1
|
Drozhdev AI, Gorbatenko VO, Goriainov SV, Chistyakov DV, Sergeeva MG. ATP Alters the Oxylipin Profiles in Astrocytes: Modulation by High Glucose and Metformin. Brain Sci 2025; 15:293. [PMID: 40149814 PMCID: PMC11940397 DOI: 10.3390/brainsci15030293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/07/2025] [Accepted: 03/09/2025] [Indexed: 03/29/2025] Open
Abstract
Background: Astrocytes play a key role in the inflammatory process accompanying various neurological diseases. Extracellular ATP accompanies inflammatory processes in the brain, but its effect on lipid mediators (oxylipins) in astrocytes remains elusive. Metformin is a hypoglycemic drug with an anti-inflammatory effect that has been actively investigated in the context of therapy for neuroinflammation, but its mechanisms of action are not fully elucidated. Therefore, we aimed to characterize the effects of ATP on inflammatory markers and oxylipin profiles; determine the dependence of these effects on the adaptation of astrocytes to high glucose levels; and evaluate the possibility of modulating ATP effects using metformin. Methods: We estimated the ATP-mediated response of primary rat astrocytes cultured at normal (NG, 5 mM) and high (HG, 22.5 mM) glucose concentrations for 48 h before stimulation. Cell responses were assessed by monitoring changes in the expression of inflammatory markers (TNFα, IL-6, IL-10, IL-1β, iNOS, and COX-2) and the synthesis of oxylipins (41 compounds), assayed with ultra-high-performance liquid chromatography and tandem mass spectrometry (UPLC-MS/MS). Intracellular pathways were assessed by analyzing the phosphorylation of p38; ERK MAPK; transcription factors STAT3 and NF-κB; and the enzymes mediating oxylipin synthesis, COX-1 and cPLA2. Results: The stimulation of cells with ATP does not affect the expression of pro-inflammatory markers, increases the activities of p38 and ERK MAPKs, and activates oxylipin synthesis, shifting the profiles toward an increase in anti-inflammatory compounds (PGD2, PGA2, 12-HHT, and 18-HEPE). The ATP effects are reduced in HG astrocytes. Metformin potentiated ATP-induced oxylipin synthesis (11-HETE, PGD2, 12-HHT, 15-HETE, 13-HDoHE, and 15-HETrE), which was predominantly evident in NG cells. Conclusions: Our data provide new evidence showing that ATP induces the release of anti-inflammatory oxylipins, and metformin enhances these effects. These results should be considered in the development of anti-inflammatory therapeutic approaches aimed at modulating astrocyte function in various pathologies.
Collapse
Affiliation(s)
- Alexey I. Drozhdev
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia; (A.I.D.); (V.O.G.)
| | - Vladislav O. Gorbatenko
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia; (A.I.D.); (V.O.G.)
| | - Sergey V. Goriainov
- Institute of Pharmacy and Biotechnology, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia;
| | - Dmitry V. Chistyakov
- Institute of Pharmacy and Biotechnology, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia;
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia;
| | - Marina G. Sergeeva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia;
| |
Collapse
|
2
|
Gorbatenko VO, Goriainov SV, Babenko VA, Plotnikov EY, Chistyakov DV, Sergeeva MG. TLR3-mediated Astrocyte Responses in High and Normal Glucose Adaptation Differently Regulated by Metformin. Cell Biochem Biophys 2024; 82:2701-2715. [PMID: 38918312 DOI: 10.1007/s12013-024-01380-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2024] [Indexed: 06/27/2024]
Abstract
Toll-like receptors 3 (TLR3) are innate immune receptors expressed on a wide range of cell types, including glial cells. Inflammatory responses altered by hyperglycemia highlight the need to explore the molecular underpinnings of these changes in cellular models. Therefore, here we estimated TLR3-mediated response of astrocytes cultured at normal (NG, 5 mM) and high (HG, 22.5 mM) glucose concentrations for 48 h before stimulation with polyinosinic:polycytidylic acid Poly(I:C) (PIC) for 6 h. Seahorse Extracellular Flux Analyzer (Seahorse XFp) was used to estimate the extracellular acidification rate (ECAR) and oxygen consumption rate (OCR). Although adaptation to HG affected ECAR and OCR, the stimulation of cells with PIC had no effect on ECAR. PIC reduced maximal OCR, but this effect disappeared upon adaptation to HG. PIC-stimulated release of cytokines IL-1β, IL-10 was reduced, and that of IL-6 and iNOS was increased in the HG model. Adaptation to HG reduced PIC-stimulated synthesis of COX-derived oxylipins measured by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Adaptation to HG did not alter PIC-stimulated p38 activity, ERK mitogen-activated protein kinase, STAT3 and ROS production. Metformin exhibited anti-inflammatory activity, reducing PIC-stimulated synthesis of cytokines and oxylipins. Cell adaptation to high glucose concentration altered the sensitivity of astrocytes to TLR3 receptor activation, and the hypoglycemic drug metformin may exert anti-inflammatory effects under these conditions.
Collapse
Affiliation(s)
- Vladislav O Gorbatenko
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234, Moscow, Russia
| | - Sergey V Goriainov
- Peoples' Friendship University of Russia (RUDN University), 117198, Moscow, Russia
| | - Valentina A Babenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992, Moscow, Russia
| | - Egor Y Plotnikov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992, Moscow, Russia
| | - Dmitry V Chistyakov
- Peoples' Friendship University of Russia (RUDN University), 117198, Moscow, Russia.
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992, Moscow, Russia.
| | - Marina G Sergeeva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992, Moscow, Russia
| |
Collapse
|
3
|
Li Z, Jiang YY, Long C, Peng X, Tao J, Pu Y, Yue R. Bridging metabolic syndrome and cognitive dysfunction: role of astrocytes. Front Endocrinol (Lausanne) 2024; 15:1393253. [PMID: 38800473 PMCID: PMC11116704 DOI: 10.3389/fendo.2024.1393253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/25/2024] [Indexed: 05/29/2024] Open
Abstract
Metabolic syndrome (MetS) and cognitive dysfunction pose significant challenges to global health and the economy. Systemic inflammation, endocrine disruption, and autoregulatory impairment drive neurodegeneration and microcirculatory damage in MetS. Due to their unique anatomy and function, astrocytes sense and integrate multiple metabolic signals, including peripheral endocrine hormones and nutrients. Astrocytes and synapses engage in a complex dialogue of energetic and immunological interactions. Astrocytes act as a bridge between MetS and cognitive dysfunction, undergoing diverse activation in response to metabolic dysfunction. This article summarizes the alterations in astrocyte phenotypic characteristics across multiple pathological factors in MetS. It also discusses the clinical value of astrocytes as a critical pathologic diagnostic marker and potential therapeutic target for MetS-associated cognitive dysfunction.
Collapse
Affiliation(s)
- Zihan Li
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ya-yi Jiang
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Caiyi Long
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xi Peng
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiajing Tao
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yueheng Pu
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rensong Yue
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
4
|
Abdyeva A, Kurtova E, Savinkova I, Galkov M, Gorbacheva L. Long-Term Exposure of Cultured Astrocytes to High Glucose Impact on Their LPS-Induced Activation. Int J Mol Sci 2024; 25:1122. [PMID: 38256196 PMCID: PMC10816293 DOI: 10.3390/ijms25021122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/02/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Diabetes mellitus is associated with various complications, mainly caused by the chronic exposure of the cells to high glucose (HG) concentrations. The effects of long-term HG exposure in vitro accompanied by lipopolysaccharide (LPS) application on astrocytes are relatively unknown. We used cell medium with normal (NG, 5.5 mM) or high glucose (HG, 25 mM) for rat astrocyte cultures and measured the release of NO, IL-6, β-hexosaminidase and cell survival in response to LPS. We first demonstrated that HG long-term incubation of astrocytes increased the release of β-hexosaminidase without decreasing MTT-detected cell survival, suggesting that there is no cell membrane damage or astrocyte death but could be lysosome exocytosis. Different from what was observed for NG, all LPS concentrations tested at HG resulted in an increase in IL-6, and this was detected for both 6 h and 48 h treatments. Interestingly, β-hexosaminidase level increased after 48 h of LPS and only at HG. The NO release from astrocytes also increased with LPS application at HG but was less significant. These data endorsed the original hypothesis that long-term hyperglycemia increases proinflammatory activation of astrocytes, and β-hexosaminidase could be a specific marker of excessive activation of astrocytes associated with exocytosis.
Collapse
Affiliation(s)
- Ayna Abdyeva
- Faculty of Medical Biology, Pirogov Russian National Research Medical University of the Ministry of Health of the Russian Federation, 117997 Moscow, Russia; (A.A.); (E.K.); (I.S.); (M.G.)
| | - Ekaterina Kurtova
- Faculty of Medical Biology, Pirogov Russian National Research Medical University of the Ministry of Health of the Russian Federation, 117997 Moscow, Russia; (A.A.); (E.K.); (I.S.); (M.G.)
| | - Irina Savinkova
- Faculty of Medical Biology, Pirogov Russian National Research Medical University of the Ministry of Health of the Russian Federation, 117997 Moscow, Russia; (A.A.); (E.K.); (I.S.); (M.G.)
| | - Maksim Galkov
- Faculty of Medical Biology, Pirogov Russian National Research Medical University of the Ministry of Health of the Russian Federation, 117997 Moscow, Russia; (A.A.); (E.K.); (I.S.); (M.G.)
| | - Liubov Gorbacheva
- Faculty of Medical Biology, Pirogov Russian National Research Medical University of the Ministry of Health of the Russian Federation, 117997 Moscow, Russia; (A.A.); (E.K.); (I.S.); (M.G.)
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
5
|
Bolat N, Erzurumlu Y, Aşcı H, Özmen Ö, Üreyen Kaya B. Selenium ameliorates inflammation by decreasing autophagic flux and mitogen-activated protein kinase signalling on experimentally induced rat periapical lesions. Int Endod J 2023; 56:227-244. [PMID: 36314140 DOI: 10.1111/iej.13861] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/05/2022]
Abstract
AIM To reveal the molecular mechanisms that targets mitogen-activated protein kinase (MAPK) signalling and the autophagic flux and to investigate the possible effects of the systemic administration of selenium (Se) on experimentally induced rat periapical lesions. METHODOLOGY Thirty adult Sprague-Dawley rats were divided equally into negative control, positive control and Se groups. In the positive control and Se groups, the pulp chambers of their mandibular first molars were exposed to the oral environment to induce periapical lesions The Se group received daily intraperitoneal injections of Se at a dose of 0.1 mg kg-1 . After 28 days, the amount of bone destruction; severity of inflammation; penetration of microorganisms along the root canal; collagen degradation in periodontal ligament; interleukin (IL)-6, hypoxia-inducible factor-1 (HIF-1), cyclooxygenase-2 (COX-2) and caspase-3 expression; autophagic flux; and p38 MAPK signalling were evaluated using radiographic, histopathological, Gram staining, picrosirius red stain, immunohistochemical, quantitative real-time polymerase chain (qRT-PCR) and Western blot methods, respectively. These data were analysed through the Kruskal-Wallis and Dunnett's tests (p < .05). RESULTS The area of radiographic periapical bone loss, histopathological scores, the area of periapical bone loss and the scores for the bacteria localisation, the intensity of immunohistochemical staining for IL-6, HIF-1, COX-2 and caspase-3 in the Se group was significantly less than those of the positive control group (p < .01). The mRNA expression levels of Beclin-1, Atg3, Atg5, Atg7 and Atg16L1 were lower in the Se group than in the positive control group (p < .01). The protein expressions of Beclin-1, Atg5 and LC3-II, the phosphorylation ratio of the p38 MAPK and the ratios of LC3II/LC3I were significantly higher (p < .05) in the positive control and Se groups. On the contrary, the expression of the p62/SQSTM1 protein was significantly lower (p < .05) in the positive control and Se groups than in the negative control group. CONCLUSION The induction of periapical lesions in rats increased autophagic flux and activated p38 MAPK signal transduction processes. Se suppressed the inflammatory process, reduced bone destruction and both the autophagic flux and p38 MAPK activation.
Collapse
Affiliation(s)
- Nergiz Bolat
- Department of Endodontics, Faculty of Dentistry, Suleyman Demirel University, Isparta, Turkey
| | - Yalçin Erzurumlu
- Department of Biochemistry, Faculty of Pharmacy, Suleyman Demirel University, Isparta, Turkey
| | - Halil Aşcı
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Özlem Özmen
- Department of Pathology, Faculty of Veterinary, Mehmet Akif Ersoy University, Burdur, Turkey
| | - Bulem Üreyen Kaya
- Department of Endodontics, Faculty of Dentistry, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
6
|
Gorbatenko VO, Goriainov SV, Babenko VA, Plotnikov EY, Sergeeva MG, Chistyakov DV. Anti-Inflammatory Properties of Metformin During Cultivation of Primary Rat Astrocytes in a Medium with High Glucose Concentration. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:577-589. [PMID: 36154879 DOI: 10.1134/s000629792207001x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/10/2022] [Accepted: 05/10/2022] [Indexed: 06/16/2023]
Abstract
Investigation of the relationship between inflammation and energy metabolism is important for understanding biology of chronic noncommunicable diseases. Use of metformin, a drug for treatment of diabetes, is considered as a promising direction for treatment of neurodegenerative diseases and other neuropathologies with an inflammatory component. Astrocytes play an important role in the regulation of energy metabolism and neuroinflammation; therefore, we studied the effect of metformin on the cellular responses of primary rat astrocytes cultured in a medium with high glucose concentration (22.5 mM, 48-h incubation). Lipopolysaccharide (LPS) was used to stimulate inflammation. The effects of metformin were assessed by monitoring changes in the expression of proinflammatory cytokines and synthesis of oxylipins, assayed with ultra-high-performance liquid chromatography and tandem mass spectrometry (UPLC-MS/MS). Changes at the intracellular level were assessed by analyzing phosphorylation of ERK kinase and transcription factor STAT3, as well as enzymes mediating oxylipin synthesis, cyclooxygenase 1 and 2 (COX). It was found that, independent on glucose concentration, metformin reduced the LPS-stimulated release of cytokines IL-1β and IL-6, decreased activity of the transcription factor STAT3, ERK kinase, synthesis of the derivatives of the cyclooxygenase branch of metabolism of oxylipins and anandamide, and did not affect formation of ROS. The study of energy phenotype of the cells showed that metformin activated glycolysis and inhibited mitochondrial respiration and oxidative phosphorylation, independent on LPS stimulation and cell cultivation at high glucose concentration. Thus, it has been shown that metformin exhibits anti-inflammatory effects, and its effect on the synthesis of cytokines, prostaglandins, and other lipid mediators could determine beneficial effects of metformin in models of neuropathology.
Collapse
Affiliation(s)
- Vladislav O Gorbatenko
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Sergey V Goriainov
- Peoples' Friendship University of Russia (RUDN University), Moscow, 117198, Russia
| | - Valentina A Babenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Egor Y Plotnikov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Marina G Sergeeva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Dmitry V Chistyakov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.
| |
Collapse
|
7
|
Maly IV, Morales MJ, Pletnikov MV. Astrocyte Bioenergetics and Major Psychiatric Disorders. ADVANCES IN NEUROBIOLOGY 2021; 26:173-227. [PMID: 34888836 DOI: 10.1007/978-3-030-77375-5_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ongoing research continues to add new elements to the emerging picture of involvement of astrocyte energy metabolism in the pathophysiology of major psychiatric disorders, including schizophrenia, mood disorders, and addictions. This review outlines what is known about the energy metabolism in astrocytes, the most numerous cell type in the brain, and summarizes the recent work on how specific perturbations of astrocyte bioenergetics may contribute to the neuropsychiatric conditions. The role of astrocyte energy metabolism in mental health and disease is reviewed on the organism, organ, and cell level. Data arising from genomic, metabolomic, in vitro, and neurobehavioral studies is critically analyzed to suggest future directions in research and possible metabolism-focused therapeutic interventions.
Collapse
Affiliation(s)
- Ivan V Maly
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA
| | - Michael J Morales
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA
| | - Mikhail V Pletnikov
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York, Buffalo, NY, USA.
| |
Collapse
|
8
|
Modulation of the Primary Astrocyte-Enriched Cultures' Oxylipin Profiles Reduces Neurotoxicity. Metabolites 2021; 11:metabo11080498. [PMID: 34436439 PMCID: PMC8399552 DOI: 10.3390/metabo11080498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/24/2021] [Accepted: 07/28/2021] [Indexed: 12/31/2022] Open
Abstract
Recently, manipulations with reactive astrocytes have been viewed as a new therapeutic approach that will enable the development of treatments for acute brain injuries and neurodegenerative diseases. Astrocytes can release several substances, which may exert neurotoxic or neuroprotective effects, but the nature of these substances is still largely unknown. In the present work, we tested the hypothesis that these effects may be attributed to oxylipins, which are synthesized from n-3 or n-6 polyunsaturated fatty acids (PUFAs). We used astrocyte-enriched cultures and found that: (1) lipid fractions secreted by lipopolysaccharide (LPS)-stimulated rat primary astrocyte-enriched cultures-possessed neurotoxic activity in rat primary neuronal cultures; (2) both of the tested oxylipin synthesis inhibitors, ML355 and Zileuton, reduce the LPS-stimulated release of interleukin 6 (IL-6) by astrocyte cultures, but only ML355 can change lipid fractions from neurotoxic to non-toxic; and (3) oxylipin profiles, measured by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) from neurotoxic and non-toxic lipid fractions, reveal a group of n-3 docosahexaenoic acid derivatives, hydroxydocosahexaenoic acids (HdoHEs)-4-HdoHE, 8-HdoHE, and 17-HdoHE, which may reflect the neuroprotective features of lipid fractions. Regulating the composition of astrocyte oxylipin profiles may be suggested as an approach for regulation of neurotoxicity in inflammatory processes.
Collapse
|
9
|
Sovrani V, Bobermin LD, Schmitz I, Leipnitz G, Quincozes-Santos A. Potential Glioprotective Strategies Against Diabetes-Induced Brain Toxicity. Neurotox Res 2021; 39:1651-1664. [PMID: 34258694 DOI: 10.1007/s12640-021-00393-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 12/21/2022]
Abstract
Astrocytes are crucial for the maintenance of brain homeostasis by actively participating in the metabolism of glucose, which is the main energy substrate for the central nervous system (CNS), in addition to other supportive functions. More specifically, astrocytes support neurons through the metabolic coupling of synaptic activity and glucose utilization. As such, diabetes mellitus (DM) and consequent glucose metabolism disorders induce astrocyte damage, affecting CNS functionality. Glioprotective molecules can promote protection by improving glial functions and avoiding toxicity in different pathological conditions, including DM. Therefore, this review discusses specific pathomechanisms associated with DM/glucose metabolism disorder-induced gliotoxicity, namely astrocyte metabolism, redox homeostasis/mitochondrial activity, inflammation, and glial signaling pathways. Studies investigating natural products as potential glioprotective strategies against these deleterious effects of DM/glucose metabolism disorders are also reviewed herein. These products include carotenoids, catechins, isoflavones, lipoic acid, polysaccharides, resveratrol, and sulforaphane.
Collapse
Affiliation(s)
- Vanessa Sovrani
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Larissa Daniele Bobermin
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Izaviany Schmitz
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Guilhian Leipnitz
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação Em Ciências Biológicas: Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil.,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Rua Ramiro Barcelos, 2600 - Anexo, Bairro Santa Cecília, Porto Alegre, RS, 90035-003, Brazil
| | - André Quincozes-Santos
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil. .,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Rua Ramiro Barcelos, 2600 - Anexo, Bairro Santa Cecília, Porto Alegre, RS, 90035-003, Brazil.
| |
Collapse
|
10
|
Chistyakov DV, Goriainov SV, Astakhova AA, Sergeeva MG. High Glucose Shifts the Oxylipin Profiles in the Astrocytes towards Pro-Inflammatory States. Metabolites 2021; 11:metabo11050311. [PMID: 34068011 PMCID: PMC8152232 DOI: 10.3390/metabo11050311] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 12/27/2022] Open
Abstract
Hyperglycemia is associated with several complications in the brain, which are also characterized by inflammatory conditions. Astrocytes are responsible for glucose metabolism in the brain and are also important participants of inflammatory responses. Oxylipins are lipid mediators, derived from the metabolism of polyunsaturated fatty acids (PUFAs) and are generally considered to be a link between metabolic and inflammatory processes. High glucose exposure causes astrocyte dysregulation, but its effects on the metabolism of oxylipins are relatively unknown and therefore, constituted the focus of our work. We used normal glucose (NG, 5.5 mM) vs. high glucose (HG, 25 mM) feeding media in primary rat astrocytes-enriched cultures and measured the extracellular release of oxylipins (UPLC-MS/MS) in response to lipopolysaccharide (LPS). The sensitivity of HG and NG growing astrocytes in oxylipin synthesis for various serum concentrations was also tested. Our data reveal shifts towards pro-inflammatory states in HG non-stimulated cells: an increase in the amounts of free PUFAs, including arachidonic (AA), docosahexaenoic (DHA) and eicosapentaenoic (EPA) acids, and cyclooxygenase (COX) mediated metabolites. Astrocytes cultivated in HG showed a tolerance to the LPS, and an imbalance between inflammatory cytokine (IL-6) and oxylipins release. These results suggest a regulation of COX-mediated oxylipin synthesis in astrocytes as a potential new target in treating brain impairment associated with hyperglycemia.
Collapse
Affiliation(s)
- Dmitry V. Chistyakov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (A.A.A.); (M.G.S.)
- Correspondence: ; Tel.: +74-95-939-4332
| | - Sergei V. Goriainov
- SREC PFUR Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia;
| | - Alina A. Astakhova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (A.A.A.); (M.G.S.)
| | - Marina G. Sergeeva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (A.A.A.); (M.G.S.)
| |
Collapse
|
11
|
Ma TL, Zhou Y, Zhang CY, Gao ZA, Duan JX. The role and mechanism of β-arrestin2 in signal transduction. Life Sci 2021; 275:119364. [PMID: 33741415 DOI: 10.1016/j.lfs.2021.119364] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/02/2021] [Accepted: 03/10/2021] [Indexed: 02/06/2023]
Abstract
β-arrestin2 is a ubiquitously expressed scaffold protein localized on the cytoplasm and plasma membrane. It was originally found to bind to GPCRs, uncoupling G proteins and receptors' binding and inhibiting the signal transduction of the GPCRs. Further investigations have revealed that β-arrestin2 not only mediates the desensitization of GPCRs but also serves as a multifunctional scaffold to mediate receptor internalization, kinase activation, and regulation of various signaling pathways, such as TLR4/NF-κB, MAPK, Wnt, TGF-β, and AMPK/mTOR pathways. β-arrestin2 regulates cell invasion, migration, autophagy, angiogenesis, and anti-inflammatory effects by regulating various signaling pathways, which play a vital role in many physiological and pathological processes. This paper reviews the structure and function of β-arrestin2, the regulation of β-arrestin2 based signaling pathways. The role and mechanism of β-arrestin2 signaling have been delineated in sufficient detail. The prospect of regulating the expression and activity of β-arrestin2 in multisystem diseases holds substantial therapeutic promise.
Collapse
Affiliation(s)
- Tian-Liang Ma
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Hunan Engineering Research Center of Biomedical Metal and Ceramic Impants, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Yong Zhou
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China; Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Chen-Yu Zhang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Zi-Ang Gao
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Jia-Xi Duan
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
12
|
Imperatorin Interferes with LPS Binding to the TLR4 Co-Receptor and Activates the Nrf2 Antioxidative Pathway in RAW264.7 Murine Macrophage Cells. Antioxidants (Basel) 2021; 10:antiox10030362. [PMID: 33673673 PMCID: PMC7997471 DOI: 10.3390/antiox10030362] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/12/2021] [Accepted: 02/22/2021] [Indexed: 12/15/2022] Open
Abstract
Imperatorin (IMP) could downregulate several inflammatory transcription factor signaling pathways. Some studies have pointed out that IMP could interfere with toll-like receptor 4 (TLR4) signaling. This study evaluates how IMP interferes with the TLR4 co-receptors signaling through the protein-ligand docking model, Western blotting, immunofluorescence (IF), and atomic force microscopy (AFM) assays in lipopolysaccharide (LPS) stimulated macrophage-like RAW264.7 cells in vitro. The results of the protein-ligand docking demonstrate that IMP interferes with LPS binding to the LPS-binding protein (LBP), the cluster of differentiation 14 (CD14), and the toll-like receptor 4/myeloid differentiation factor 2 (TLR4/MD-2) co-receptors in LPS-stimulated RAW264.7 cells. Compared with TLR4 antagonist CLI-095 or dexamethasone, IMP could suppress the protein expressions of LBP, CD14, and TLR4/MD-2 in LPS-stimulated cells. Furthermore, the three-dimensional (3D) image assay of the AFM showed IMP could prevent the LPS-induced morphological change in RAW264.7 cells. Additionally, IMP could activate the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway, and it increased the antioxidative protein expression of heme oxygenase-1 (HO-1), superoxidase dismutase (SOD), and catalase (CAT). Our results are the first to reveal that the anti-inflammatory effect of IMP interferes with LPS binding to TLR4 co-receptor signaling and activates the antioxidative Nrf2 signaling pathway.
Collapse
|
13
|
He M, Qian K, Zhang Y, Huang XF, Deng C, Zhang B, Gao G, Li J, Xie H, Sun T. Olanzapine-Induced Activation of Hypothalamic Astrocytes and Toll-Like Receptor-4 Signaling via Endoplasmic Reticulum Stress Were Related to Olanzapine-Induced Weight Gain. Front Neurosci 2021; 14:589650. [PMID: 33584172 PMCID: PMC7874166 DOI: 10.3389/fnins.2020.589650] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/08/2020] [Indexed: 12/19/2022] Open
Abstract
The antipsychotic drug olanzapine is associated with serious obesity side effects. Hypothalamic astrocytes and associated toll-like receptor-4 (TLR4) signaling play an essential role in obesity pathogenesis. This study investigated the effect of olanzapine on astrocytes and TLR4 signaling both in vitro and in the rat hypothalamus and their potential role in olanzapine-induced weight gain. We found that olanzapine treatment for 24 h dose-dependently increased cell viability, increased the protein expression of astrocyte markers including glial fibrillary acidic protein (GFAP) and S100 calcium binding protein B (S100B), and activated TLR4 signaling in vitro. In rats, 8- and 36-day olanzapine treatment caused weight gain accompanied by increased GFAP and S100B protein expression and activated TLR4 signaling in the hypothalamus. These effects still existed in pair-fed rats, suggesting that these effects were not secondary effects of olanzapine-induced hyperphagia. Moreover, treatment with an endoplasmic reticulum (ER) stress inhibitor, 4-phenylbutyrate, inhibited olanzapine-induced weight gain and ameliorated olanzapine-induced changes in hypothalamic GFAP, S100B, and TLR4 signaling. The expression of GFAP, S100B, and TLR4 correlated with food intake and weight gain. These findings suggested that olanzapine-induced increase in hypothalamic astrocytes and activation of TLR4 signaling were related to ER stress, and these effects may be related to olanzapine-induced obesity.
Collapse
Affiliation(s)
- Meng He
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Kun Qian
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Ying Zhang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Xu-Feng Huang
- School of Medicine and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Chao Deng
- School of Medicine and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Baohua Zhang
- Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Guanbin Gao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China
| | - Jing Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Hao Xie
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| |
Collapse
|
14
|
Chistyakov DV, Astakhova AA, Goriainov SV, Sergeeva MG. Comparison of PPAR Ligands as Modulators of Resolution of Inflammation, via Their Influence on Cytokines and Oxylipins Release in Astrocytes. Int J Mol Sci 2020; 21:ijms21249577. [PMID: 33339154 PMCID: PMC7765666 DOI: 10.3390/ijms21249577] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/10/2020] [Accepted: 12/12/2020] [Indexed: 02/07/2023] Open
Abstract
Neuroinflammation is a key process of many neurodegenerative diseases and other brain disturbances, and astrocytes play an essential role in neuroinflammation. Therefore, the regulation of astrocyte responses for inflammatory stimuli, using small molecules, is a potential therapeutic strategy. We investigated the potency of peroxisome proliferator-activated receptor (PPAR) ligands to modulate the stimulating effect of lipopolysaccharide (LPS) in the primary rat astrocytes on (1) polyunsaturated fatty acid (PUFAs) derivative (oxylipins) synthesis; (2) cytokines TNFα and interleukin-10 (IL-10) release; (3) p38, JNK, ERK mitogen-activated protein kinase (MAPKs) phosphorylation. Astrocytes were exposed to LPS alone or in combination with the PPAR ligands: PPARα (fenofibrate, GW6471); PPARβ (GW501516, GSK0660); PPARγ (rosiglitazone, GW9662). We detected 28 oxylipins with mass spectrometry (UPLC-MS/MS), classified according to their metabolic pathways: cyclooxygenase (COX), cytochrome P450 monooxygenases (CYP), lipoxygenase (LOX) and PUFAs: arachidonic (AA), docosahexaenoic (DHA), eicosapentaenoic (EPA). All tested PPAR ligands decrease COX-derived oxylipins; both PPARβ ligands possessed the strongest effect. The PPARβ agonist, GW501516 is a strong inducer of pro-resolution substances, derivatives of DHA: 4-HDoHE, 11-HDoHE, 17-HDoHE. All tested PPAR ligands decreased the release of the proinflammatory cytokine, TNFα. The PPARβ agonist GW501516 and the PPARγ agonist, rosiglitazone induced the IL-10 release of the anti-inflammatory cytokine, IL-10; the cytokine index, (IL-10/TNFα) was more for GW501516. The PPARβ ligands, GW501516 and GSK0660, are also the strongest inhibitors of LPS-induced phosphorylation of p38, JNK, ERK MAPKs. Overall, our data revealed that the PPARβ ligands are a potential pro-resolution and anti-inflammatory drug for targeting glia-mediated neuroinflammation.
Collapse
Affiliation(s)
- Dmitry V. Chistyakov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (A.A.A.); (M.G.S.)
- SREC PFUR, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia;
- Correspondence: ; Tel.: +7-49-5939-4332
| | - Alina A. Astakhova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (A.A.A.); (M.G.S.)
| | - Sergei V. Goriainov
- SREC PFUR, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia;
| | - Marina G. Sergeeva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (A.A.A.); (M.G.S.)
| |
Collapse
|
15
|
Xu J, Yao H, Wang S, Li H, Hou X. Mangiferin Inhibits Apoptosis and Autophagy Induced by Staphylococcus aureus in RAW264.7 Cells. J Inflamm Res 2020; 13:847-857. [PMID: 33177860 PMCID: PMC7650040 DOI: 10.2147/jir.s280091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/13/2020] [Indexed: 12/22/2022] Open
Abstract
Purpose Staphylococcus aureus (S. aureus) is an important bacterial pathogen, which creates infective inflammation to human being and animals. Mangiferin (MG) is one of the natural flavonoids with anti-inflammatory, anti-bacterial, and anti-oxidative properties. However, the anti-apoptosis and anti-autophagy of MG are unknown. Hence, this study was aimed to research the inhibition of MG on S. aureus-induced apoptosis and autophagy in RAW264.7 cells. Methods The RAW264.7 cells were pretreated with MG, or pretreated with SP600125 or anisomycin synchronously, and then infected with S. aureus (MOI=100:1). The viability and proliferation status of RAW264.7 cells were detected by MTT and EdU assay. The relative expression of TNF-α, IL-6 and IL-10 protein was tested with ELISA. The levels of Bax, Bcl-2, caspase-3, c-Jun N-terminal kinase (JNK), extracellular-regulated protein kinase (ERK), p38, LC3, Beclin-1, p62, phosphorylated JNK, phosphorylated p38 and phosphorylated ERK in cells were detected by Western blotting. The apoptosis rate of RAW264.7 cells was analyzed by flow cytometric assay. Results The study showed that MG significantly attenuated RAW264.7 cells apoptosis and autophagy caused by S. aureus. MG alleviated S. aureus-induced apoptosis by down-regulating the protein level of active caspase-3 and Bax and up-regulating the level of Bcl-2. MG also inhibited S. aureus-induced autophagy via decreasing the protein level of LC3-II/LC3-I and Beclin-1 or increasing the protein expression of p62. This protective role was dependent on the up-regulation of JNK signal pathway, which was confirmed by using JNK agonist and inhibitor. Conclusion Our results demonstrated that MG might protect RAW264.7 cells from S. aureus-induced apoptosis and autophagy via inhibiting JNK/Bax-dependent signal pathway. Therefore, MG may be a potential agent against pathological cell damage induced by S. aureus infection.
Collapse
Affiliation(s)
- Jun Xu
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, National Demonstration Center for Experimental Animal Education, Department of Veterinary Medicine, Beijing University of Agriculture, Beijing, People's Republic of China
| | - Hua Yao
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, National Demonstration Center for Experimental Animal Education, Department of Veterinary Medicine, Beijing University of Agriculture, Beijing, People's Republic of China
| | - Shichen Wang
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, National Demonstration Center for Experimental Animal Education, Department of Veterinary Medicine, Beijing University of Agriculture, Beijing, People's Republic of China
| | - Huanrong Li
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, National Demonstration Center for Experimental Animal Education, Department of Veterinary Medicine, Beijing University of Agriculture, Beijing, People's Republic of China
| | - Xiaolin Hou
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, National Demonstration Center for Experimental Animal Education, Department of Veterinary Medicine, Beijing University of Agriculture, Beijing, People's Republic of China
| |
Collapse
|
16
|
Chistyakov DV, Nikolskaya AI, Goriainov SV, Astakhova AA, Sergeeva MG. Inhibitor of Hyaluronic Acid Synthesis 4-Methylumbelliferone as an Anti-Inflammatory Modulator of LPS-Mediated Astrocyte Responses. Int J Mol Sci 2020; 21:E8203. [PMID: 33147798 PMCID: PMC7662953 DOI: 10.3390/ijms21218203] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 10/25/2020] [Accepted: 10/30/2020] [Indexed: 02/07/2023] Open
Abstract
Astrocytes are glial cells that play an important role in neuroinflammation. Astrocytes respond to many pro-inflammatory stimuli, including lipopolysaccharide (LPS), an agonist of Toll-like receptor 4 (TLR4). Regulatory specificities of inflammatory signaling pathways are still largely unknown due to the ectodermal origin of astrocytes. Recently, we have shown that hyaluronic acid (HA) may form part of astrocyte inflammatory responses. Therefore, we tested 4-methylumbelliferone (4-MU), a specific inhibitor of HA synthesis, as a possible regulator of LPS-mediated responses. Rat primary astrocytes were treated with LPS with and without 4-MU and gene expression levels of inflammatory (interleukins 1β, (IL-1β), 6, (IL-6), tumor necrosis factor alpha TNFα,) and resolution interleukin 10 (IL-10) markers were evaluated via real-time PCR and western blot. The release of cytokines and HA was determined by ELISA. Oxylipin profiles were measured by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) analysis. Our data show that 4-MU (i) has anti-inflammatory effects in the course of TLR4 activation, decreasing the cytokines level TNFα, IL-6 and IL-1β and increasing IL-10, (ii) downregulates prostaglandin synthesis but not via cyclooxygenases COX-1 and COX-2 pathways, (iii) modulates HA synthesis and decreases LPS-induced HA synthase mRNA expression (HAS-1, HAS-2) but does not have an influence on HAS-3, HYAL1 and HYAL2 mRNAs; (iv) the effects of 4-MU are predominantly revealed via JNK but not p38, ERK mitogen-activated protein kinases (MAPKs) or nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) pathways. For the first time, it is shown that 4-MU possesses the useful potential to regulate an inflammatory astrocyte response.
Collapse
Affiliation(s)
- Dmitry V. Chistyakov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (A.A.A.); (M.G.S.)
- SREC PFUR, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia;
| | - Arina I. Nikolskaya
- Faculty of Bioengineering and Bioinformatics, Moscow Lomonosov State University, 119234 Moscow, Russia;
| | - Sergei V. Goriainov
- SREC PFUR, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia;
| | - Alina A. Astakhova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (A.A.A.); (M.G.S.)
| | - Marina G. Sergeeva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (A.A.A.); (M.G.S.)
| |
Collapse
|
17
|
Chistyakov DV, Gavrish GE, Goriainov SV, Chistyakov VV, Astakhova AA, Azbukina NV, Sergeeva MG. Oxylipin Profiles as Functional Characteristics of Acute Inflammatory Responses in Astrocytes Pre-Treated with IL-4, IL-10, or LPS. Int J Mol Sci 2020; 21:ijms21051780. [PMID: 32150861 PMCID: PMC7084882 DOI: 10.3390/ijms21051780] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/01/2020] [Accepted: 03/03/2020] [Indexed: 12/14/2022] Open
Abstract
Functional phenotypes, which cells can acquire depending on the microenvironment, are currently the focus of investigations into new anti-inflammatory therapeutic approaches. Glial cells, microglia, and astrocytes are major participants in neuroinflammation, but their roles differ, as microglia are cells of mesodermal origin, while astrocytes are cells of ectodermal origin. The inflammatory phenotype of cells can be modulated by ω-6- and ω-3-polyunsaturated fatty acid-derived oxylipins, although data on changes in oxylipin profiles in different cell adaptations to pro- and anti-inflammatory stimuli are scarce. Our study aimed to compare UPLC-MS/MS-measured oxylipin profiles in various rat astrocyte adaptation states. We used cells treated for 24 h with lipopolysaccharide (LPS) for classical pro-inflammatory adaptation and with interleukin 4 (IL-4) or 10 (IL-10) for alternative anti-inflammatory adaptation, with the resulting phenotypes characterized by quantitative real-time PCR (RT-PCR). We also tested long-term, low-concentration LPS treatment (endotoxin treatment) as a model of astrocyte adaptations. The functional response of astrocytes was estimated by acute (4 h) LPS-induced cell reactivity, measured by gene expression markers and oxylipin synthesis. We discovered that, as well as gene markers, oxylipin profiles can serve as markers of pro- (A1-like) or anti-inflammatory (A2-like) adaptations. We observed predominant involvement of ω-6 polyunsaturated fatty acid (PUFA) and the cyclooxygenase branch for classical (LPS) pro-inflammatory adaptations and ω-3 PUFA and the lipoxygenase branch for alternative (IL-4) anti-inflammatory adaptations. Treatment with IL-4, but not IL-10, primes the ability of astrocytes to activate the innate immunity signaling pathways in response to LPS. Endotoxin-treated astrocytes provide an alternative anti-inflammatory adaptation, which makes cells less sensitive to acute LPS stimulation than the IL-4 induced adaptation. Taken together, the data reveal that oxylipin profiles associate with different states of polarization to generate a pro-inflammatory or anti-inflammatory phenotype. This association manifests itself both in native cells and in their responses to a pro-inflammatory stimulus.
Collapse
Affiliation(s)
- Dmitry V. Chistyakov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (A.A.A.); (M.G.S.)
- Correspondence: ; Tel.: +7-495-939-4332
| | - Gleb E. Gavrish
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia; (G.E.G.); (N.V.A.)
| | - Sergei V. Goriainov
- SREC PFUR Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia; (S.V.G.); (V.V.C.)
| | - Viktor V. Chistyakov
- SREC PFUR Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia; (S.V.G.); (V.V.C.)
| | - Alina A. Astakhova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (A.A.A.); (M.G.S.)
| | - Nadezda V. Azbukina
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia; (G.E.G.); (N.V.A.)
| | - Marina G. Sergeeva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (A.A.A.); (M.G.S.)
| |
Collapse
|
18
|
HMGB1 is a Potential Mediator of Astrocytic TLR4 Signaling Activation following Acute and Chronic Focal Cerebral Ischemia. Neurol Res Int 2020; 2020:3929438. [PMID: 32148958 PMCID: PMC7053497 DOI: 10.1155/2020/3929438] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/02/2019] [Accepted: 09/13/2019] [Indexed: 12/14/2022] Open
Abstract
Limited, and underutilized, therapeutic options for acute stroke require new approaches to treatment. One such potential approach involves better understanding of innate immune response to brain injury such as acute focal cerebral ischemia. This includes understanding the temporal profile, and specificity, of Toll-like receptor 4 (TLR4) signaling in brain cell types, such as astrocytes, following focal cerebral ischemia. This study evaluated TLR4 signaling, and downstream mediators, in astrocytes, during acute and chronic phases post transient middle cerebral artery occlusion (MCAO). We also determined whether high mobility group box 1 (HMGB1), an endogenous TLR4 ligand, was sufficient to induce TLR4 signaling activation in astrocytes in vivo and in vitro. We injected HMGB1 into normal cortex, in vivo, and stimulated cultured astrocytes with HMGB1, in vitro, and determined TLR4, and downstream mediator, expression by immunohistochemistry. We found that expression of TLR4, and downstream mediators, such as inducible nitric oxide synthase (iNOS), occurs in penumbral astrocytes in acute and chronic phases after focal cerebral ischemia, but was undetectable in cortical astrocytes in the contralateral hemisphere. In addition, cortical injection of recombinant HMGB1 led to a trend towards an almost 2-fold increase in TLR4 expression in astrocytes surrounding the injection site. Consistent with these results, in vitro stimulation of the DI TNC1 astrocyte cell line, with recombinant HMGB1, led to increased TLR4 and iNOS message levels. These findings suggest that HMGB1, an endogenous TLR4 ligand, is an important physiological ligand for TLR4 signaling activation, in penumbral astrocytes, following acute and chronic ischemia and HMGB1 amplifies TLR4 signaling in astrocytes.
Collapse
|
19
|
Chistyakov DV, Astakhova AA, Azbukina NV, Goriainov SV, Chistyakov VV, Sergeeva MG. Cellular Model of Endotoxin Tolerance in Astrocytes: Role of Interleukin 10 and Oxylipins. Cells 2019; 8:cells8121553. [PMID: 31805746 PMCID: PMC6953006 DOI: 10.3390/cells8121553] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 11/22/2019] [Accepted: 11/29/2019] [Indexed: 12/31/2022] Open
Abstract
A phenomenon of endotoxin tolerance where prior exposure of cells to minute amounts of lipopolysaccharide (LPS) causes them to become refractory to a subsequent high-amount endotoxin challenge is well described for innate immune cells such as monocytes/macrophages, but it is still obscure for brain cells. We exposed primary rat cortical astrocytes to a long-term low-grade concentration of LPS, followed by stimulation with a middle-grade concentration of LPS. Inflammatory markers, i.e., pro-inflammatory cytokine TNFα, inducible enzymes COX-2 and iNOS, anti-inflammatory cytokine interleukin 10 (IL-10) detected at the mRNA and protein levels reveal similarities between astrocytes and macrophages in the model, i.e., tolerance in pro-inflammatory markers and priming in IL-10. Long-term or short-term treatment with IL-10 does not change cell sensitivity for LPS, which makes doubtful its involvement in the mechanisms of cell tolerance development. Significant changes occur in the oxylipin profiles measured by UPLC-MS/MS analysis. The priming occurs in the following compounds: 11-HETE, PGD2, PGE2, cyclopentenone prostaglandins, and TXB2. Tolerance is observed for 12-HHT, PGF2α, and 6-keto-PGF1α. As far as we know, this is the first report on changes in oxylipin profiles in the endotoxin tolerance model. The data can greatly improve the understanding of oxylipins’ role in inflammatory and resolution processes in the brain and mechanisms of astrocyte involvement in neuroinflammation.
Collapse
Affiliation(s)
- Dmitry V. Chistyakov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia; (A.A.A.); (M.G.S.)
- Correspondence: ; Tel.: +7-495-939-4332
| | - Alina A. Astakhova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia; (A.A.A.); (M.G.S.)
| | - Nadezda V. Azbukina
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119234, Russia;
| | - Sergei V. Goriainov
- SREC PFUR Peoples’ Friendship University of Russia (RUDN University), Moscow 117198, Russia; (S.V.G.); (V.V.C.)
| | - Viktor V. Chistyakov
- SREC PFUR Peoples’ Friendship University of Russia (RUDN University), Moscow 117198, Russia; (S.V.G.); (V.V.C.)
| | - Marina G. Sergeeva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia; (A.A.A.); (M.G.S.)
| |
Collapse
|