1
|
Higginson LA, Wang X, He K, Torstrick M, Kim M, Benayoun BA, MacLean A, Chanfreau GF, Morton DJ. The RNA exosome maintains cellular RNA homeostasis by controlling transcript abundance in the brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.30.620488. [PMID: 39554067 PMCID: PMC11565928 DOI: 10.1101/2024.10.30.620488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Intracellular ribonucleases (RNases) are essential in all aspects of RNA metabolism, including maintaining accurate RNA levels. Inherited mutations in genes encoding ubiquitous RNases are associated with human diseases, primarily affecting the nervous system. Recessive mutations in genes encoding an evolutionarily conserved RNase complex, the RNA exosome, lead to syndromic neurodevelopmental disorders characterized by progressive neurodegeneration, such as Pontocerebellar Hypoplasia Type 1b (PCH1b). We establish a CRISPR/Cas9-engineered Drosophila model of PCH1b to study cell-type-specific post-transcriptional regulatory functions of the nuclear RNA exosome complex within fly head tissue. Here, we report that pathogenic RNA exosome mutations alter activity of the complex, causing widespread dysregulation of brain-enriched cellular transcriptomes, including rRNA processing defects-resulting in tissue-specific, progressive neurodegenerative effects in flies. These findings provide a comprehensive understanding of RNA exosome function within a developed animal brain and underscore the critical role of post-transcriptional regulatory machinery in maintaining cellular RNA homeostasis within the brain.
Collapse
|
2
|
Pugliese A, Holland SH, Rodolico C, Lochmüller H, Spendiff S. Presynaptic Congenital Myasthenic Syndromes: Understanding Clinical Phenotypes through In vivo Models. J Neuromuscul Dis 2023; 10:731-759. [PMID: 37212067 PMCID: PMC10578258 DOI: 10.3233/jnd-221646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2023] [Indexed: 05/23/2023]
Abstract
Presynaptic congenital myasthenic syndromes (CMS) are a group of genetic disorders affecting the presynaptic side of the neuromuscular junctions (NMJ). They can result from a dysfunction in acetylcholine (ACh) synthesis or recycling, in its packaging into synaptic vesicles, or its subsequent release into the synaptic cleft. Other proteins involved in presynaptic endplate development and maintenance can also be impaired.Presynaptic CMS usually presents during the prenatal or neonatal period, with a severe phenotype including congenital arthrogryposis, developmental delay, and apnoeic crisis. However, milder phenotypes with proximal muscle weakness and good response to treatment have been described. Finally, many presynaptic genes are expressed in the brain, justifying the presence of additional central nervous system symptoms.Several animal models have been developed to study CMS, providing the opportunity to identify disease mechanisms and test treatment options. In this review, we describe presynaptic CMS phenotypes with a focus on in vivo models, to better understand CMS pathophysiology and define new causative genes.
Collapse
Affiliation(s)
- Alessia Pugliese
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Stephen H. Holland
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Carmelo Rodolico
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Hanns Lochmüller
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Department of Medicine, Division of Neurology, The Ottawa Hospital, Ottawa, ON, Canada
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
- Department of Neuropediatrics and Muscle Disorders, Medical Center – University of Freiburg, Faculty of Medicine, Freiburg, Germany
- Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia, Spain
| | - Sally Spendiff
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| |
Collapse
|
3
|
Sabandal PR, Saldes EB, Han KA. Acetylcholine deficit causes dysfunctional inhibitory control in an aging-dependent manner. Sci Rep 2022; 12:20903. [PMID: 36463374 PMCID: PMC9719532 DOI: 10.1038/s41598-022-25402-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/29/2022] [Indexed: 12/04/2022] Open
Abstract
Inhibitory control is a key executive function that limits unnecessary thoughts and actions, enabling an organism to appropriately execute goal-driven behaviors. The efficiency of this inhibitory capacity declines with normal aging or in neurodegenerative dementias similar to memory or other cognitive functions. Acetylcholine signaling is crucial for executive function and also diminishes with aging. Acetylcholine's contribution to the aging- or dementia-related decline in inhibitory control, however, remains elusive. We addressed this in Drosophila using a Go/No-Go task that measures inhibition capacity. Here, we report that inhibition capacity declines with aging in wild-type flies, which is mitigated by lessening acetylcholine breakdown and augmented by reducing acetylcholine biosynthesis. We identified the mushroom body (MB) γ neurons as a chief neural site for acetylcholine's contribution to the aging-associated inhibitory control deficit. In addition, we found that the MB output neurons MBON-γ2α'1 having dendrites at the MB γ2 and α'1 lobes and axons projecting to the superior medial protocerebrum and the crepine is critical for sustained movement suppression per se. This study reveals, for the first time, the central role of acetylcholine in the aging-associated loss of inhibitory control and provides a framework for further mechanistic studies.
Collapse
Affiliation(s)
- Paul Rafael Sabandal
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, 79968, USA.
| | - Erick Benjamin Saldes
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Kyung-An Han
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, 79968, USA.
| |
Collapse
|
4
|
Liu J, Gao S, Wei L, Xiong W, Lu Y, Song X, Zhang Y, Gao H, Li B. Choline acetyltransferase and vesicular acetylcholine transporter are required for metamorphosis, reproduction, and insecticide susceptibility in Tribolium castaneum. Gene 2022; 842:146794. [PMID: 35952841 DOI: 10.1016/j.gene.2022.146794] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 07/26/2022] [Accepted: 08/05/2022] [Indexed: 11/04/2022]
Abstract
Choline acetyltransferase (ChAT) and vesicular acetylcholine transporter (VAChT) are essential enzymes for synthesizing and transporting acetylcholine (ACh). But their functions in metamorphosis, reproduction, and the insecticide susceptibility were poorly understood in the insects. To address these issues, we identified the orthologues of chat and vacht in Tribolium castaneum. Spatiotemporal expression profiling showed Chat has the highest expression at the early adult stage, while vacht shows peak expression at the early larval stage. Both of them were highly expressed at the head of late adult. RNA interference (RNAi) of chat and vacht both led to a decrease in ACh content at the late larval stage. It is observed that chat knockdown severely affected larval development and pupal eclosion, but vacht RNAi only disrupted pupal eclosion. Further, parental RNAi of chat or vacht led to 35 % or 30 % reduction in fecundity, respectively, and knockdown of them completely inhibited egg hatchability. Further analysis has confirmed that both the reduction in fecundity and hatchability caused through the maternal specificity in T. castaneum. Moreover, the transcript levels of chat and vacht were elevated after carbofuran or dichlorvos treatment. Reduction of chat or vacht decreased the resistance to carbofuran and dichlorvos. This study provides the evidence for chat and vacht not only involved in development and reproduction of insects but also could as the potential targets of insecticides.
Collapse
Affiliation(s)
- Juanjuan Liu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Shanshan Gao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; College of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - Luting Wei
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Wenfeng Xiong
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Yaoyao Lu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Xiaowen Song
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Yonglei Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Han Gao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
5
|
Dravecz N, Shaw T, Davies I, Brown C, Ormerod L, Vu G, Walker T, Taank T, Shirras AD, Broughton SJ. Reduced Insulin Signaling Targeted to Serotonergic Neurons but Not Other Neuronal Subtypes Extends Lifespan in Drosophila melanogaster. Front Aging Neurosci 2022; 14:893444. [PMID: 35865744 PMCID: PMC9294736 DOI: 10.3389/fnagi.2022.893444] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
Reduced Insulin/IGF-like signaling (IIS) plays an evolutionarily conserved role in improving longevity and some measures of health-span in model organisms. Recent studies, however, have found a disconnection between lifespan extension and behavioral health-span. We have previously shown that reduction of IIS in Drosophila neurons extends female lifespan but does not improve negative geotaxis senescence and has a detrimental effect on exploratory walking senescence in both sexes. We hypothesize that individual neuronal subtypes respond differently to IIS changes, thus the behavioral outcomes of pan-neuronal IIS reduction are the balance of positive, negative and neutral functional effects. In order to further understand how reduced IIS in neurons independently modulates lifespan and locomotor behavioral senescence we expressed a dominant negative Insulin receptor transgene selectively in individual neuronal subtypes and measured the effects on lifespan and two measures of locomotor senescence, negative geotaxis and exploratory walking. IIS reduction in cholinergic, GABAergic, dopaminergic, glutamatergic, and octopaminergic neurons was found to have either no affect or a detrimental effect on lifespan and locomotor senescence. However, reduction of IIS selectively in serotonergic neurons resulted in extension of lifespan in females with no effect on locomotor senescence. These data indicate that individual neuronal subtypes respond differently to IIS changes in the modulation of lifespan and locomotor senescence, and identify a specific role for the insulin receptor in serotonergic neurons in the modulation of lifespan.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Susan J. Broughton
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| |
Collapse
|
6
|
Silva NC, Poetini MR, Bianchini MC, Almeida FP, Dahle MMM, Araujo SM, Bortolotto VC, Musachio EAS, Ramborger BP, Novo DLR, Roehrs R, Mesko MF, Prigol M, Puntel RL. Protective effect of gamma-oryzanol against manganese-induced toxicity in Drosophila melanogaster. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:17519-17531. [PMID: 33403631 DOI: 10.1007/s11356-020-11848-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/25/2020] [Indexed: 06/12/2023]
Abstract
Manganese (Mn) is an essential element that, in excess, seems to be involved in the development of different neurodegenerative conditions. Gamma-oryzanol (Ory) was previously reported to possess antioxidant and neuroprotective properties. Thus, we conducted this study to test the hypothesis that Ory can also protect flies in an Mn intoxication model. Adult wild-type flies were fed over 10 days with Mn (5 mM) and/or Ory (25 μM). Flies treated with Mn had a decrease in locomotor activity and a higher mortality rate compared to those in controls. Mn-treated flies also had a significant increase in acetylcholinesterase (AChE) activity, in Mn accumulation and in oxidative stress markers. Moreover, flies treated with Mn exhibited a significant decrease in dopamine levels and in tyrosine hydroxylase activity, as well as in mitochondrial and cellular viability. Particularly important, Ory protected against mortality and avoided locomotor and biochemical changes associated with Mn exposure. However, Ory did not prevent the accumulation of Mn. The present results support the notion that Ory effectively attenuates detrimental changes associated with Mn exposure in Drosophila melanogaster, reinforcing its neuroprotective action/potential.
Collapse
Affiliation(s)
- Neicí Cáceres Silva
- Universidade Federal do Pampa (UNIPAMPA), Campus Itaqui, Programa de Pós-Graduação em Bioquímica (PPGBioq), Rua Joaquim de Sá Britto, s/n - Bairro Promorar, Itaqui, RS, CEP 97650-000, Brazil
| | - Márcia Rósula Poetini
- Universidade Federal do Pampa (UNIPAMPA), Campus Itaqui, Programa de Pós-Graduação em Bioquímica (PPGBioq), Rua Joaquim de Sá Britto, s/n - Bairro Promorar, Itaqui, RS, CEP 97650-000, Brazil
| | - Matheus Chimelo Bianchini
- Universidade Federal do Pampa, Campus Uruguaiana, Programa de Pós-Graduação em Bioquímica (PPGBioq), BR-472 Km 7, Uruguaiana, RS, CEP 97500-970, Brazil
| | - Francielli Polet Almeida
- Universidade Federal do Pampa (UNIPAMPA), Campus Itaqui, Programa de Pós-Graduação em Bioquímica (PPGBioq), Rua Joaquim de Sá Britto, s/n - Bairro Promorar, Itaqui, RS, CEP 97650-000, Brazil
| | - Mustafá Munir Mustafa Dahle
- Universidade Federal do Pampa (UNIPAMPA), Campus Itaqui, Programa de Pós-Graduação em Bioquímica (PPGBioq), Rua Joaquim de Sá Britto, s/n - Bairro Promorar, Itaqui, RS, CEP 97650-000, Brazil
| | - Stífani Machado Araujo
- Universidade Federal do Pampa (UNIPAMPA), Campus Itaqui, Programa de Pós-Graduação em Bioquímica (PPGBioq), Rua Joaquim de Sá Britto, s/n - Bairro Promorar, Itaqui, RS, CEP 97650-000, Brazil
| | - Vandreza Cardoso Bortolotto
- Universidade Federal do Pampa (UNIPAMPA), Campus Itaqui, Programa de Pós-Graduação em Bioquímica (PPGBioq), Rua Joaquim de Sá Britto, s/n - Bairro Promorar, Itaqui, RS, CEP 97650-000, Brazil
| | - Elize Aparecida Santos Musachio
- Universidade Federal do Pampa (UNIPAMPA), Campus Itaqui, Programa de Pós-Graduação em Bioquímica (PPGBioq), Rua Joaquim de Sá Britto, s/n - Bairro Promorar, Itaqui, RS, CEP 97650-000, Brazil
| | - Bruna Piaia Ramborger
- Universidade Federal do Pampa, Campus Uruguaiana, Programa de Pós-Graduação em Bioquímica (PPGBioq), BR-472 Km 7, Uruguaiana, RS, CEP 97500-970, Brazil
| | - Diogo La Rosa Novo
- Universidade Federal de Pelotas, Campus Universitário, S/N - Prédio/Bloco: 30 e 32, Capão do Leão, RS, CEP 96160-000, Brazil
| | - Rafael Roehrs
- Universidade Federal do Pampa, Campus Uruguaiana, Programa de Pós-Graduação em Bioquímica (PPGBioq), BR-472 Km 7, Uruguaiana, RS, CEP 97500-970, Brazil
| | - Marcia Foster Mesko
- Universidade Federal de Pelotas, Campus Universitário, S/N - Prédio/Bloco: 30 e 32, Capão do Leão, RS, CEP 96160-000, Brazil
| | - Marina Prigol
- Universidade Federal do Pampa (UNIPAMPA), Campus Itaqui, Programa de Pós-Graduação em Bioquímica (PPGBioq), Rua Joaquim de Sá Britto, s/n - Bairro Promorar, Itaqui, RS, CEP 97650-000, Brazil.
| | - Robson Luiz Puntel
- Universidade Federal do Pampa, Campus Uruguaiana, Programa de Pós-Graduação em Bioquímica (PPGBioq), BR-472 Km 7, Uruguaiana, RS, CEP 97500-970, Brazil.
| |
Collapse
|
7
|
Hewett SJ, Prado VF, Robinson MB. The brain in flux: Genetic, physiologic, and therapeutic perspectives on transporters in the CNS. Neurochem Int 2021; 144:104980. [PMID: 33524471 DOI: 10.1016/j.neuint.2021.104980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Active and passive transporters constitute a gene family of approximately 2000 members. These proteins are required for import and export across the blood brain barrier, clearance of neurotransmitters, inter-cellular solute transfer, and transport across the membranes of subcellular organelles. Neurologic, neurodevelopmental, and psychiatric diseases have been linked to alterations in function and/or mutations in every one of these types of transporters, and many of the transporters are targeted by therapeutics. This is the 4th biennial special edition of Neurochemistry International that originates from a scientific meeting devoted to studies of transporters and their relationship to brain function and to neurodevelopmental, neurologic, and psychiatric disorders. This meeting provides the only international forum for the presentation and discussion of cutting-edge research on brain transporters covering fundamental aspects of transporter structure, function, and trafficking. Scientists describe the novel approaches being used to link this information to physiology/circuit function and behavior. The meeting also addresses translational topics surrounding mouse models of brain transporter disorders, novel human brain disorders arising from transporter mutations, and innovative therapeutic approaches centered on modification of transporter function. This special issue includes a sampling of review articles that address timely questions of the field and several primary research articles.
Collapse
Affiliation(s)
- Sandra J Hewett
- Department of Biology, Program in Neuroscience, Syracuse University, Syracuse, NY, 13210, United States
| | - Vania F Prado
- Departments of Anatomy and Cell Biology, and Physiology and Pharmacology, Robarts Research Institute, University of Western Ontario London, ON, N6A5B7, Canada
| | - Michael B Robinson
- Departments of Pediatrics and Systems Pharmacology and Translational Therapeutics Children's Hospital of Philadelphia/University of Pennsylvania, Philadelphia, PA, 19104, United States.
| |
Collapse
|