nigel C Jones
- Department of Medicine (Royal Melbourne Hospital), Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia.,Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia
| | - Idrish Ali
- Department of Medicine (Royal Melbourne Hospital), Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia.,Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
17
|
Peng J, Wang K, Xiang W, Li Y, Hao Y, Guan Y. Rosiglitazone polarizes microglia and protects against pilocarpine-induced status epilepticus. CNS Neurosci Ther 2019; 25:1363-1372. [PMID: 31729170 PMCID: PMC6887926 DOI: 10.1111/cns.13265] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 10/26/2019] [Accepted: 10/27/2019] [Indexed: 12/15/2022] Open
Abstract
Aims Activated microglia have been found in the forebrains and hippocampi of temporal lobe epilepsy (TLE) patients and status epileptic (SE) animal models. The peroxisome proliferator‐activated receptor γ (PPAR γ) agonist rosiglitazone has been shown to prevent microglial activation. However, its role in pilocarpine‐induced status epilepticus remains unknown. We aimed to examine the effect of the PPAR γ agonist rosiglitazone in protecting against pilocarpine‐induced status epileptic resulting from over‐activation and to explore phenotypic changes in microglia as the underlying mechanism. Methods Male C57BL/6 mice were assigned to three groups: the control group, pilocarpine‐induced (SE) group, and rosiglitazone‐treated (SE+Rosi) group. Status epileptic mice were administered 300 mg/kg pilocarpine via intraperitoneal injection. SE+Rosi mice were administered rosiglitazone (0.1 mg/kg, i.p.) after SE. Flow cytometry, immunofluorescence staining, and quantitative real‐time PCR were used to examine the activation of and phenotypic changes in microglia in the brain and to evaluate neuroinflammation. Results We found that the expression of proinflammatory CD86 and iNOS was increased and that the expression of antiinflammatory CD206 and Arg‐1 was decreased in the brains of pilocarpine‐induced SE mice compared to control mice. The mRNA levels of proinflammatory and antiinflammatory cytokines were not significantly changed in the brain. Rosiglitazone treatment significantly inhibited the proinflammatory polarization of microglia and rescued neuron loss in the temporal lobe and hippocampi of the brain after SE. Conclusion Rosiglitazone reverses microglial polarization in the brains of SE mice and also affords neuroprotection against pilocarpine‐induced status epilepticus without inducing significant changes in brain inflammation.
Collapse
Affiliation(s)
- Jing Peng
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Kan Wang
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Weiwei Xiang
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yan Li
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yong Hao
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yangtai Guan
- Department of Neurology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
18
|
Jin M, Zhang B, Sun Y, Zhang S, Li X, Sik A, Bai Y, Zheng X, Liu K. Involvement of peroxisome proliferator-activated receptor γ in anticonvulsant activity of α-asaronol against pentylenetetrazole-induced seizures in zebrafish. Neuropharmacology 2019; 162:107760. [PMID: 31493468 DOI: 10.1016/j.neuropharm.2019.107760] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 07/06/2019] [Accepted: 09/02/2019] [Indexed: 02/06/2023]
Abstract
In mammals, peroxisome proliferators activated receptors (PPARs), the nuclear hormone receptors, have been reported to be involved in seizure control. Selective agonists and antagonists of PPARs raise seizure thresholds and suppress seizures, respectively. In this study, we evaluated the anticonvulsant effects of α-asaronol, a metabolic product of α-asarone, on pentylenetetrazole (PTZ)-induced seizures in zebrafish and investigated the underlying mechanisms. As a result, α-asaronol ameliorated seizures with increase of seizure latency, as well as decrease of seizure-like behavior, c-fos expression, and abnormal neuronal discharge in a concentration dependent manner. By comparing gene expression profiles of zebrafish undergoing seizures and α-asaronol pretreated zebrafish, we found that α-asaronol attenuate seizures through increase of PPAR γ expression, while PPAR γ antagonist GW9662 inhibit the anti-seizures actions of α-asaronol. Moreover, molecular docking simulation implied the physical interaction between α-asaronol and PPAR γ. The overall results indicated that the anticonvulsant effects of α-asaronol are regulated through PPAR γ-mediated pathway, which shed light on development of α-asaronol as a potential antiepileptic drug. In addition, it is for first time to report that PPAR γ is associated with seizures in zebrafish, supporting previous evidence that zebrafish is a suitable alternative for studying seizures.
Collapse
Affiliation(s)
- Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789, East Jingshi Road, Ji'nan, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Key Laboratory for Biosensor of Shandong Province, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China.
| | - Baoyue Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789, East Jingshi Road, Ji'nan, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Key Laboratory for Biosensor of Shandong Province, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China
| | - Ying Sun
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences, Northwest University, Xi'an, 710069, Shanxi Province, PR China; Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shanxi Province, 710069, PR China
| | - Shanshan Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789, East Jingshi Road, Ji'nan, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Key Laboratory for Biosensor of Shandong Province, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China
| | - Xiang Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology of Natural Products (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, NO.44 West Culture Road, Ji'nan, 250012, Shandong Province, PR China
| | - Attila Sik
- Institute of Physiology, Medical School, University of Pecs, Pecs, H-7624, Hungary; Szentagothai Research Centre, University of Pecs, Pecs, H-7624, Hungary; Institute of Clinical Sciences, Medical School, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Yajun Bai
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences, Northwest University, Xi'an, 710069, Shanxi Province, PR China; Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shanxi Province, 710069, PR China.
| | - Xiaohui Zheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences, Northwest University, Xi'an, 710069, Shanxi Province, PR China; Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shanxi Province, 710069, PR China.
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789, East Jingshi Road, Ji'nan, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Key Laboratory for Biosensor of Shandong Province, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China.
| |
Collapse
|
19
|
Hong S, JianCheng H, JiaWen W, ShuQin Z, GuiLian Z, HaiQin W, Ru Z, Zhen G, HongWei R. Losartan inhibits development of spontaneous recurrent seizures by preventing astrocyte activation and attenuating blood-brain barrier permeability following pilocarpine-induced status epilepticus. Brain Res Bull 2019; 149:251-259. [DOI: 10.1016/j.brainresbull.2019.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 04/30/2019] [Accepted: 05/04/2019] [Indexed: 12/18/2022]
|
20
|
Tchekalarova J, Atanasova D, Kortenska L, Lazarov N, Shishmanova-Doseva M, Galchev T, Marinov P. Agomelatine alleviates neuronal loss through BDNF signaling in the post-status epilepticus model induced by kainic acid in rat. Brain Res Bull 2019; 147:22-35. [PMID: 30738136 DOI: 10.1016/j.brainresbull.2019.01.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 01/12/2019] [Accepted: 01/16/2019] [Indexed: 12/11/2022]
Abstract
Recently, we have reported that while agomelatine (Ago) is unable to prevent development of epilepsy it exerts a strong neuroprotective and anti-inflammatory response in the KA post-status epilepticus (SE) rat model. In the present study, we aimed to explore whether the brain-derived neurotrophic factor (BDNF) in the hippocampus is involved in the neuroprotective effect of Ago against the KA-induced SE and epileptiform activity four months later in rats. Lacosamide (LCM) was used as a positive control. The EEG-recorded seizure activity was also evaluated in two treatment protocols. In Experiment#1, Ago given repeatedly at a dose of 40 mg/kg during the course of SE was unable neither to modify EEG-recorded epileptiform activity nor the video- and EEG-recorded spontaneous seizures four months later compared to LCM (50 mg/kg). However, both Ago and LCM inhibited the expression of BDNF in the mossy fibers and also prevented neuronal loss in the dorsal hippocampal and the piriform cortex after SE. In Experiment#2, acute injection of Ago and LCM on epileptic rats, characterized by high seizure rates, did not prevent EEG-recorded paroxysmal events while only LCM decreased either absolute or relative powers of gamma (28-60 Hz) and high (HI) (60-120 Hz) frequency bands to baseline in the frontal and parietal cortex, respectively. Our results suggest that the protection against neuronal loss in specific limbic regions and overexpressed BDNF in the mossy fibers resulting from the repeated treatment with Ago and LCM, respectively, during SE is not a prerequisite for alleviation of epileptogenesis and development of epilepsy. In addition, a reduction of gamma and HI bands in the frontal and parietal cortex is not associated with EEG-recorded paroxysmal events after acute injection of LCM.
Collapse
Affiliation(s)
- Jana Tchekalarova
- Institute of Neurobiology, Bulgarian Academy of Sciences (BAS), Sofia, Bulgaria.
| | - Dimitrinka Atanasova
- Institute of Neurobiology, Bulgarian Academy of Sciences (BAS), Sofia, Bulgaria; Department of Anatomy, Faculty of Medicine, Trakia University, Stara Zagora, Bulgaria
| | - Lidia Kortenska
- Institute of Neurobiology, Bulgarian Academy of Sciences (BAS), Sofia, Bulgaria
| | - Nikolai Lazarov
- Department of Anatomy and Histology, Medical University of Sofia, Sofia 1431, Bulgaria
| | | | | | - Pencho Marinov
- Institute of Information and Communication Technologies, BAS, Sofia, Bulgaria
| |
Collapse
|
21
|
JiaWen W, Hong S, ShengXiang X, Jing L. Depression- and anxiety-like behaviour is related to BDNF/TrkB signalling in a mouse model of psoriasis. Clin Exp Dermatol 2018; 43:254-261. [DOI: 10.1111/ced.13378] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2017] [Indexed: 12/19/2022]
Affiliation(s)
- W. JiaWen
- Department ofDermatology; Medical School of Xi'an Jiaotong University; Xi'an 710004 Shaanxi Province China
| | - S. Hong
- Department ofNeurology; Second Affiliated Hospital; Medical School of Xi'an Jiaotong University; Xi'an 710004 Shaanxi Province China
| | - X. ShengXiang
- Department ofDermatology; Medical School of Xi'an Jiaotong University; Xi'an 710004 Shaanxi Province China
| | - L. Jing
- Department ofDermatology; Medical School of Xi'an Jiaotong University; Xi'an 710004 Shaanxi Province China
| |
Collapse
|
22
|
Lucchi C, Costa AM, Giordano C, Curia G, Piat M, Leo G, Vinet J, Brunel L, Fehrentz JA, Martinez J, Torsello A, Biagini G. Involvement of PPARγ in the Anticonvulsant Activity of EP-80317, a Ghrelin Receptor Antagonist. Front Pharmacol 2017; 8:676. [PMID: 29018345 PMCID: PMC5614981 DOI: 10.3389/fphar.2017.00676] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/08/2017] [Indexed: 02/03/2023] Open
Abstract
Ghrelin, des-acyl ghrelin and other related peptides possess anticonvulsant activities. Although ghrelin and cognate peptides were shown to physiologically regulate only the ghrelin receptor, some of them were pharmacologically proved to activate the peroxisome proliferator-activated receptor gamma (PPARγ) through stimulation of the scavenger receptor CD36 in macrophages. In our study, we challenged the hypothesis that PPARγ could be involved in the anticonvulsant effects of EP-80317, a ghrelin receptor antagonist. For this purpose, we used the PPARγ antagonist GW9662 to evaluate the modulation of EP-80317 anticonvulsant properties in two different models. Firstly, the anticonvulsant effects of EP-80317 were studied in rats treated with pilocarpine to induce status epilepticus (SE). Secondly, the anticonvulsant activity of EP-80317 was ascertained in the repeated 6-Hz corneal stimulation model in mice. Behavioral and video electrocorticographic (ECoG) analyses were performed in both models. We also characterized levels of immunoreactivity for PPARγ in the hippocampus of 6-Hz corneally stimulated mice. EP-80317 predictably antagonized seizures in both models. Pretreatment with GW9662 counteracted almost all EP-80317 effects both in mice and rats. Only the effects of EP-80317 on power spectra of ECoGs recorded during repeated 6-Hz corneal stimulation were practically unaffected by GW9662 administration. Moreover, GW9662 alone produced a decrease in the latency of tonic-clonic seizures and accelerated the onset of SE in rats. Finally, in the hippocampus of mice treated with EP-80317 we found increased levels of PPARγ immunoreactivity. Overall, these results support the hypothesis that PPARγ is able to modulate seizures and mediates the anticonvulsant effects of EP-80317.
Collapse
Affiliation(s)
- Chiara Lucchi
- Laboratory of Experimental Epileptology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio EmiliaModena, Italy
| | - Anna M Costa
- Laboratory of Experimental Epileptology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio EmiliaModena, Italy
| | - Carmela Giordano
- Laboratory of Experimental Epileptology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio EmiliaModena, Italy
| | - Giulia Curia
- Laboratory of Experimental Epileptology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio EmiliaModena, Italy
| | - Marika Piat
- Laboratory of Experimental Epileptology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio EmiliaModena, Italy
| | - Giuseppina Leo
- Laboratory of Experimental Epileptology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio EmiliaModena, Italy
| | - Jonathan Vinet
- Laboratory of Experimental Epileptology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio EmiliaModena, Italy
| | - Luc Brunel
- Centre National de la Recherche Scientifique, Max Mousseron Institute of Biomolecules, National School of Chemistry Montpellier, University of MontpellierMontpellier, France
| | - Jean-Alain Fehrentz
- Centre National de la Recherche Scientifique, Max Mousseron Institute of Biomolecules, National School of Chemistry Montpellier, University of MontpellierMontpellier, France
| | - Jean Martinez
- Centre National de la Recherche Scientifique, Max Mousseron Institute of Biomolecules, National School of Chemistry Montpellier, University of MontpellierMontpellier, France
| | - Antonio Torsello
- School of Medicine and Surgery, University of Milano-BicoccaMilan, Italy
| | - Giuseppe Biagini
- Laboratory of Experimental Epileptology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio EmiliaModena, Italy.,Center for Neuroscience and Neurotechnology, University of Modena and Reggio EmiliaModena, Italy
| |
Collapse
|
23
|
Liu B, Zhang Y, Jiang Y, Li L, Li C, Li J. Electrical stimulation of cerebellar fastigial nucleus protects against cerebral ischemic injury by PPARγ upregulation. Neurol Res 2016; 39:23-29. [PMID: 27819182 DOI: 10.1080/01616412.2016.1251710] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Bin Liu
- Department of Neurology, Shandong Provincial Qianfoshan Hospital , Jinan, Shandong, China
| | - Yanhong Zhang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University , Chongqing, China
| | - Ying Jiang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University , Chongqing, China
| | - Longling Li
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University , Chongqing, China
| | - Changqing Li
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University , Chongqing, China
| | - Jinfang Li
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University , Chongqing, China
| |
Collapse
|
24
|
Shao H, Yang Y, Mi Z, Zhu GX, Qi AP, Ji WG, Zhu ZR. Anticonvulsant effect of Rhynchophylline involved in the inhibition of persistent sodium current and NMDA receptor current in the pilocarpine rat model of temporal lobe epilepsy. Neuroscience 2016; 337:355-369. [DOI: 10.1016/j.neuroscience.2016.09.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 09/12/2016] [Accepted: 09/16/2016] [Indexed: 01/28/2023]
|
25
|
Simeone TA, Matthews SA, Samson KK, Simeone KA. Regulation of brain PPARgamma2 contributes to ketogenic diet anti-seizure efficacy. Exp Neurol 2016; 287:54-64. [PMID: 27527983 DOI: 10.1016/j.expneurol.2016.08.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 08/05/2016] [Accepted: 08/11/2016] [Indexed: 12/23/2022]
Abstract
The ketogenic diet (KD) is an effective therapy primarily used in pediatric patients whom are refractory to current anti-seizure medications. The mechanism of the KD is not completely understood, but is thought to involve anti-inflammatory and anti-oxidant processes. The nutritionally-regulated transcription factor peroxisome proliferator activated receptor gamma, PPARγ, regulates genes involved in anti-inflammatory and anti-oxidant pathways. Moreover, endogenous ligands of PPARγ include fatty acids suggesting a potential role in the effects of the KD. Here, we tested the hypothesis that PPARγ contributes to the anti-seizure efficacy of the KD. We found that the KD increased nuclear protein content of the PPARγ2 splice variant by 2-4 fold (P<0.05) in brain homogenates from wild-type (WT) and epileptic Kv1.1 knockout (KO) mice, while not affecting PPARγ1. The KD reduced the frequency of seizures in Kv1.1KO mice by ~70% (P<0.01). GW9662, a PPARγ antagonist, prevented KD-mediated changes in PPARγ2 expression and prevented the anti-seizure efficacy of the KD in Kv1.1KO mice. Further supporting the association of PPARγ2 in mediating KD actions, the KD significantly prolonged the latency to flurothyl-induced seizure in WT mice by ~20-35% (P<0.01), but was ineffective in PPARγ2KO mice and neuron-specific PPARγKO mice. Finally, administering the PPARγ agonist pioglitazone increased PPARγ2 expression by 2-fold (P<0.01) and reduced seizures in Kv1.1KO mice by ~80% (P<0.01). Our findings implicate brain PPARγ2 among the mechanisms by which the KD reduces seizures and strongly support the development of PPARγ2 as a therapeutic target for severe, refractory epilepsy.
Collapse
Affiliation(s)
- Timothy A Simeone
- Creighton University, School of Medicine, Department of Pharmacology, Omaha, NE 68174, USA.
| | - Stephanie A Matthews
- Creighton University, School of Medicine, Department of Pharmacology, Omaha, NE 68174, USA
| | - Kaeli K Samson
- Creighton University, School of Medicine, Department of Pharmacology, Omaha, NE 68174, USA
| | - Kristina A Simeone
- Creighton University, School of Medicine, Department of Pharmacology, Omaha, NE 68174, USA
| |
Collapse
|
26
|
Yuan L, Liu J, Dong R, Zhu J, Tao C, Zheng R, Zhu S. 14,15-epoxyeicosatrienoic acid promotes production of brain derived neurotrophic factor from astrocytes and exerts neuroprotective effects during ischaemic injury. Neuropathol Appl Neurobiol 2016; 42:607-620. [PMID: 26526810 DOI: 10.1111/nan.12291] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 10/09/2015] [Accepted: 10/27/2015] [Indexed: 02/06/2023]
Abstract
AIMS 14,15-Epoxyeicosatrienoic acid (14,15-EET) is abundantly expressed in brain and exerts protective effects against ischaemia. 14,15-EET is hydrolysed by soluble epoxide hydrolase (sEH). sEH-/- mice show a higher level of 14,15-EET in the brain. Astrocytes play a pivotal role in neuronal survival under ischaemic conditions. However, it is unclear whether the neuroprotective effect of 14,15-EET is associated with astrocytes. METHODS A mouse model of focal cerebral ischaemia was induced by middle cerebral artery occlusion. Oxygen-glucose deprivation/reoxygenation (OGD/R) was performed on cultured murine astrocytes, neurons and a human cell line. Cell viabilities were measured by 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2H-tetrazolium bromide (MTT) assay. The mRNA expressions were quantified by real-time PCR. Brain derived neurotrophic factor (BDNF) concentration was measured by ELISA. Protein expressions were quantified by Western blotting. BDNF and peroxisome proliferators-activated receptor gamma (PPAR-γ) expressions were analysed by confocal microscopy. RESULTS Decreased infarct volumes, elevated BDNF expression and increased numbers of BDNF/GFAP Glial Fibrillary Acidic Protein double-positive cells were observed in the ischaemic penumbra of sEH-/- mice. The decreased infarct volumes of sEH-/- mice were diminished by intracerebroventricular injection of a blocker of BDNF receptor. 14,15-EET increases BDNF expression and cell viability of murine astrocytes and U251 cells by BDNF-TrkB Tyrosine receptor kinase-B-extracellular signal-regulated kinase 1/2 signalling during OGD/R. 14,15-EET protects neurons from OGD/R by stimulating the production of astrocyte-derived BDNF. 14,15-EET stimulates the production of astrocyte-derived BDNF through PPAR-γ/p-cAMP-response element binding protein signal pathways. CONCLUSIONS Our study demonstrates the importance of 14,15-EET-mediated production of astrocyte-derived BDNF for enhancing viability of astrocytes and protecting neurons from the ischaemic injury and provides insights into the mechanism by which 14,15-EET is involved in neuroprotection.
Collapse
Affiliation(s)
- L Yuan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - J Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - R Dong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - J Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - C Tao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - R Zheng
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - S Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| |
Collapse
|
27
|
Boes K, Russmann V, Ongerth T, Licko T, Salvamoser JD, Siegl C, Potschka H. Expression regulation and targeting of the peroxisome proliferator-activated receptor γ following electrically-induced status epilepticus. Neurosci Lett 2015; 604:151-6. [PMID: 26259695 DOI: 10.1016/j.neulet.2015.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 07/29/2015] [Accepted: 08/04/2015] [Indexed: 10/23/2022]
Abstract
The neuroprotective and anti-inflammatory effects of the peroxisome proliferator-activated receptor γ (PPARγ) agonist rosiglitazone are of particular interest for disease-modifying and antiepileptogenic approaches. We studied the expression of PPARγ and the impact of rosiglitazone on the consequences of status epilepticus (SE) in a rat post-SE model. Immunohistochemical analysis revealed a selective overexpression of PPARγ in the piriform cortex of rats with spontaneous seizures. Rosiglitazone administration initiated following SE failed to exert relevant effects on the development of spontaneous seizures and neuronal cell loss. Whereas spatial learning in the Morris water maze was delayed in SE animals with vehicle administration, the learning curve of rosiglitazone-treated SE rats showed no significant difference to that of controls. The study provides first evidence arguing against a robust antiepileptogenic effect. However, the findings in the spatial learning paradigm indicate disease-modifying effects.
Collapse
Affiliation(s)
- Katharina Boes
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Vera Russmann
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Tanja Ongerth
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Thomas Licko
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Josephine D Salvamoser
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Claudia Siegl
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany.
| |
Collapse
|
28
|
Lee CH, Yi MH, Chae DJ, Zhang E, Oh SH, Kim DW. Effect of pioglitazone on excitotoxic neuronal damage in the mouse hippocampus. Biomol Ther (Seoul) 2015; 23:261-7. [PMID: 25995825 PMCID: PMC4428719 DOI: 10.4062/biomolther.2014.146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 01/23/2015] [Accepted: 02/07/2015] [Indexed: 11/05/2022] Open
Abstract
Pioglitazone (PGZ), a synthetic peroxisome proliferator-activated receptor γ agonist, is known to regulate inflammatory process and to have neuroprotective effects against neurological disorders. In the present study, we examined the effects of 30 mg/kg PGZ on excitotoxic neuronal damage and glial activation in the mouse hippocampus following intracerebroventricular injection of kainic acid (KA). PGZ treatment significantly reduced seizure-like behavior. PGZ had the neuroprotective effect against KA-induced neuronal damage and attenuated the activations of astrocytes and microglia in the hippocampal CA3 region. In addition, MPO and NFκB immunoreactivities in the glial cells were also decreased in the PGZ-treated group. These results indicate that PGZ had anticonvulsant and neuroprotective effects against KA-induced excitotocix injury, and that neuroprotective effect of PGZ might be due to the attenuation of KA-induced activation in astrocytes and microglia as well as KA-induced increases in MPO and NFκB.
Collapse
Affiliation(s)
- Choong Hyun Lee
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan 330-714
| | - Min-Hee Yi
- Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Daejeon 301-747
| | - Dong Jin Chae
- Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Daejeon 301-747
| | - Enji Zhang
- Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Daejeon 301-747
| | - Sang-Ha Oh
- Department of Plastic Surgery, Chungnam National University Hospital, Daejeon 301-721, Republic of Korea
| | - Dong Woon Kim
- Department of Anatomy, Brain Research Institute, Chungnam National University School of Medicine, Daejeon 301-747
| |
Collapse
|
29
|
Sun H, Wu H, Yu X, Zhang G, Zhang R, Zhan S, Wang H, Bu N, Ma X, Li Y. Angiotensin II and its receptor in activated microglia enhanced neuronal loss and cognitive impairment following pilocarpine-induced status epilepticus. Mol Cell Neurosci 2015; 65:58-67. [PMID: 25724109 DOI: 10.1016/j.mcn.2015.02.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 01/19/2015] [Accepted: 02/23/2015] [Indexed: 11/27/2022] Open
Abstract
Neuroinflammation plays a role in the pathology of epilepsy and in cognitive impairment. Angiotensin II (AII) and the angiotensin receptor type 1 (AT1) have been shown to regulate seizure susceptibility in different models of epilepsy. Inhibition of AT1 attenuates neuroinflammatory responses in different neurological diseases. In the present study, we showed that the protein expression of AII and AT1 was increased in activated microglia following lithium pilocarpine-induced status epilepticus (SE) in rats. Furthermore, the AT1 receptor antagonist, losartan, significantly inhibited SE-induced cognitive impairment and microglia-mediated inflammation. Losartan also prevented SE induced neuronal loss in the hippocampus and exerted neuroprotection. These data suggest that losartan improves SE-induced cognitive impairment by suppressing microglia mediated inflammatory responses and attenuating hippocampal neuronal loss. Overall, our findings provide a possible therapeutic strategy for the treatment of cognitive impairment in epilepsy.
Collapse
Affiliation(s)
- Hong Sun
- Department of Neurology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China.
| | - HaiQin Wu
- Department of Neurology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China.
| | - Xin Yu
- Department of Neurology, People's Liberation Army 401 Hospital, Qingdao, Shandong 266071, China
| | - GuiLian Zhang
- Department of Neurology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Ru Zhang
- Department of Neurology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - ShuQin Zhan
- Department of Neurology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - HuQing Wang
- Department of Neurology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Ning Bu
- Department of Neurology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - XiaoLing Ma
- Department of Neurology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - YongNan Li
- Department of Neurology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| |
Collapse
|
30
|
Jiang Y, Li L, Liu B, Zhang Y, Chen Q, Li C. PPARγ upregulation induced by vagus nerve stimulation exerts anti-inflammatory effect in cerebral ischemia/reperfusion rats. Med Sci Monit 2015; 21:268-75. [PMID: 25619160 PMCID: PMC4310716 DOI: 10.12659/msm.891407] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Background It is well known that peroxisome proliferator-activated receptor gamma (PPARγ), a ligand-activated transcription factor, plays a protective role in anti-inflammatory responses in both acute and chronic central nerve system (CNS) insults. Emerging evidence in rats suggests that vagus nerve stimulation (VNS), while restraining inflammatory cytokine production in the peripheral nervous system, also exerts a significant CNS neuroprotective function against ischemic stroke injury. The aim of this study was to explore the role of PPARγ in VNS-mediated anti-inflammatory protection against ischemic stroke damage. Material/Methods Adult male Sprague-Dawley rats (total n=160) preconditioned through transfection with either PPARγ small interfering RNA (siRNA) or lentiviral vector without siRNA and surgically subjected to middle cerebral artery occlusion and reperfusion subsequently received VNS treatment at 30 min post-occlusion. The expression of PPARγ after VNS treatment was measured by real-time PCR and Western blotting, also supported by immunofluorescence staining. Subsequently, the neurological deficits scores, the infarct volume, and the brain histopathology were all evaluated. Additionally, the influence on the pro-inflammatory cytokines expression and neuro-immune cells activation was determined by ELISA and immunofluorescence staining. Results We found that VNS upregulated expression of PPARγ in ischemia penumbra, diminished the extent of ischemic infarct, alleviated neuronal injury, and suppressed pro-inflammatory cytokine expression and immune cell activation (P<0.05). However, rats with PPARγ silencing failed to manifest significant neuroprotection and anti-inflammatory effect induced by VNS treatment (p>0.05). Conclusions PPARγ may participate in the process by which VNS modulates the neuro-inflammatory response following ischemia/reperfusion in rats.
Collapse
Affiliation(s)
- Ying Jiang
- Department of Neurology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China (mainland)
| | - Longling Li
- Department of Neurology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China (mainland)
| | - Bin Liu
- Department of Neurology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China (mainland)
| | - Yanhong Zhang
- Department of Neurology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China (mainland)
| | - Qian Chen
- Department of Neurology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China (mainland)
| | - Changqing Li
- Department of Neurology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China (mainland)
| |
Collapse
|
31
|
Zhu D, Wang J, Sun X, Chen J, Duan Y, Pan J, Xu T, Qin Y, He X, Huang C. Septin4_i1 regulates apoptosis in hepatic stellate cells through peroxisome proliferator-activated receptor-γ/Akt/B-cell lymphoma 2 pathway. J Histochem Cytochem 2014; 63:163-9. [PMID: 25527525 DOI: 10.1369/0022155414567230] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Apoptosis of activated hepatic stellate cells (HSCs) has been verified as a potential mechanism to aid in hepatic fibrosis remission. Earlier research suggests that Septin4_i1 may sensitize hepatocellular carcinoma cells to serum starvation-induced apoptosis. Here, we aimed to investigate the effect of Septin4_i1 on HSC apoptosis and explore the associated signaling pathways. We found that Septin4_i1 can induce apoptosis in LX-2 cells and that this is accompanied by an up-regulation in cleaved-caspase-3 and peroxisome proliferator-activated receptor-γ (PPAR-γ) expression and a down-regulation in α-SMA expression. Over-expression of Septin4_i1 reduced phosphorylated Akt and B-cell lymphoma 2 (Bcl-2) expression but had no effect on the expression of p53 and death receptor (DR)-5. The decreased expression of Bcl-2 and the increased expression of cleaved-caspase-3 induced by Sept4_i1 could be reversed by GW501516, a PPAR-β/δ agonist that has been reported by others to enhance Akt signaling. In addition, GW9662, an antagonist of PPAR-γ, could also inhibit apoptosis in LX-2 cells induced by Sept4_i1. In conclusion, our data suggest that Sept4_i1 induces HSC apoptosis by inhibiting Akt and Bcl-2 expression and up-regulating PPAR-γ expression.
Collapse
Affiliation(s)
- Dandan Zhu
- Department of Pathogen Biology, School of Medicine, Nantong University, People's Republic of China (DZ, JW, XS, JC, YD, JP, TX, YQ, XH, CH)
| | - Jianxin Wang
- Laboratory Medicine Center, Affiliated Hospital of Nantong University, People's Republic of China (JW)
| | - Xiaolei Sun
- Department of Pathogen Biology, School of Medicine, Nantong University, People's Republic of China (DZ, JW, XS, JC, YD, JP, TX, YQ, XH, CH)
| | - Jinling Chen
- Department of Pathogen Biology, School of Medicine, Nantong University, People's Republic of China (DZ, JW, XS, JC, YD, JP, TX, YQ, XH, CH)
| | - Yinong Duan
- Department of Pathogen Biology, School of Medicine, Nantong University, People's Republic of China (DZ, JW, XS, JC, YD, JP, TX, YQ, XH, CH)
| | - Jing Pan
- Department of Pathogen Biology, School of Medicine, Nantong University, People's Republic of China (DZ, JW, XS, JC, YD, JP, TX, YQ, XH, CH)
| | - Tianhua Xu
- Department of Pathogen Biology, School of Medicine, Nantong University, People's Republic of China (DZ, JW, XS, JC, YD, JP, TX, YQ, XH, CH)
| | - Yongwei Qin
- Department of Pathogen Biology, School of Medicine, Nantong University, People's Republic of China (DZ, JW, XS, JC, YD, JP, TX, YQ, XH, CH)
| | - Xingxin He
- Department of Pathogen Biology, School of Medicine, Nantong University, People's Republic of China (DZ, JW, XS, JC, YD, JP, TX, YQ, XH, CH)
| | - Caiqun Huang
- Department of Pathogen Biology, School of Medicine, Nantong University, People's Republic of China (DZ, JW, XS, JC, YD, JP, TX, YQ, XH, CH)
| |
Collapse
|
32
|
Xie W, Song YJ, Li D, Pan LP, Wu QJ, Tian X. The suppression of epileptiform discharges in cultured hippocampal neurons is regulated via alterations in full-length tropomyosin-related kinase type B receptors signalling activity. Eur J Neurosci 2014; 40:2564-75. [PMID: 24830751 DOI: 10.1111/ejn.12620] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Revised: 04/01/2014] [Accepted: 04/11/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Wei Xie
- School of Biomedical Engineering; Tianjin Medical University; Tianjin China
| | - Yi-Jun Song
- Department of Neurology; Tianjin Medical University General Hospital & Key Laboratory of Neurotrauma; Variation and Regeneration; Ministry of Education and Tianjin Municipal Government; Tianjin China
| | - Dai Li
- Senior Officials Inpatient Ward; Tianjin Medical University General Hospital and Tianjin Neurological Institute; Tianjin China
| | - Li-Ping Pan
- Department of Neurology; Tianjin Medical University General Hospital & Key Laboratory of Neurotrauma; Variation and Regeneration; Ministry of Education and Tianjin Municipal Government; Tianjin China
| | - Qiu-Jing Wu
- Department of Neurology; Tianjin Medical University General Hospital & Key Laboratory of Neurotrauma; Variation and Regeneration; Ministry of Education and Tianjin Municipal Government; Tianjin China
| | - Xin Tian
- School of Biomedical Engineering; Tianjin Medical University; Tianjin China
| |
Collapse
|
33
|
Kaminski RM, Rogawski MA, Klitgaard H. The potential of antiseizure drugs and agents that act on novel molecular targets as antiepileptogenic treatments. Neurotherapeutics 2014; 11:385-400. [PMID: 24671870 PMCID: PMC3996125 DOI: 10.1007/s13311-014-0266-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
A major goal of contemporary epilepsy research is the identification of therapies to prevent the development of recurrent seizures in individuals at risk, including those with brain injuries, infections, or neoplasms; status epilepticus; cortical dysplasias; or genetic epilepsy susceptibility. In this review we consider the evidence largely from preclinical models for the antiepileptogenic activity of a diverse range of potential therapies, including some marketed antiseizure drugs, as well as agents that act by immune and inflammatory mechanisms; reduction of oxidative stress; activation of the mammalian target of rapamycin or peroxisome proliferator-activated receptors γ pathways; effects on factors related to thrombolysis, hematopoesis, and angiogenesis; inhibition of 3-hydroxy-3-methylglutaryl-coenzyme A reducatase; brain-derived neurotrophic factor signaling; and blockade of α2 adrenergic and cannabinoid receptors. Antiepileptogenesis refers to a therapy of which the beneficial action is to reduce seizure frequency or severity outlasting the treatment period. To date, clinical trials have failed to demonstrate that antiseizure drugs have such disease-modifying activity. However, studies in animal models with levetiracetam and ethosuximide are encouraging, and clinical trials with these agents are warranted. Other promising strategies are inhibition of interleukin 1β signaling by drugs such as VX-765; modulation of sphingosine 1-phosphate signaling by drugs such as fingolimod; activation of the mammalian target of rapamycin by drugs such as rapamycin; the hormone erythropoietin; and, paradoxically, drugs such as the α2 adrenergic receptor antagonist atipamezole and the CB1 cannabinoid antagonist SR141716A (rimonabant) with proexcitatory activity. These approaches could lead to a new paradigm in epilepsy drug therapy where treatment for a limited period prevents the occurrence of spontaneous seizures, thus avoiding lifelong commitment to symptomatic treatment.
Collapse
Affiliation(s)
| | - Michael A. Rogawski
- />Department of Neurology, University of California, Davis School of Medicine, Sacramento, CA USA
| | | |
Collapse
|