1
|
Abdallah YEH, Chahal S, Jamali F, Mahmoud SH. Drug-disease interaction: Clinical consequences of inflammation on drugs action and disposition. JOURNAL OF PHARMACY & PHARMACEUTICAL SCIENCES : A PUBLICATION OF THE CANADIAN SOCIETY FOR PHARMACEUTICAL SCIENCES, SOCIETE CANADIENNE DES SCIENCES PHARMACEUTIQUES 2023; 26:11137. [PMID: 36942294 PMCID: PMC9990632 DOI: 10.3389/jpps.2023.11137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/23/2023] [Indexed: 02/07/2023]
Abstract
Inflammation is a culprit in many conditions affecting millions of people worldwide. A plethora of studies has revealed that inflammation and inflammatory mediators such as cytokines and chemokines are associated with altered expression and activity of various proteins such as those involved in drug metabolism, specifically cytochrome P450 enzymes (CYPs). Emphasis of most available reports is on the inflammation-induced downregulation of CYPs, subsequently an increase in their substrate concentrations, and the link between the condition and the inflammatory mediators such as interleukin-6 and tumor necrosis factor alpha. However, reports also suggest that inflammation influences expression and/or activity of other proteins such as those involved in the drug-receptor interaction. These multifaced involvements render the clinical consequence of the inflammation unexpected. Such changes are shown in many inflammatory conditions including rheumatoid arthritis, Crohn's disease, acute respiratory illnesses as well as natural processes such as aging, among others. For example, some commonly used cardiovascular drugs lose their efficacy when patients get afflicted with inflammatory conditions such as rheumatoid arthritis and Crohn's disease. Interestingly, this is despite increased concentration subsequent to reduced clearance. The observation is attributed to a simultaneous reduction in the expression of target receptor proteins such as the calcium and potassium channel and β-adrenergic receptor as well as the metabolic enzymes. This narrative review summarizes the current understanding and clinical implications of the inflammatory effects on both CYPs and drug-receptor target proteins.
Collapse
|
2
|
Rubin E, Pippione AC, Boyko M, Einaudi G, Sainas S, Collino M, Cifani C, Lolli ML, Abu-Freha N, Kaplanski J, Boschi D, Azab AN. A New NF-κB Inhibitor, MEDS-23, Reduces the Severity of Adverse Post-Ischemic Stroke Outcomes in Rats. Brain Sci 2021; 12:brainsci12010035. [PMID: 35053779 PMCID: PMC8773493 DOI: 10.3390/brainsci12010035] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 11/16/2022] Open
Abstract
Aim: Nuclear factor kappa B (NF-κB) is known to play an important role in the inflammatory process which takes place after ischemic stroke. The major objective of the present study was to examine the effects of MEDS-23, a potent inhibitor of NF-κB, on clinical outcomes and brain inflammatory markers in post-ischemic stroke rats. Main methods: Initially, a Toxicity Experiment was performed to determine the appropriate dose of MEDS-23 for use in animals, as MEDS-23 was analyzed in vivo for the first time. We used the middle cerebral artery occlusion (MCAO) model for inducing ischemic stroke in rats. The effects of MEDS-23 (at 10 mg/kg, ip) on post-stroke outcomes (brain inflammation, fever, neurological deficits, mortality, and depression- and anxiety-like behaviours) was tested in several efficacy experiments. Key findings: MEDS-23 was found to be safe and significantly reduced the severity of some adverse post-stroke outcomes such as fever and neurological deficits. Moreover, MEDS-23 significantly decreased prostaglandin E2 levels in the hypothalamus and hippocampus of post-stroke rats, but did not prominently alter the levels of interleukin-6 and tumor necrosis factor-α. Significance: These results suggest that NF-κB inhibition is a potential therapeutic strategy for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Elina Rubin
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410501, Israel; (E.R.); (J.K.)
| | - Agnese C. Pippione
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (A.C.P.); (S.S.); (M.L.L.); (D.B.)
| | - Matthew Boyko
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel;
| | - Giacomo Einaudi
- Pharmacology Unit, School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (G.E.); (C.C.)
| | - Stefano Sainas
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (A.C.P.); (S.S.); (M.L.L.); (D.B.)
| | - Massimo Collino
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10125 Turin, Italy;
| | - Carlo Cifani
- Pharmacology Unit, School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (G.E.); (C.C.)
| | - Marco L. Lolli
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (A.C.P.); (S.S.); (M.L.L.); (D.B.)
| | - Naim Abu-Freha
- Institute of Gastroenterology and Hepatology, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel;
| | - Jacob Kaplanski
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410501, Israel; (E.R.); (J.K.)
| | - Donatella Boschi
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (A.C.P.); (S.S.); (M.L.L.); (D.B.)
| | - Abed N. Azab
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410501, Israel; (E.R.); (J.K.)
- Department of Nursing, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410501, Israel
- Correspondence:
| |
Collapse
|
3
|
Sheng Y, Yang H, Wu T, Zhu L, Liu L, Liu X. Alterations of Cytochrome P450s and UDP-Glucuronosyltransferases in Brain Under Diseases and Their Clinical Significances. Front Pharmacol 2021; 12:650027. [PMID: 33967789 PMCID: PMC8097730 DOI: 10.3389/fphar.2021.650027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022] Open
Abstract
Cytochrome P450s (CYPs) and UDP-glucuronosyltransferases (UGTs) are both greatly important metabolic enzymes in various tissues, including brain. Although expressions of brain CYPs and UGTs and their contributions to drug disposition are much less than liver, both CYPs and UGTs also mediate metabolism of endogenous substances including dopamine and serotonin as well as some drugs such as morphine in brain, demonstrating their important roles in maintenance of brain homeostasis or pharmacological activity of drugs. Some diseases such as epilepsy, Parkinson's disease and Alzheimer's disease are often associated with the alterations of CYPs and UGTs in brain, which may be involved in processes of these diseases via disturbing metabolism of endogenous substances or resisting drugs. This article reviewed the alterations of CYPs and UGTs in brain, the effects on endogenous substances and drugs and their clinical significances. Understanding the roles of CYPs and UGTs in brain provides some new strategies for the treatment of central nervous system diseases.
Collapse
Affiliation(s)
- Yun Sheng
- Center of Pharmacokinetics and Metabolism, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hanyu Yang
- Center of Pharmacokinetics and Metabolism, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Tong Wu
- Center of Pharmacokinetics and Metabolism, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Liang Zhu
- Center of Pharmacokinetics and Metabolism, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Li Liu
- Center of Pharmacokinetics and Metabolism, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiaodong Liu
- Center of Pharmacokinetics and Metabolism, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
4
|
De-Oliveira ACAX, Paumgartten FJR. Malaria-induced Alterations of Drug Kinetics and Metabolism in Rodents and Humans. Curr Drug Metab 2021; 22:127-138. [PMID: 33397251 DOI: 10.2174/1389200221999210101232057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/09/2020] [Accepted: 11/18/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Infections and inflammation lead to a downregulation of drug metabolism and kinetics in experimental animals. These changes in the expression and activities of drug-metabolizing enzymes may affect the effectiveness and safety of pharmacotherapy of infections and inflammatory conditions. OBJECTIVE In this review, we addressed the available evidence on the effects of malaria on drug metabolism activity and kinetics in rodents and humans. RESULTS An extensive literature review indicated that infection by Plasmodium spp consistently decreased the activity of hepatic Cytochrome P450s and phase-2 enzymes as well as the clearance of a variety of drugs in mice (lethal and non-lethal) and rat models of malaria. Malaria-induced CYP2A5 activity in the mouse liver was an exception. Except for paracetamol, pharmacokinetic trials in patients during acute malaria and in convalescence corroborated rodent findings. Trials showed that, in acute malaria, clearance of quinine, primaquine, caffeine, metoprolol, omeprazole, and antipyrine is slower and that AUCs are greater than in convalescent individuals. CONCLUSION Notwithstanding the differences between rodent models and human malaria, studies in P. falciparum and P. vivax patients confirmed rodent data showing that CYP-mediated clearance of antimalarials and other drugs is depressed during the symptomatic disease when rises in levels of acute-phase proteins and inflammatory cytokines occur. Evidence suggests that inflammatory cytokines and the interplay between malaria-activated NF-kB-signaling and cell pathways controlling phase 1/2 enzyme genes transcription mediate drug metabolism changes. The malaria-induced decrease in drug clearance may exacerbate drug-drug interactions, and the occurrence of adverse drug events, particularly when patients are treated with narrow-margin-of-safety medicines.
Collapse
Affiliation(s)
- Ana C A X De-Oliveira
- Department of Biological Sciences, National School of Public Health, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Francisco J R Paumgartten
- Department of Biological Sciences, National School of Public Health, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Sarparast M, Dattmore D, Alan J, Lee KSS. Cytochrome P450 Metabolism of Polyunsaturated Fatty Acids and Neurodegeneration. Nutrients 2020; 12:E3523. [PMID: 33207662 PMCID: PMC7696575 DOI: 10.3390/nu12113523] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/08/2020] [Accepted: 11/10/2020] [Indexed: 12/11/2022] Open
Abstract
Due to the aging population in the world, neurodegenerative diseases have become a serious public health issue that greatly impacts patients' quality of life and adds a huge economic burden. Even after decades of research, there is no effective curative treatment for neurodegenerative diseases. Polyunsaturated fatty acids (PUFAs) have become an emerging dietary medical intervention for health maintenance and treatment of diseases, including neurodegenerative diseases. Recent research demonstrated that the oxidized metabolites, particularly the cytochrome P450 (CYP) metabolites, of PUFAs are beneficial to several neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease; however, their mechanism(s) remains unclear. The endogenous levels of CYP metabolites are greatly affected by our diet, endogenous synthesis, and the downstream metabolism. While the activity of omega-3 (ω-3) CYP PUFA metabolites and omega-6 (ω-6) CYP PUFA metabolites largely overlap, the ω-3 CYP PUFA metabolites are more active in general. In this review, we will briefly summarize recent findings regarding the biosynthesis and metabolism of CYP PUFA metabolites. We will also discuss the potential mechanism(s) of CYP PUFA metabolites in neurodegeneration, which will ultimately improve our understanding of how PUFAs affect neurodegeneration and may identify potential drug targets for neurodegenerative diseases.
Collapse
Affiliation(s)
- Morteza Sarparast
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA;
| | - Devon Dattmore
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA;
| | - Jamie Alan
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA;
| | - Kin Sing Stephen Lee
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA;
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA;
| |
Collapse
|
6
|
Navarro-Mabarak C, Loaiza-Zuluaga M, Hernández-Ojeda SL, Camacho-Carranza R, Espinosa-Aguirre JJ. Neuroinflammation is able to downregulate cytochrome P450 epoxygenases 2J3 and 2C11 in the rat brain. Brain Res Bull 2020; 163:57-64. [PMID: 32707261 DOI: 10.1016/j.brainresbull.2020.07.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/24/2020] [Accepted: 07/16/2020] [Indexed: 10/23/2022]
Abstract
Cytochrome P450 (CYP) epoxygenases have been considered the main producers of epoxyeicosatrienoic acids (EETs) through the oxidation of arachidonic acid (AA). EETs display various biological properties, notably their powerful anti-inflammatory activities. In the brain, EETs have proven to be neuroprotective and to improve neuroinflammation. However, it is known that inflammation could modify CYP expression. We have previously reported that an inflammatory process in astrocytes is able to down-regulate CYP2J3 and CYP2C11 mRNA, protein levels, and activity (Navarro-Mabarak et al., 2019). In this work, we evaluated the effect of neuroinflammation in protein expression of CYP epoxygenases in the brain. Neuroinflammation was induced by the intraperitoneal administration of LPS (1 mg/kg) to male Wistar rats and was corroborated by IL-6, GFAP, and Iba-1 protein levels in the cortex over time. CYP2J3 and CYP2C11 protein levels were also evaluated in the cortex after 6, 12, 24, 48, and 72 h of LPS treatment. Our results show for the first time that neuroinflammation is able to downregulate CYP2J3 and CYP2C11 protein expression in the brain cortex.
Collapse
Affiliation(s)
- C Navarro-Mabarak
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - M Loaiza-Zuluaga
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - S L Hernández-Ojeda
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - R Camacho-Carranza
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - J J Espinosa-Aguirre
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México.
| |
Collapse
|
7
|
Yue D, Zhao J, Chen H, Guo M, Chen C, Zhou Y, Xu L. MicroRNA-7, synergizes with RORα, negatively controls the pathology of brain tissue inflammation. J Neuroinflammation 2020; 17:28. [PMID: 31959187 PMCID: PMC6970296 DOI: 10.1186/s12974-020-1710-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 01/13/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Accumulating evidence has documented that microRNA-7 (miR-7) plays an important role in the pathology of various diseases. However, the potential role of miR-7 in brain tissue inflammation (BTI) remains unclear. METHODS We detected the expression of miR-7 in LPS-induced murine BTI model and observed the possible effects of miR-7 deficiency on the pathology of BTI. To elucidate the mechanism, the target gene of miR-7 was screened out by Gene chip assay and its potential roles in BTI were evaluated by Western blot, immunofluorescence, and RNAi assay, respectively. RESULTS MiR-7 was upregulated in brain tissue in BTI mice and its deficiency could significantly aggravate the pathology of brain tissue. Moreover, RORα, a new target molecule of miR-7, was upregulated in brain tissue from miR-7 deficiency BTI mice. Of note, downregulation of RORα could remarkably exacerbate the pathology of brain tissue and elevate the transduction of NF-κB and ERK1/2 signaling pathways in brain tissue from miR-7 deficiency BTI mice. Furthermore, RORα and miR-7 were dominantly co-expressed in neurons of BTI mice. Finally, RORα synergized with miR-7 to control the inflammatory reaction of neuronal cells in response to LPS stimulation. CONCLUSIONS MiR-7 expression is upregulated in BTI model. Moreover, miR-7 synergizes with its target gene RORα to control the inflammation reaction of neurons, thereby orchestrating the pathology of BTI.
Collapse
Affiliation(s)
- Dongxu Yue
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi, 563099, Guizhou, China.,Department of Immunology, Zunyi Medical University, Zunyi, 563099, Guizhou, China
| | - Juanjuan Zhao
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi, 563099, Guizhou, China.,Department of Immunology, Zunyi Medical University, Zunyi, 563099, Guizhou, China
| | - Huizi Chen
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi, 563099, Guizhou, China.,Department of Immunology, Zunyi Medical University, Zunyi, 563099, Guizhou, China
| | - Mengmeng Guo
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi, 563099, Guizhou, China.,Department of Immunology, Zunyi Medical University, Zunyi, 563099, Guizhou, China
| | - Chao Chen
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi, 563099, Guizhou, China.,Department of Immunology, Zunyi Medical University, Zunyi, 563099, Guizhou, China
| | - Ya Zhou
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi, 563099, Guizhou, China.,Department of Medical Physics, Zunyi Medical University, Zunyi, 563099, Guizhou, China
| | - Lin Xu
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi, 563099, Guizhou, China. .,Department of Immunology, Zunyi Medical University, Zunyi, 563099, Guizhou, China.
| |
Collapse
|