1
|
Kok M, Singh I, Aizenman E, Brodsky JL. Inefficient maturation of disease-linked mutant forms of the KCC2 potassium-chloride cotransporter correlates with predicted pathogenicity. J Biol Chem 2025; 301:108399. [PMID: 40074080 PMCID: PMC12001125 DOI: 10.1016/j.jbc.2025.108399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 02/20/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
The potassium-chloride cotransporter 2 (KCC2) is required for neuronal development, and KCC2 dysregulation is implicated in several neurodevelopmental disorders, including schizophrenia, autism, and epilepsy. A dozen mutations in the KCC2-encoding gene, SLC12A5, are associated with these disorders, but few are fully characterized. To this end, we examined KCC2 biogenesis in a HEK293 cell model. While most of the examined disease-associated mutants matured efficiently, the L403P mutant was unable to traffic to the Golgi. Two other mutants, A191V and R857L, exhibited more subtle defects in maturation. Cell surface biotinylation assays showed that these mutants were also depleted from the cell surface. Another disease-associated variant, R952H, acquired Golgi-associated glycans yet was significantly depleted from the plasma membrane, consistent with loss of a plasma membrane-stabilizing phosphorylation site. To determine whether the ability of KCC2 to mature to the Golgi could be predicted, we employed a computational pathogenicity program, Rhapsody, which was shown in past work to predict endoplasmic reticulum-associated degradation-targeting of an unrelated ion channel. We discovered that the Rhapsody pathogenicity score correlated with relative defects in KCC2 maturation, and the algorithm outperformed two other commonly used programs. These data demonstrate the efficacy of a bioinformatic tool to predict the efficiency of KCC2 biogenesis. We also propose that Rhapsody can be used to develop hypotheses on defects associated with other disease-associated SLC12A5 alleles as they are identified.
Collapse
Affiliation(s)
- Morgan Kok
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ishika Singh
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Elias Aizenman
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
2
|
Uvarov P, Fudo S, Karakus C, Golubtsov A, Rotondo F, Sukhanova T, Soni S, Di Scala C, Kajander T, Rivera C, Ludwig A. Uncovering novel KCC2 regulatory motifs through a comprehensive transposon-based mutant library. Front Mol Neurosci 2025; 17:1505722. [PMID: 39881966 PMCID: PMC11774852 DOI: 10.3389/fnmol.2024.1505722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/10/2024] [Indexed: 01/31/2025] Open
Abstract
Introduction The neuron-specific K-Cl cotransporter KCC2 maintains low intracellular chloride levels, which are crucial for fast GABAergic and glycinergic neurotransmission. KCC2 also plays a pivotal role in the development of excitatory glutamatergic neurotransmission by promoting dendritic spine maturation. The cytoplasmic C-terminal domain (KCC2-CTD) plays a critical regulatory role in the molecular mechanisms controlling the cotransporter activity through dimerization, phosphorylation, and protein interaction. Methods To identify novel CTD regulatory motifs, we used the Mu transposon-based mutagenesis system to generate a library of KCC2 mutants with 5 amino acid insertions randomly distributed within the KCC2-CTD. We determined the insertion positions in 288 mutants by restriction analysis and selected clones with a single insertion site outside known KCC2 regulatory motifs. We analyzed the subcellular distribution of KCC2-CTD mutants in cultured cortical neurons using immunocytochemistry and selected ten mutants with ectopic expression patterns for detailed characterization. Results A fluorescent Cl--transport assay in HEK293 cells revealed mutants with both reduced and enhanced Cl--extrusion activity, which overall correlated with their glycosylation patterns. Live-cell immunostaining analysis of plasma membrane expression of KCC2-CTD mutants in cultured cortical neurons corroborated the glycosylation data. Furthermore, the somatodendritic chloride gradient in neurons transfected with the KCC2-CTD mutants correlated with their Cl--extrusion activity in HEK293 cells. Gain- and loss-of-function mutant positions were analyzed using available KCC2 cryo-EM structures. Discussion Two groups of mutants were identified based on 3D structural analysis. The first group, located near the interface of transmembrane and cytoplasmic domains, may affect interactions with the N-terminal inhibitory peptide regulating KCC2 activity. The second group, situated on the external surface of the cytoplasmic domain, may disrupt interactions with regulatory proteins. Analyzing CTD mutations that modulate KCC2 activity enhances our understanding of its function and is essential for developing novel anti-seizure therapies.
Collapse
Affiliation(s)
- Pavel Uvarov
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Satoshi Fudo
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Cem Karakus
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Andrey Golubtsov
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Federico Rotondo
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Tatiana Sukhanova
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Shetal Soni
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Coralie Di Scala
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
- INSERM, INMED, Aix Marseille University, Marseille, France
| | - Tommi Kajander
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Claudio Rivera
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
- INSERM, INMED, Aix Marseille University, Marseille, France
| | - Anastasia Ludwig
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| |
Collapse
|
3
|
Kok M, Brodsky JL. The biogenesis of potassium transporters: implications of disease-associated mutations. Crit Rev Biochem Mol Biol 2024; 59:154-198. [PMID: 38946646 PMCID: PMC11444911 DOI: 10.1080/10409238.2024.2369986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/02/2024] [Accepted: 06/16/2024] [Indexed: 07/02/2024]
Abstract
The concentration of intracellular and extracellular potassium is tightly regulated due to the action of various ion transporters, channels, and pumps, which reside primarily in the kidney. Yet, potassium transporters and cotransporters play vital roles in all organs and cell types. Perhaps not surprisingly, defects in the biogenesis, function, and/or regulation of these proteins are linked to range of catastrophic human diseases, but to date, few drugs have been approved to treat these maladies. In this review, we discuss the structure, function, and activity of a group of potassium-chloride cotransporters, the KCCs, as well as the related sodium-potassium-chloride cotransporters, the NKCCs. Diseases associated with each of the four KCCs and two NKCCs are also discussed. Particular emphasis is placed on how these complex membrane proteins fold and mature in the endoplasmic reticulum, how non-native forms of the cotransporters are destroyed in the cell, and which cellular factors oversee their maturation and transport to the cell surface. When known, we also outline how the levels and activities of each cotransporter are regulated. Open questions in the field and avenues for future investigations are further outlined.
Collapse
Affiliation(s)
- Morgan Kok
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
4
|
Järvelä V, Hamze M, Komulainen-Ebrahim J, Rahikkala E, Piispala J, Kallio M, Kangas SM, Nickl T, Huttula M, Hinttala R, Uusimaa J, Medina I, Immonen EV. A novel pathogenic SLC12A5 missense variant in epilepsy of infancy with migrating focal seizures causes impaired KCC2 chloride extrusion. Front Mol Neurosci 2024; 17:1372662. [PMID: 38660387 PMCID: PMC11039960 DOI: 10.3389/fnmol.2024.1372662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/19/2024] [Indexed: 04/26/2024] Open
Abstract
The potassium-chloride co-transporter 2, KCC2, is a neuron-specific ion transporter that plays a multifunctional role in neuronal development. In mature neurons, KCC2 maintains a low enough intracellular chloride concentration essential for inhibitory neurotransmission. During recent years, pathogenic variants in the KCC2 encoding gene SLC12A5 affecting the functionality or expression of the transporter protein have been described in several patients with epilepsy of infancy with migrating focal seizures (EIMFS), a devastating early-onset developmental and epileptic encephalopathy. In this study, we identified a novel recessively inherited SLC12A5 c.692G>A, p. (R231H) variant in a patient diagnosed with severe and drug-resistant EIMFS and profound intellectual disability. The functionality of the variant was assessed in vitro by means of gramicidin-perforated patch-clamp experiments and ammonium flux assay, both of which indicated a significant reduction in chloride extrusion. Based on surface immunolabeling, the variant showed a reduction in membrane expression. These findings implicate pathogenicity of the SLC12A5 variant that leads to impaired inhibitory neurotransmission, increasing probability for hyperexcitability and epileptogenesis.
Collapse
Affiliation(s)
- Viivi Järvelä
- Nano and Molecular Systems Research Unit, University of Oulu, Oulu, Finland
- Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Mira Hamze
- INMED, INSERM, Aix-Marseille University, Marseille, France
| | - Jonna Komulainen-Ebrahim
- Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
- Department of Children and Adolescents, Division of Pediatric Neurology, Oulu University Hospital, Oulu, Finland
| | - Elisa Rahikkala
- Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
- Department of Clinical Genetics, Oulu University Hospital, Oulu, Finland
| | - Johanna Piispala
- Department of Clinical Neurophysiology, Oulu University Hospital, Oulu, Finland
| | - Mika Kallio
- Department of Clinical Neurophysiology, Oulu University Hospital, Oulu, Finland
| | - Salla M. Kangas
- Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Tereza Nickl
- Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Marko Huttula
- Nano and Molecular Systems Research Unit, University of Oulu, Oulu, Finland
| | - Reetta Hinttala
- Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Johanna Uusimaa
- Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
- Department of Children and Adolescents, Division of Pediatric Neurology, Oulu University Hospital, Oulu, Finland
| | - Igor Medina
- INMED, INSERM, Aix-Marseille University, Marseille, France
| | - Esa-Ville Immonen
- Nano and Molecular Systems Research Unit, University of Oulu, Oulu, Finland
- Research Unit of Clinical Medicine, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| |
Collapse
|