1
|
Higginbotham L, Ping L, Dammer EB, Duong DM, Zhou M, Gearing M, Hurst C, Glass JD, Factor SA, Johnson ECB, Hajjar I, Lah JJ, Levey AI, Seyfried NT. Integrated proteomics reveals brain-based cerebrospinal fluid biomarkers in asymptomatic and symptomatic Alzheimer's disease. SCIENCE ADVANCES 2020; 6:eaaz9360. [PMID: 33087358 PMCID: PMC7577712 DOI: 10.1126/sciadv.aaz9360] [Citation(s) in RCA: 228] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 09/03/2020] [Indexed: 05/02/2023]
Abstract
Alzheimer's disease (AD) lacks protein biomarkers reflective of its diverse underlying pathophysiology, hindering diagnostic and therapeutic advancements. Here, we used integrative proteomics to identify cerebrospinal fluid (CSF) biomarkers representing a wide spectrum of AD pathophysiology. Multiplex mass spectrometry identified ~3500 and ~12,000 proteins in AD CSF and brain, respectively. Network analysis of the brain proteome resolved 44 biologically diverse modules, 15 of which overlapped with the CSF proteome. CSF AD markers in these overlapping modules were collapsed into five protein panels representing distinct pathophysiological processes. Synaptic and metabolic panels were decreased in AD brain but increased in CSF, while glial-enriched myelination and immunity panels were increased in brain and CSF. The consistency and disease specificity of panel changes were confirmed in >500 additional CSF samples. These panels also identified biological subpopulations within asymptomatic AD. Overall, these results are a promising step toward a network-based biomarker tool for AD clinical applications.
Collapse
Affiliation(s)
- Lenora Higginbotham
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, GA, USA
| | - Lingyan Ping
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, GA, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Eric B Dammer
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, GA, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Duc M Duong
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, GA, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Maotian Zhou
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, GA, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Marla Gearing
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, GA, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Cheyenne Hurst
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
| | - Jonathan D Glass
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, GA, USA
| | - Stewart A Factor
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Erik C B Johnson
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, GA, USA
| | - Ihab Hajjar
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, GA, USA
| | - James J Lah
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, GA, USA
| | - Allan I Levey
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA.
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, GA, USA
| | - Nicholas T Seyfried
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA.
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, GA, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
2
|
Spasova MS, Chen X, Sadowska GB, Horton ER, Lim YP, Stonestreet BS. Ischemia reduces inter-alpha inhibitor proteins in the brain of the ovine fetus. Dev Neurobiol 2016; 77:726-737. [PMID: 27618403 DOI: 10.1002/dneu.22451] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 09/02/2016] [Accepted: 09/08/2016] [Indexed: 01/04/2023]
Abstract
Hypoxic-ischemic (HI) brain injury is a major cause of neurological abnormalities in the perinatal period. Inflammation contributes to the evolution of HI brain injury. Inter-alpha inhibitor proteins (IAIPs) are a family of proteins that are part of the innate immune system. We have reported that endogenous IAIPs exhibit developmental changes in ovine brain and that exogenous IAIP treatment reduces neuronal death in HI neonatal rats. However, the effects of HI on endogenous IAIPs in brain have not been previously examined. In this study, we examined the effects of ischemia-reperfusion on endogenous IAIPs levels in fetal sheep brain. Cerebral cortex, cerebellum, cervical spinal cord, choroid plexus, and CSF were snap frozen from sham control fetuses at 127 days gestation and after 30-min of carotid occlusion and 4-, 24-, and 48-h of reperfusion. IAIP levels were determined by Western immunoblot. IAIP expressions of the 250 kDa Inter-alpha inhibitor (IaI) and 125 kDa Pre-alpha inhibitor (PaI) in cerebral cortex and PaI in cerebellum were reduced (p < 0.05) 4-h after ischemia compared with controls and returned toward control levels 24- and 48-h after ischemia. CSF PaI and IaI were reduced 48 h after ischemia. We conclude that IAIPs in cerebral cortex and cerebellum are reduced by brain ischemia, and return toward control levels between 24 and 48 h after ischemia. However, changes in CSF IAIPs were delayed, exhibiting decreases 48 h after ischemia. We speculate that the decreases in endogenous IAIPs reflect increased utilization, potentially suggesting that they have endogenous neuroprotective properties. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 726-737, 2017.
Collapse
Affiliation(s)
- Mariya S Spasova
- Department of Pediatrics, the Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, RI, 02905
| | - Xiaodi Chen
- Department of Pediatrics, the Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, RI, 02905
| | - Grazyna B Sadowska
- Department of Pediatrics, the Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, RI, 02905
| | - Edward R Horton
- Department of Pediatrics, the Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, RI, 02905
| | - Yow-Pin Lim
- ProThera Biologics, Inc, Providence, RI, 02903
| | - Barbara S Stonestreet
- Department of Pediatrics, the Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, RI, 02905
| |
Collapse
|