1
|
Goncalves K, Przyborski S. Modulation of the Nogo signaling pathway to overcome amyloid-β-mediated neurite inhibition in human pluripotent stem cell-derived neurites. Neural Regen Res 2025; 20:2645-2654. [PMID: 39105379 PMCID: PMC11801276 DOI: 10.4103/nrr.nrr-d-23-01628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 05/29/2024] [Accepted: 07/09/2024] [Indexed: 08/07/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202509000-00026/figure1/v/2024-11-05T132919Z/r/image-tiff Neuronal cell death and the loss of connectivity are two of the primary pathological mechanisms underlying Alzheimer's disease. The accumulation of amyloid-β peptides, a key hallmark of Alzheimer's disease, is believed to induce neuritic abnormalities, including reduced growth, extension, and abnormal growth cone morphology, all of which contribute to decreased connectivity. However, the precise cellular and molecular mechanisms governing this response remain unknown. In this study, we used an innovative approach to demonstrate the effect of amyloid-β on neurite dynamics in both two-dimensional and three-dimensional culture systems, in order to provide more physiologically relevant culture geometry. We utilized various methodologies, including the addition of exogenous amyloid-β peptides to the culture medium, growth substrate coating, and the utilization of human-induced pluripotent stem cell technology, to investigate the effect of endogenous amyloid-β secretion on neurite outgrowth, thus paving the way for potential future applications in personalized medicine. Additionally, we also explore the involvement of the Nogo signaling cascade in amyloid-β-induced neurite inhibition. We demonstrate that inhibition of downstream ROCK and RhoA components of the Nogo signaling pathway, achieved through modulation with Y-27632 (a ROCK inhibitor) and Ibuprofen (a Rho A inhibitor), respectively, can restore and even enhance neuronal connectivity in the presence of amyloid-β. In summary, this study not only presents a novel culture approach that offers insights into the biological process of neurite growth and inhibition, but also proposes a specific mechanism for reduced neural connectivity in the presence of amyloid-β peptides, along with potential intervention points to restore neurite growth. Thereby, we aim to establish a culture system that has the potential to serve as an assay for measuring preclinical, predictive outcomes of drugs and their ability to promote neurite outgrowth, both generally and in a patient-specific manner.
Collapse
Affiliation(s)
| | - Stefan Przyborski
- Department of Biosciences, Durham University, Durham, UK
- Reprocell Europe Ltd., Glasgow, UK
| |
Collapse
|
2
|
Mordyl B, Fajkis-Zajączkowska N, Szafrańska K, Siwek A, Głuch-Lutwin M, Żmudzki P, Jończyk J, Karcz T, Słoczyńska K, Pękala E, Pomierny B, Krzyżanowska W, Jurczyk J, Skórkowska A, Sałach A, Jastrzębska-Więsek M, Walczak M, Gawlik MT, Smolik M, Kolaczkowski M, Marcinkowska M. Preferential Synaptic Type of GABA-A Receptor Ligands Enhancing Neuronal Survival and Facilitating Functional Recovery After Ischemic Stroke. J Med Chem 2024; 67:21859-21889. [PMID: 39668673 DOI: 10.1021/acs.jmedchem.4c01578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Selective enhancement of synaptic GABA signaling mediated by GABA-A receptors has been previously reported to promote functional recovery after ischemic stroke, while tonic GABA signaling has been detrimental. To identify agents that enhance synaptic signaling, we synthesized GABA-A ligands based on three chemotypes with affinity values pKi= 6.44-8.32. Representative compounds showed a preference in functional responses toward synaptic type of GABA-A receptors, compared to the extrasynaptic ones. In a cellular ischemia model (OGD), selected compounds showed the potential to improve neuronal recovery. The selected lead, compound 4, demonstrated the ability to reduce mitochondrial dysfunction, regulate intracellular calcium levels, decrease caspase 3 levels, and promote neurite outgrowth in in vitro assays. In an animal model, compound 4 enhanced motor recovery and showed neuroprotective activity by reducing infarct volume and decreasing poststroke acidosis. These findings underscore the value of selective ligands modulating synaptic GABA-A receptors in promoting recovery from ischemic stroke.
Collapse
Affiliation(s)
- Barbara Mordyl
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Nikola Fajkis-Zajączkowska
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Katarzyna Szafrańska
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
- Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, 16 Lazarza St., Krakow 31-530, Poland
| | - Agata Siwek
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
- Center for the Development of Therapies for Civilization and Age-Related Diseases, Jagiellonian University Medical College, Skawińska 8, Krakow 31-066, Poland
| | - Monika Głuch-Lutwin
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Paweł Żmudzki
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
- Center for the Development of Therapies for Civilization and Age-Related Diseases, Jagiellonian University Medical College, Skawińska 8, Krakow 31-066, Poland
| | - Jakub Jończyk
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Tadeusz Karcz
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Karolina Słoczyńska
- Department of Pharmaceutical Biochemistry, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Elżbieta Pękala
- Department of Pharmaceutical Biochemistry, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Bartosz Pomierny
- Center for the Development of Therapies for Civilization and Age-Related Diseases, Jagiellonian University Medical College, Skawińska 8, Krakow 31-066, Poland
- Department of Toxicological Biochemistry, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Weronika Krzyżanowska
- Department of Toxicological Biochemistry, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Jakub Jurczyk
- Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, 16 Lazarza St., Krakow 31-530, Poland
- Department of Toxicology, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Alicja Skórkowska
- Center for the Development of Therapies for Civilization and Age-Related Diseases, Jagiellonian University Medical College, Skawińska 8, Krakow 31-066, Poland
- Department of Toxicological Biochemistry, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Aleksandra Sałach
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Magdalena Jastrzębska-Więsek
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Maria Walczak
- Department of Toxicology, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Maciej Tadeusz Gawlik
- Department of Toxicology, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Magdalena Smolik
- Department of Toxicology, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Marcin Kolaczkowski
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Monika Marcinkowska
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
- Center for the Development of Therapies for Civilization and Age-Related Diseases, Jagiellonian University Medical College, Skawińska 8, Krakow 31-066, Poland
| |
Collapse
|
3
|
Allcock B, Wei W, Goncalves K, Hoyle H, Robert A, Quelch-Cliffe R, Hayward A, Cooper J, Przyborski S. Impact of the Physical Cellular Microenvironment on the Structure and Function of a Model Hepatocyte Cell Line for Drug Toxicity Applications. Cells 2023; 12:2408. [PMID: 37830622 PMCID: PMC10572302 DOI: 10.3390/cells12192408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/26/2023] [Accepted: 10/05/2023] [Indexed: 10/14/2023] Open
Abstract
It is widely recognised that cells respond to their microenvironment, which has implications for cell culture practices. Growth cues provided by 2D cell culture substrates are far removed from native 3D tissue structure in vivo. Geometry is one of many factors that differs between in vitro culture and in vivo cellular environments. Cultured cells are far removed from their native counterparts and lose some of their predictive capability and reliability. In this study, we examine the cellular processes that occur when a cell is cultured on 2D or 3D surfaces for a short period of 8 days prior to its use in functional assays, which we term: "priming". We follow the process of mechanotransduction from cytoskeletal alterations, to changes to nuclear structure, leading to alterations in gene expression, protein expression and improved functional capabilities. In this study, we utilise HepG2 cells as a hepatocyte model cell line, due to their robustness for drug toxicity screening. Here, we demonstrate enhanced functionality and improved drug toxicity profiles that better reflect the in vivo clinical response. However, findings more broadly reflect in vitro cell culture practises across many areas of cell biology, demonstrating the fundamental impact of mechanotransduction in bioengineering and cell biology.
Collapse
Affiliation(s)
- Benjamin Allcock
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (B.A.); (W.W.); (K.G.)
| | - Wenbin Wei
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (B.A.); (W.W.); (K.G.)
| | - Kirsty Goncalves
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (B.A.); (W.W.); (K.G.)
| | - Henry Hoyle
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (B.A.); (W.W.); (K.G.)
| | - Alisha Robert
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (B.A.); (W.W.); (K.G.)
| | - Rebecca Quelch-Cliffe
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (B.A.); (W.W.); (K.G.)
| | - Adam Hayward
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (B.A.); (W.W.); (K.G.)
| | - Jim Cooper
- European Collection of Authenticated Cell Cultures, Salisbury SP4 0JG, UK
| | - Stefan Przyborski
- Department of Biosciences, Durham University, Durham DH1 3LE, UK; (B.A.); (W.W.); (K.G.)
- Reprocell Europe Ltd., Glasgow G20 0XA, UK
| |
Collapse
|
4
|
Määttä A, Nixon R, Robinson N, Ambler CA, Goncalves K, Maltman V, Przyborski S. Regulation of epidermal proliferation and hair follicle cycling by synthetic photostable retinoid EC23. J Cosmet Dermatol 2023; 22:1658-1669. [PMID: 36718827 DOI: 10.1111/jocd.15629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/22/2022] [Accepted: 01/03/2023] [Indexed: 02/01/2023]
Abstract
BACKGROUND Retinoid signaling is an important regulator of the epidermis and skin appendages. Therefore, synthetic retinoids have been developed for therapeutic use for skin disorders such as psoriasis and acne. AIMS In previous studies, we showed how the photostable retinoid EC23 induces neuronal differentiation in stem cell-like cell populations, and here, we aim to investigate its ability to influence epidermal and hair follicle growth. METHODS EC23 influence on skin biology was investigated initially in cultures of monolayer keratinocytes and three-dimentional in vitro models of skin, and finally in in vivo studies of mice back skin. RESULTS EC23 induces keratinocyte hyperproliferation in vitro and in vivo, and when applied to mouse skin increases the number of involucrin-positive suprabasal cell layers. These phenotypic changes are similar in skin treated with the natural retinoid all-trans retinoic acid (ATRA); however, EC23 is more potent; a tenfold lower dose of EC23 is sufficient to induce epidermal thickening, and resulting hyperproliferation is sustained for a longer time period after first dose. EC23 treatment resulted in a disorganized stratum corneum, reduced cell surface lipids and compromised barrier, similar to ATRA treatment. However, EC23 induces a rapid telogen to anagen transition and hair re-growth in 6-week-old mice with synchronously resting back skin follicles. The impact of EC23 on the hair cycle was surprising as similar results have not been seen with ATRA. CONCLUSIONS These data suggest that synthetic retinoid EC23 is a useful tool in exploring the turnover and differentiation of cells and has a potent effect on skin physiology.
Collapse
Affiliation(s)
- Arto Määttä
- Department of Biosciences, Durham University, Durham, UK
| | - Rebecca Nixon
- Department of Biosciences, Durham University, Durham, UK
| | - Neil Robinson
- Department of Biosciences, Durham University, Durham, UK
| | | | | | | | - Stefan Przyborski
- Department of Biosciences, Durham University, Durham, UK.,Reprocell Europe Ltd, West of Scotland Science Park, Glasgow, UK
| |
Collapse
|
5
|
Goncalves KE, Phillips S, Shah DSH, Athey D, Przyborski SA. Application of biomimetic surfaces and 3D culture technology to study the role of extracellular matrix interactions in neurite outgrowth and inhibition. BIOMATERIALS ADVANCES 2022; 144:213204. [PMID: 36434926 DOI: 10.1016/j.bioadv.2022.213204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/10/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022]
Abstract
The microenvironment that cells experience during in vitro culture can often be far removed from the native environment they are exposed to in vivo. To recreate the physiological environment that developing neurites experience in vivo, we combine a well-established model of human neurite development with, functionalisation of both 2D and 3D growth substrates with specific extracellular matrix (ECM) derived motifs displayed on engineered scaffold proteins. Functionalisation of growth substrates provides biochemical signals more reminiscent of the in vivo environment and the combination of this technology with 3D cell culture techniques, further recapitulates the native cellular environment by providing a more physiologically relevant geometry for neurites to develop. This biomaterials approach was used to study interactions between the ECM and developing neurites, along with the identification of specific motifs able to enhance neuritogenesis within this model. Furthermore, this technology was employed to study the process of neurite inhibition that has a detrimental effect on neuronal connectivity following injury to the central nervous system (CNS). Growth substrates were functionalised with inhibitory peptides released from damaged myelin within the injured spinal cord (Nogo & OMgp). This model was then utilised to study the underlying molecular mechanisms that govern neurite inhibition in addition to potential mechanisms of recovery.
Collapse
Affiliation(s)
- K E Goncalves
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - S Phillips
- Orla Protein Technologies Ltd, (now part of Porvair Sciences Ltd), 73 Clywedog Road East, Wrexham Industrial Estate, Wrexham LL13 9XS, UK
| | - D S H Shah
- Orla Protein Technologies Ltd, (now part of Porvair Sciences Ltd), 73 Clywedog Road East, Wrexham Industrial Estate, Wrexham LL13 9XS, UK
| | - D Athey
- Orla Protein Technologies Ltd, (now part of Porvair Sciences Ltd), 73 Clywedog Road East, Wrexham Industrial Estate, Wrexham LL13 9XS, UK
| | - S A Przyborski
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK; Reprocell Europe Ltd, NETPark Incubator, Thomas Wright Way, Sedgefield TS21 3FD, UK.
| |
Collapse
|
6
|
Smith LA, Hidalgo Aguilar A, Owens DDG, Quelch RH, Knight E, Przyborski SA. Using Advanced Cell Culture Techniques to Differentiate Pluripotent Stem Cells and Recreate Tissue Structures Representative of Teratoma Xenografts. Front Cell Dev Biol 2021; 9:667246. [PMID: 34026759 PMCID: PMC8134696 DOI: 10.3389/fcell.2021.667246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/12/2021] [Indexed: 11/24/2022] Open
Abstract
Various methods are currently used to investigate human tissue differentiation, including human embryo culture and studies utilising pluripotent stem cells (PSCs) such as in vitro embryoid body formation and in vivo teratoma assays. Each method has its own distinct advantages, yet many are limited due to being unable to achieve the complexity and maturity of tissue structures observed in the developed human. The teratoma xenograft assay allows maturation of more complex tissue derivatives, but this method has ethical issues surrounding animal usage and significant protocol variation. In this study, we have combined three-dimensional (3D) in vitro cell technologies including the common technique of embryoid body (EB) formation with a novel porous scaffold membrane, in order to prolong cell viability and extend the differentiation of PSC derived EBs. This approach enables the formation of more complex morphologically identifiable 3D tissue structures representative of all three primary germ layers. Preliminary in vitro work with the human embryonal carcinoma line TERA2.SP12 demonstrated improved EB viability and enhanced tissue structure formation, comparable to teratocarcinoma xenografts derived in vivo from the same cell line. This is thought to be due to reduced diffusion distances as the shape of the spherical EB transforms and flattens, allowing for improved nutritional/oxygen support to the developing structures over extended periods. Further work with EBs derived from murine embryonic stem cells demonstrated that the formation of a wide range of complex, recognisable tissue structures could be achieved within 2–3 weeks of culture. Rudimentary tissue structures from all three germ layers were present, including epidermal, cartilage and epithelial tissues, again, strongly resembling tissue structure of teratoma xenografts of the same cell line. Proof of concept work with EBs derived from the human embryonic stem cell line H9 also showed the ability to form complex tissue structures within this system. This novel yet simple model offers a controllable, reproducible method to achieve complex tissue formation in vitro. It has the potential to be used to study human developmental processes, as well as offering an animal free alternative method to the teratoma assay to assess the developmental potential of novel stem cell lines.
Collapse
Affiliation(s)
- L A Smith
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - A Hidalgo Aguilar
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - D D G Owens
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - R H Quelch
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - E Knight
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - S A Przyborski
- Department of Biosciences, Durham University, Durham, United Kingdom.,Reprocell Europe, NETPark, Sedgefield, United Kingdom
| |
Collapse
|
7
|
Saavedra L, Wallace K, Freudenrich TF, Mall M, Mundy WR, Davila J, Shafer TJ, Wernig M, Haag D. Comparison of Acute Effects of Neurotoxic Compounds on Network Activity in Human and Rodent Neural Cultures. Toxicol Sci 2021; 180:295-312. [PMID: 33537736 PMCID: PMC11811916 DOI: 10.1093/toxsci/kfab008] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Assessment of neuroactive effects of chemicals in cell-based assays remains challenging as complex functional tissue is required for biologically relevant readouts. Recent in vitro models using rodent primary neural cultures grown on multielectrode arrays allow quantitative measurements of neural network activity suitable for neurotoxicity screening. However, robust systems for testing effects on network function in human neural models are still lacking. The increasing number of differentiation protocols for generating neurons from human-induced pluripotent stem cells (hiPSCs) holds great potential to overcome the unavailability of human primary tissue and expedite cell-based assays. Yet, the variability in neuronal activity, prolonged ontogeny and rather immature stage of most neuronal cells derived by standard differentiation techniques greatly limit their utility for screening neurotoxic effects on human neural networks. Here, we used excitatory and inhibitory neurons, separately generated by direct reprogramming from hiPSCs, together with primary human astrocytes to establish highly functional cultures with defined cell ratios. Such neuron/glia cocultures exhibited pronounced neuronal activity and robust formation of synchronized network activity on multielectrode arrays, albeit with noticeable delay compared with primary rat cortical cultures. We further investigated acute changes of network activity in human neuron/glia cocultures and rat primary cortical cultures in response to compounds with known adverse neuroactive effects, including gamma amino butyric acid receptor antagonists and multiple pesticides. Importantly, we observed largely corresponding concentration-dependent effects on multiple neural network activity metrics using both neural culture types. These results demonstrate the utility of directly converted neuronal cells from hiPSCs for functional neurotoxicity screening of environmental chemicals.
Collapse
Affiliation(s)
- Lorena Saavedra
- NeuCyte Inc., San Carlos, California 94070, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Kathleen Wallace
- BCTD, CCTE, ORD, US Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Theresa F. Freudenrich
- BCTD, CCTE, ORD, US Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Moritz Mall
- Institute for Stem Cell Biology and Regenerative Medicine, Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
- Cell Fate Engineering and Disease Modeling Group, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg 69120, Germany
| | - William R. Mundy
- BCTD, CCTE, ORD, US Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Jorge Davila
- NeuCyte Inc., San Carlos, California 94070, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Timothy J. Shafer
- BCTD, CCTE, ORD, US Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA
| | - Marius Wernig
- Institute for Stem Cell Biology and Regenerative Medicine, Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Daniel Haag
- NeuCyte Inc., San Carlos, California 94070, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
8
|
Zhang Y, Wiesholler LM, Rabie H, Jiang P, Lai J, Hirsch T, Lee KB. Remote Control of Neural Stem Cell Fate Using NIR-Responsive Photoswitching Upconversion Nanoparticle Constructs. ACS APPLIED MATERIALS & INTERFACES 2020; 12:40031-40041. [PMID: 32805826 DOI: 10.1021/acsami.0c10145] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Light-mediated remote control of stem cell fate, such as proliferation, differentiation, and migration, can bring a significant impact on stem cell biology and regenerative medicine. Current UV/vis-mediated control approaches are limited in terms of nonspecific absorption, poor tissue penetration, and phototoxicity. Upconversion nanoparticle (UCNP)-based near-infrared (NIR)-mediated control systems have gained increasing attention for vast applications with minimal nonspecific absorption, good penetration depth, and minimal phototoxicity from NIR excitations. Specifically, 808 nm NIR-responsive upconversion nanomaterials have shown clear advantages for biomedical applications owing to diminished heating effects and better tissue penetration. Herein, a novel 808 nm NIR-mediated control method for stem cell differentiation has been developed using multishell UCNPs, which are optimized for upconverting 808 nm NIR light to UV emission. The locally generated UV emissions further toggle photoswitching polymer capping ligands to achieve spatiotemporally controlled small-molecule release. More specifically, with 808 nm NIR excitation, stem cell differentiation factors can be released to guide neural stem cell (NSC) differentiation in a highly controlled manner. Given the challenges in stem cell behavior control, the developed 808 nm NIR-responsive UCNP-based approach to control stem cell differentiation can represent a new tool for studying single-molecule roles in stem cell and developmental biology.
Collapse
Affiliation(s)
- Yixiao Zhang
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Lisa M Wiesholler
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93040 Regensburg, Germany
| | - Hudifah Rabie
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Pengfei Jiang
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Jinping Lai
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Thomas Hirsch
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93040 Regensburg, Germany
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| |
Collapse
|
9
|
Hoyle HW, Smith LA, Williams RJ, Przyborski SA. Applications of novel bioreactor technology to enhance the viability and function of cultured cells and tissues. Interface Focus 2020; 10:20190090. [PMID: 32194933 DOI: 10.1098/rsfs.2019.0090] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2019] [Indexed: 12/14/2022] Open
Abstract
As the field of tissue engineering continues to advance rapidly, so too does the complexity of cell culture techniques used to generate in vitro tissue constructs, with the overall aim of mimicking the in vivo microenvironment. This complexity typically comes at a cost with regards to the size of the equipment required and associated expenses. We have developed a small, low-cost bioreactor system which overcomes some of the issues of typical bioreactor systems while retaining a suitable scale for the formation of complex tissues. Herein, we have tested this system with three cell populations/tissues: the culture of hepatocellular carcinoma cells, where an improved structure and basic metabolic function is seen; the culture of human pluripotent stem cells, in which the cultures can form more heterogeneous tissues resembling the in vivo teratoma and ex vivo liver tissue slices, in which improved maintenance of cellular viability is seen over the 3 days tested. This system has the flexibility to be used for a variety of further uses and has the potential to provide a more accessible alternative to current bioreactor technologies.
Collapse
Affiliation(s)
- H W Hoyle
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - L A Smith
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - R J Williams
- Department of Engineering, Durham University, South Road, Durham DH1 3LE, UK
| | - S A Przyborski
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK.,Reprocell Europe Ltd, NETPark Incubator, Thomas Wright Way, Sedgefield TS21 3FD, UK
| |
Collapse
|
10
|
Wang D, Bo Z, Lan T, Pan J, Cui D. Application of Magnetic Resonance Imaging Molecular Probe in the Study of Pluripotent Stem Cell-Derived Neural Stem Cells for the Treatment of Posttraumatic Paralysis of Cerebral Infarction. World Neurosurg 2020; 138:637-644. [PMID: 32001413 DOI: 10.1016/j.wneu.2020.01.146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/16/2020] [Accepted: 01/18/2020] [Indexed: 11/20/2022]
Abstract
The feasibility and efficacy of magnetic resonance imaging molecular probe application and pluripotent stem cell-derived neural stem cell (NSC) transplantation for the treatment of hind limb paralysis in mice with cerebral infarction were studied. A model of middle cerebral artery infarction using adult mice was established to stimulate hind limb reactions. After the model was successfully established, the mice were first divided into an experimental group and a control group, with 25 mice in each group. Cultured neural cells were obtained from the cerebral cortex and hippocampus of a mouse 15 days pregnant to prepare pluripotent stem cells. Pluripotent stem cell-derived NSCs were identified by positive expression of Nestin. The experimental group was injected with 1 μL of NSC suspension through the tail vein, and the control group was injected with 1 μL of saline through the tail vein. The neurologic function of mice in each group was scored 1 day, 3 days, 7 days, 14 days, and 28 days after transplantation according to the Garcia 18 subscale. Finally, the differentiation, migration, and integration of pluripotent stem cell-derived NSCs after transplantation were observed using a magnetic resonance imaging molecular probe method. The results showed that the neurologic function scores of the ischemic transplantation group were significantly higher than those of the control group, and the results were significantly different (P < 0.05). Through research, it was found that after transplantation of pluripotent stem cell-derived NSCs, the transplanted cells migrated and differentiated around the body at 28 days and participated in angiogenesis, and the blood vessels in the infarcted area were obviously proliferated. The NSCs cultured in vitro were transplanted to the small infarction after cerebral infarction. In rats, it plays a positive role in the repair of nerve function in mice with cerebral infarction. NSCs cultured in vitro can survive, migrate, and differentiate in the brain tissue of mouse ischemic models and play a positive role in the repair of neurologic function in mice with cerebral infarction. Magnetic resonance imaging molecular probes have a good adjuvant effect on the use of pluripotent stem cell-derived NSCs to treat hind limb paralysis in mice with cerebral infarction.
Collapse
Affiliation(s)
- Dayan Wang
- Department of Neurology, Qianwei Hospital of Jilin Province, Changchun City, China
| | - Zhang Bo
- Department of Neurosurgery, First Hospital of Jilin University, Changchun City, China
| | - Tianye Lan
- Department of Encephalopathy, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Jianyu Pan
- Department of Encephalopathy, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Dayong Cui
- Department of Neurosurgery, Qianwei Hospital of Jilin Province, Changchun City, China.
| |
Collapse
|
11
|
Li S, Xia M. Review of high-content screening applications in toxicology. Arch Toxicol 2019; 93:3387-3396. [PMID: 31664499 PMCID: PMC7011178 DOI: 10.1007/s00204-019-02593-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/08/2019] [Indexed: 12/17/2022]
Abstract
High-content screening (HCS) technology combining automated microscopy and quantitative image analysis can address biological questions in academia and the pharmaceutical industry. Various HCS experimental applications have been utilized in the research field of in vitro toxicology. In this review, we describe several HCS application approaches used for studying the mechanism of compound toxicity, highlight some challenges faced in the toxicological community, and discuss the future directions of HCS in regards to new models, new reagents, data management, and informatics. Many specialized areas of toxicology including developmental toxicity, genotoxicity, developmental neurotoxicity/neurotoxicity, hepatotoxicity, cardiotoxicity, and nephrotoxicity will be examined. In addition, several newly developed cellular assay models including induced pluripotent stem cells (iPSCs), three-dimensional (3D) cell models, and tissues-on-a-chip will be discussed. New genome-editing technologies (e.g., CRISPR/Cas9), data analyzing tools for imaging, and coupling with high-content assays will be reviewed. Finally, the applications of machine learning to image processing will be explored. These new HCS approaches offer a huge step forward in dissecting biological processes, developing drugs, and making toxicology studies easier.
Collapse
Affiliation(s)
- Shuaizhang Li
- Division for Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD, USA
| | - Menghang Xia
- Division for Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD, USA.
| |
Collapse
|
12
|
Differentiation and maturation of oligodendrocytes in human three-dimensional neural cultures. Nat Neurosci 2019; 22:484-491. [PMID: 30692691 PMCID: PMC6788758 DOI: 10.1038/s41593-018-0316-9] [Citation(s) in RCA: 236] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 12/05/2018] [Indexed: 02/07/2023]
Abstract
Investigating human oligodendrogenesis and the interaction of oligodendrocytes with neurons and astrocytes would accelerate our understanding of the mechanisms underlying white matter disorders. However, this is challenging due to limited accessibility of functional human brain tissue. Here, we developed a novel differentiation method of human induced pluripotent stem cells (hiPS cells) to generate three-dimensional (3D) neural spheroids that contain oligodendrocytes as well as neurons and astrocytes, called human oligodendrocyte spheroids (hOLS). We demonstrate that oligodendrocyte-lineage cells derived in hOLS transition through developmental stages similar to primary human oligodendrocytes and that the migration of oligodendrocyte-lineage cells and their susceptibility to lysolecithin exposure can be captured by live imaging. Moreover, their morphology changes as they mature over time in vitro and start myelinating neurons. We anticipate that this method can be used to study oligodendrocyte development, myelination, and interactions with other major cell types in the central nervous system.
Collapse
|
13
|
Goncalves K, Przyborski S. The utility of stem cells for neural regeneration. Brain Neurosci Adv 2018; 2:2398212818818071. [PMID: 32166173 PMCID: PMC7058206 DOI: 10.1177/2398212818818071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Indexed: 12/22/2022] Open
Abstract
The use of stem cells in biomedical research is an extremely active area of science. This is because they provide tools that can be used both in vivo and vitro to either replace cells lost in degenerative processes, or to model such diseases to elucidate their underlying mechanisms. This review aims to discuss the use of stem cells in terms of providing regeneration within the nervous system, which is particularly important as neurons of the central nervous system lack the ability to inherently regenerate and repair lost connections. As populations are ageing, incidence of neurodegenerative diseases are increasing, highlighting the need to better understand the regenerative capacity and many uses of stem cells in this field.
Collapse
Affiliation(s)
| | - Stefan Przyborski
- Department of Biosciences, Durham University, Durham, UK.,Reprocell Europe, Sedgefield, UK
| |
Collapse
|
14
|
Tang J, He D, Yang P, He J, Zhang Y. Genome-wide expression profiling of glioblastoma using a large combined cohort. Sci Rep 2018; 8:15104. [PMID: 30305647 PMCID: PMC6180049 DOI: 10.1038/s41598-018-33323-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/24/2018] [Indexed: 01/12/2023] Open
Abstract
Glioblastomas (GBMs), are the most common intrinsic brain tumors in adults and are almost universally fatal. Despite the progresses made in surgery, chemotherapy, and radiation over the past decades, the prognosis of patients with GBM remained poor and the average survival time of patients suffering from GBM was still short. Discovering robust gene signatures toward better understanding of the complex molecular mechanisms leading to GBM is an important prerequisite to the identification of novel and more effective therapeutic strategies. Herein, a comprehensive study of genome-scale mRNA expression data by combining GBM and normal tissue samples from 48 studies was performed. The 147 robust gene signatures were identified to be significantly differential expression between GBM and normal samples, among which 100 (68%) genes were reported to be closely associated with GBM in previous publications. Moreover, function annotation analysis based on these 147 robust DEGs showed certain deregulated gene expression programs (e.g., cell cycle, immune response and p53 signaling pathway) were associated with GBM development, and PPI network analysis revealed three novel hub genes (RFC4, ZWINT and TYMS) play important role in GBM development. Furthermore, survival analysis based on the TCGA GBM data demonstrated 38 robust DEGs significantly affect the prognosis of GBM in OS (p < 0.05). These findings provided new insights into molecular mechanisms underlying GBM and suggested the 38 robust DEGs could be potential targets for the diagnosis and treatment.
Collapse
Affiliation(s)
- Jing Tang
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences and Innovative Drug Research Centre, Chongqing University, Chongqing, 401331, China.,Materia Medica Development Group, Institute of Medicinal Chemistry, Lanzhou University School of Pharmacy, Lanzhou, 730000, China
| | - Dian He
- Materia Medica Development Group, Institute of Medicinal Chemistry, Lanzhou University School of Pharmacy, Lanzhou, 730000, China. .,Gansu Institute for Drug Control, Lanzhou, 730070, China.
| | - Pingrong Yang
- Materia Medica Development Group, Institute of Medicinal Chemistry, Lanzhou University School of Pharmacy, Lanzhou, 730000, China.,Gansu Institute for Drug Control, Lanzhou, 730070, China
| | - Junquan He
- Materia Medica Development Group, Institute of Medicinal Chemistry, Lanzhou University School of Pharmacy, Lanzhou, 730000, China.,Gansu Institute for Drug Control, Lanzhou, 730070, China
| | - Yang Zhang
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences and Innovative Drug Research Centre, Chongqing University, Chongqing, 401331, China. .,Materia Medica Development Group, Institute of Medicinal Chemistry, Lanzhou University School of Pharmacy, Lanzhou, 730000, China.
| |
Collapse
|