1
|
Balana AT, Mahul-Mellier AL, Nguyen BA, Horvath M, Javed A, Hard ER, Jasiqi Y, Singh P, Afrin S, Pedretti R, Singh V, Lee VMY, Luk KC, Saelices L, Lashuel HA, Pratt MR. O-GlcNAc forces an α-synuclein amyloid strain with notably diminished seeding and pathology. Nat Chem Biol 2024; 20:646-655. [PMID: 38347213 PMCID: PMC11062923 DOI: 10.1038/s41589-024-01551-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 01/12/2024] [Indexed: 02/15/2024]
Abstract
Amyloid-forming proteins such α-synuclein and tau, which are implicated in Alzheimer's and Parkinson's disease, can form different fibril structures or strains with distinct toxic properties, seeding activities and pathology. Understanding the determinants contributing to the formation of different amyloid features could open new avenues for developing disease-specific diagnostics and therapies. Here we report that O-GlcNAc modification of α-synuclein monomers results in the formation of amyloid fibril with distinct core structure, as revealed by cryogenic electron microscopy, and diminished seeding activity in seeding-based neuronal and rodent models of Parkinson's disease. Although the mechanisms underpinning the seeding neutralization activity of the O-GlcNAc-modified fibrils remain unclear, our in vitro mechanistic studies indicate that heat shock proteins interactions with O-GlcNAc fibril inhibit their seeding activity, suggesting that the O-GlcNAc modification may alter the interactome of the α-synuclein fibrils in ways that lead to reduce seeding activity in vivo. Our results show that posttranslational modifications, such as O-GlcNAc modification, of α-synuclein are key determinants of α-synuclein amyloid strains and pathogenicity.
Collapse
Affiliation(s)
- Aaron T Balana
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Anne-Laure Mahul-Mellier
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Binh A Nguyen
- Center for Alzheimer's and Neurodegenerative Diseases, Department of Biophysics, Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Mian Horvath
- The Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, the Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Afraah Javed
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Eldon R Hard
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Yllza Jasiqi
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Preeti Singh
- Center for Alzheimer's and Neurodegenerative Diseases, Department of Biophysics, Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Shumaila Afrin
- Center for Alzheimer's and Neurodegenerative Diseases, Department of Biophysics, Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Rose Pedretti
- Center for Alzheimer's and Neurodegenerative Diseases, Department of Biophysics, Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Virender Singh
- Center for Alzheimer's and Neurodegenerative Diseases, Department of Biophysics, Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Virginia M-Y Lee
- The Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, the Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kelvin C Luk
- The Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, the Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lorena Saelices
- Center for Alzheimer's and Neurodegenerative Diseases, Department of Biophysics, Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Matthew R Pratt
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA.
- Department Biological Sciences, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Balana AT, Mahul-Mellier AL, Nguyen BA, Horvath M, Javed A, Hard ER, Jasiqi Y, Singh P, Afrin S, Pedretti R, Singh V, Lee VMY, Luk KC, Saelices L, Lashuel HA, Pratt MR. O-GlcNAc modification forces the formation of an α-Synuclein amyloid-strain with notably diminished seeding activity and pathology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.07.531573. [PMID: 36945566 PMCID: PMC10028859 DOI: 10.1101/2023.03.07.531573] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The process of amyloid fibril formation remains one of the primary targets for developing diagnostics and treatments for several neurodegenerative diseases (NDDs). Amyloid-forming proteins such α-Synuclein and Tau, which are implicated in the pathogenesis of Alzheimer's and Parkinson's disease, can form different types of fibril structure, or strains, that exhibit distinct structures, toxic properties, seeding activities, and pathology spreading patterns in the brain. Therefore, understanding the molecular and structural determinants contributing to the formation of different amyloid strains or their distinct features could open new avenues for developing disease-specific diagnostics and therapies. In this work, we report that O-GlcNAc modification of α-Synuclein monomers results in the formation of amyloid fibril with distinct core structure, as revealed by Cryo-EM, and diminished seeding activity in seeding-based neuronal and rodent models of Parkinson's disease. Although the mechanisms underpinning the seeding neutralization activity of the O-GlcNAc modified fibrils remain unclear, our in vitro mechanistic studies indicate that heat shock proteins interactions with O-GlcNAc fibril inhibit their seeding activity, suggesting that the O-GlcNAc modification may alter the interactome of the α-Synuclein fibrils in ways that lead to reduce seeding activity in vivo. Our results show that post-translational modifications, such as O-GlcNAc modification, of α-Synuclein are key determinants of α-Synuclein amyloid strains and pathogenicity. These findings have significant implications for how we investigate and target amyloids in the brain and could possibly explain the lack of correlation between amyloid burden and neurodegeneration or cognitive decline in some subtypes of NDDs.
Collapse
Affiliation(s)
- Aaron T. Balana
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, United States
| | - Anne-Laure Mahul-Mellier
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland CH-1015
| | - Binh A Nguyen
- Center for Alzheimer’s and Neurodegenerative Disease, Department of Biophysics, Peter O’Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX-75390
| | - Mian Horvath
- The Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, the Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Afraah Javed
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, United States
| | - Eldon R. Hard
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, United States
| | - Yllza Jasiqi
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland CH-1015
| | - Preeti Singh
- Center for Alzheimer’s and Neurodegenerative Disease, Department of Biophysics, Peter O’Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX-75390
| | - Shumaila Afrin
- Center for Alzheimer’s and Neurodegenerative Disease, Department of Biophysics, Peter O’Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX-75390
| | - Rose Pedretti
- Center for Alzheimer’s and Neurodegenerative Disease, Department of Biophysics, Peter O’Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX-75390
| | - Virender Singh
- Center for Alzheimer’s and Neurodegenerative Disease, Department of Biophysics, Peter O’Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX-75390
| | - Virginia M.-Y. Lee
- The Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, the Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kelvin C. Luk
- The Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, the Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lorena Saelices
- Center for Alzheimer’s and Neurodegenerative Disease, Department of Biophysics, Peter O’Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX-75390
| | - Hilal A. Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland CH-1015
| | - Matthew R. Pratt
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, United States
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, United States
| |
Collapse
|
3
|
I F. The unique neuropathological vulnerability of the human brain to aging. Ageing Res Rev 2023; 87:101916. [PMID: 36990284 DOI: 10.1016/j.arr.2023.101916] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
Alzheimer's disease (AD)-related neurofibrillary tangles (NFT), argyrophilic grain disease (AGD), aging-related tau astrogliopathy (ARTAG), limbic predominant TDP-43 proteinopathy (LATE), and amygdala-predominant Lewy body disease (LBD) are proteinopathies that, together with hippocampal sclerosis, progressively appear in the elderly affecting from 50% to 99% of individuals aged 80 years, depending on the disease. These disorders usually converge on the same subject and associate with additive cognitive impairment. Abnormal Tau, TDP-43, and α-synuclein pathologies progress following a pattern consistent with an active cell-to-cell transmission and abnormal protein processing in the host cell. However, cell vulnerability and transmission pathways are specific for each disorder, albeit abnormal proteins may co-localize in particular neurons. All these alterations are unique or highly prevalent in humans. They all affect, at first, the archicortex and paleocortex to extend at later stages to the neocortex and other regions of the telencephalon. These observations show that the phylogenetically oldest areas of the human cerebral cortex and amygdala are not designed to cope with the lifespan of actual humans. New strategies aimed at reducing the functional overload of the human telencephalon, including optimization of dream repair mechanisms and implementation of artificial circuit devices to surrogate specific brain functions, appear promising.
Collapse
Affiliation(s)
- Ferrer I
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain; Emeritus Researcher of the Bellvitge Institute of Biomedical Research (IDIBELL), Barcelona, Spain; Biomedical Research Network of Neurodegenerative Diseases (CIBERNED), Barcelona, Spain; Institute of Neurosciences, University of Barcelona, Barcelona, Spain; Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|