1
|
Li X, Li X, Liang Y. Silencing CircHIPK3 improves sevoflurane-explore learning and memory dysfunction and nerve damage via enhancing miR-338-3p. Toxicol Res (Camb) 2024; 13:tfae132. [PMID: 39165832 PMCID: PMC11331635 DOI: 10.1093/toxres/tfae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 06/16/2024] [Accepted: 08/12/2024] [Indexed: 08/22/2024] Open
Abstract
Background Sevoflurane (Sev), a widely used volatile anesthetic, can cause neurotoxicity, and impair learning and memory. Objective This study investigates the role and mechanisms of circHIPK3 in Sev-exposed neurotoxicity and learning and memory impairment. Methods SD rats and hippocampal neuronal cells were exposed to Sev. RT-qPCR analysis of circHIPK3 and miR-338-3p levels. MWM test was performed to examine the behavioral changes in rats. The levels of circHIPK3 and miR-338-3p levels were investigated using RT-qPCR. ELISA assay to analyze the expression of pro-inflammatory factors. CCK-8, flow cytometry, and commercial ROS assay kits were analyzed to detect cell viability, apoptosis, and ROS production. DLR and RIP assays validate circHIPK3 binding to miR-338-3p. Results Sev increased circHIPK3 expression in rat hippocampal tissue as well as in neuronal cells but decreased miR-338-3p levels compared to controls. circHIPK3 binding to miR-338-3p. Furthermore, silencing of circHIPK3 rats attenuated Sev-induced decline in learning and memory functions . silencing circHIPK3 also reduced Sev-induced secretion of inflammatory factors in rat and neuronal cells. Reducing circHIPK3 partially reversed the Sev-induced decrease in cell viability, increased apoptosis, and overproduction of ROS. However, the inhibitory effect of circHIPK3 on Sev neurotoxicity was restored upon downregulation of miR-338-3p. Conclusion Collectively, silencing circHIPK3 alleviates Sev exposure-induced learning and memory deficits and neurotoxicity by enhancing miR-338-3p expression.
Collapse
Affiliation(s)
- Xiuli Li
- Department of Anesthesiology, Pengzhou People’s Hospital , No. 255 South Third Ring Road, Pengzhou 611930, China
| | - Xuefei Li
- Department of Anesthesiology, The Second People's Hospital of Pidu District of Chengdu, No. 86 Southeast Section of the Second Ring Road, Pidu District, Chengdu 611733, China
| | - Yinan Liang
- Department of Anesthesiology, School of Clinical Medicine & The First Affiliated Hospital of Chengdu Medical College, No. 278 Middle Baoguang Avenue, Xindu District, Chengdu 610500, China
| |
Collapse
|
2
|
Hou L, Li Z, Guo X, Lv J, Chong Z, Xiao Y, Zhang L, Li Z. ITGAM is a critical gene in ischemic stroke. Aging (Albany NY) 2024; 16:6852-6867. [PMID: 38637126 PMCID: PMC11087101 DOI: 10.18632/aging.205729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/04/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Globally, ischemic stroke (IS) is ranked as the second most prevailing cause of mortality and is considered lethal to human health. This study aimed to identify genes and pathways involved in the onset and progression of IS. METHODS GSE16561 and GSE22255 were downloaded from the Gene Expression Omnibus (GEO) database, merged, and subjected to batch effect removal using the ComBat method. The limma package was employed to identify the differentially expressed genes (DEGs), followed by enrichment analysis and protein-protein interaction (PPI) network construction. Afterward, the cytoHubba plugin was utilized to screen the hub genes. Finally, a ROC curve was generated to investigate the diagnostic value of hub genes. Validation analysis through a series of experiments including qPCR, Western blotting, TUNEL, and flow cytometry was performed. RESULTS The analysis incorporated 59 IS samples and 44 control samples, revealing 226 DEGs, of which 152 were up-regulated and 74 were down-regulated. These DEGs were revealed to be linked with the inflammatory and immune responses through enrichment analyses. Overall, the ROC analysis revealed the remarkable diagnostic potential of ITGAM and MMP9 for IS. Quantitative assessment of these genes showed significant overexpression in IS patients. ITGAM modulation influenced the secretion of critical inflammatory cytokines, such as IL-1β, IL-6, and TNF-α, and had a distinct impact on neuronal apoptosis. CONCLUSIONS The inflammation and immune response were identified as potential pathological mechanisms of IS by bioinformatics and experiments. In addition, ITGAM may be considered a potential therapeutic target for IS.
Collapse
Affiliation(s)
- Lei Hou
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, P.R. China
- Department of Neurosurgery, Liaocheng People’s Hospital, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Liaocheng 252000, Shandong Province, P.R. China
| | - Zhongchen Li
- Department of Neurosurgery, Liaocheng People’s Hospital, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Liaocheng 252000, Shandong Province, P.R. China
| | - Xiaoli Guo
- Department of Pediatrics, Liaocheng People’s Hospital, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Liaocheng 252000, Shandong Province, P.R. China
| | - Jiatao Lv
- Department of Neurosurgery, Liaocheng People’s Hospital, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Liaocheng 252000, Shandong Province, P.R. China
| | - Zonglei Chong
- Department of Neurosurgery, Liaocheng People’s Hospital, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Liaocheng 252000, Shandong Province, P.R. China
| | - Yilei Xiao
- Department of Neurosurgery, Liaocheng People’s Hospital, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Liaocheng 252000, Shandong Province, P.R. China
| | - Liyong Zhang
- Department of Neurosurgery, Liaocheng People’s Hospital, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Liaocheng 252000, Shandong Province, P.R. China
| | - Zefu Li
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, P.R. China
- Department of Neurosurgery, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, Shandong Province, P.R. China
| |
Collapse
|
3
|
Tang X, Lin S, Luo H, Wang L, Zhong J, Xiong J, Lv H, Zhou F, Wan Z, Cao K. ATG9A as a potential diagnostic marker of intervertebral disc degeneration: Inferences from experiments and bioinformatics analysis incorporating sc-RNA-seq data. Gene 2024; 897:148084. [PMID: 38104954 DOI: 10.1016/j.gene.2023.148084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/02/2023] [Accepted: 12/13/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND Disfunctional autophagy plays a pivotal role in Intervertebral Disc Degeneration (IDD) progression. however, the connection between Autophagy-related gene 9A (ATG9A) and IDD has not been reported. METHODS Firstly, transcriptome datasets from the GEO and Autophagy-related genes (ARGs) from GeneCards were carried out using R. Following this, IDD-specific signature genes were identified through methods such as least absolute shrinkage and selection operator (LASSO), random forest (RF), and support vector machine (SVM) analyses. Validation of these findings proceeded through in vitro experiments, evaluation of independent datasets, and analysis of receiver operating characteristic (ROC) curves. Subsequent steps incorporated co-expression analysis, Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, Gene Set Enrichment Analysis (GSEA), and construction of competing endogenous RNA (ceRNA) network. The final section established the correlation between immune cell infiltration, ATG9A, and IDD utilizing the CIBERSORT algorithm and single-cell RNA (scRNA) sequencing data. RESULTS Research identified 87 differentially expressed genes, with only ATG9A noted as an IDD signature gene. Analysis of in vitro experiments and independent datasets uncovered a decrease in ATG9A expression within the degeneration group. The area under the curve (AUC) of ATG9A exceeded 0.8 following ROC analysis. Furthermore, immune cell infiltration and scRNA sequencing data analysis elucidated the substantial role of immune cells in IDD progression. A ceRNA network was constructed, centered around ATG9A, included 4 miRNAs and 22 lncRNAs. CONCLUSION ATG9A was identified as a diagnostic gene for IDD, indicating its viability as a effective target for therapy disease.
Collapse
Affiliation(s)
- Xiaokai Tang
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Sijian Lin
- The Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Hao Luo
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Lixia Wang
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Junlong Zhong
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Jiachao Xiong
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Hao Lv
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Faxin Zhou
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Zongmiao Wan
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Kai Cao
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, China.
| |
Collapse
|
4
|
Xiaoqing S, Yinghua C, Xingxing Y. The autophagy in ischemic stroke: A regulatory role of non-coding-RNAs. Cell Signal 2023; 104:110586. [PMID: 36608737 DOI: 10.1016/j.cellsig.2022.110586] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/17/2022] [Accepted: 12/31/2022] [Indexed: 01/05/2023]
Abstract
Ischemic stroke (IS) is a central nervous system neurological disorder ascribed to an acute focal trauma, with high mortality and disability, leading to a heavy burden on family and society. Autophagy is a self-digesting process by which damaged organelles and useless proteins are recycled to maintain cellular homeostasis, and plays a pivotal role in the process of IS. Non-coding RNAs (ncRNAs), mainly contains microRNA, long non-coding RNA and circular RNA, have been extensively investigated on regulation of autophagy in human diseases. Recent studies have implied that ncRNAs-regulating autophagy participates in pathophysiological process of IS, including cell apoptosis, inflammation, oxidative stress, blood-brain barrier damage and glial activation, which indicates that regulating autophagy by ncRNAs may be beneficial for IS treatment. This review summarizes the role of autophagy in IS, as well as focuses on the role of ncRNAs-mediated autophagy in IS, for the development of potential therapeutic strategies in this disease.
Collapse
Affiliation(s)
- Su Xiaoqing
- The Fifth Department of Acupuncture, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, PR China
| | - Chen Yinghua
- The Fifth Department of Acupuncture, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, PR China.
| | - Yuan Xingxing
- Heilongjiang University of traditional Chinese Medicine, Harbin, Heilongjiang 150040, PR China; Department of internal medicine, Heilongjiang Academy of traditional Chinese Medicine, Harbin, Heilongjiang 150001, PR China.
| |
Collapse
|