1
|
Antonijevic M, Dallemagne P, Rochais C. Indirect influence on the BDNF/TrkB receptor signaling pathway via GPCRs, an emerging strategy in the treatment of neurodegenerative disorders. Med Res Rev 2025; 45:274-310. [PMID: 39180386 DOI: 10.1002/med.22075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/06/2022] [Accepted: 08/04/2024] [Indexed: 08/26/2024]
Abstract
Neuronal survival depends on neurotrophins and their receptors. There are two types of neurotrophin receptors: a nonenzymatic, trans-membrane protein of the tumor necrosis factor receptor (TNFR) family-p75 receptor and the tyrosine kinase receptors (TrkR) A, B, and C. Activation of the TrkBR by brain-derived neurotrophic factor (BDNF) or neurotrophin 4/5 (NT-4/5) promotes neuronal survival, differentiation, and synaptic function. It is shown that in the pathogenesis of several neurodegenerative conditions (Alzheimer's disease, Parkinson's disease, Huntington's disease) the BDNF/TrkBR signaling pathway is impaired. Since it is known that GPCRs and TrkR are regulating several cell functions by interacting with each other and generating a cross-communication in this review we have focused on the interaction between different GPCRs and their ligands on BDNF/TrkBR signaling pathway.
Collapse
|
2
|
Hartley S, Bao G, Russo A, Zagdoun M, Chevallier S, Lofaso F, Leotard A, Azabou E. Self-administered non-invasive vagus nerve stimulation therapy for severe pharmacoresistant restless legs syndrome: outcomes at 6 months. J Sleep Res 2024; 33:e14066. [PMID: 37846650 DOI: 10.1111/jsr.14066] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/18/2023]
Abstract
Severe pharmacoresistant restless legs syndrome (RLS) is difficult to manage and a source of suffering to patients. We studied the effectiveness at 6 months of an innovative treatment: transauricular vagus nerve stimulation (taVNS) in the left cymba concha in a case series of 15 patients, 53% male, mean (SD) age 62.7 (12.3) years with severe pharmacoresistant RLS (mean [SD] International Restless Legs Rating Scale [IRLS] score of 31.9 [2.9]) at baseline. Following an 8-week non-randomised hospital-based study with eight 1-h sessions of taVNS, patients were trained to administer taVNS at home and were followed up for 6 months. The primary outcome measure was the IRLS score, secondary outcome measures were quality of life, mood disorders using the Hospital Anxiety and Depression scale (HAD) subscales for depression (HADD) and anxiety (HADA). At the 6-month follow-up 13/15 patients continued to use weekly taVNS. Symptom severity decreased (mean [SD] IRLS score 22.2 [9.32] at 6 months, p = 0.0005). Four of the 15 patients had an IRLS score of <20 at 6 months and two an IRLS score of 5. Quality of life significantly improved compared to baseline (mean [SD] score at baseline 49.3 [18.1] versus 65.66 [22.58] at 6 months, p = 0.0005) as did anxiety and depression symptoms (mean [SD] HADA score at baseline 8.9 [5.4] versus 7.53 [4.42] at 6 months, p = 0.029; and HADD score at baseline 5.2 [4.5] versus 4.73 [4.44] at 6 months, p = 0.03). Treatment was well tolerated, and no adverse events were reported. Our case series shows a potential role for self-administered taVNS in patients with severe pharmacoresistant RLS. Randomised controlled trials are needed to confirm the utility of taVNS.
Collapse
Affiliation(s)
- Sarah Hartley
- Sleep Unit, Department of Physiology, Raymond Poincaré Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Guillaume Bao
- Clinical Neurophysiology and Neuromodulation Unit, SMART_VNS Platform, Department of Physiology, Raymond Poincaré Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Laboratory of Infection and Inflammation (2I) INSERM UMR 1173, University of Versailles Saint-Quentin-en-Yvelines (UVSQ), Paris-Saclay University, Paris, France
| | - Ashley Russo
- Clinical Neurophysiology and Neuromodulation Unit, SMART_VNS Platform, Department of Physiology, Raymond Poincaré Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Laboratory of Infection and Inflammation (2I) INSERM UMR 1173, University of Versailles Saint-Quentin-en-Yvelines (UVSQ), Paris-Saclay University, Paris, France
| | - Marine Zagdoun
- Clinical Neurophysiology and Neuromodulation Unit, SMART_VNS Platform, Department of Physiology, Raymond Poincaré Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Laboratory of Infection and Inflammation (2I) INSERM UMR 1173, University of Versailles Saint-Quentin-en-Yvelines (UVSQ), Paris-Saclay University, Paris, France
| | - Sylvain Chevallier
- Versailles Engineering Systems Laboratory (LISV), University of Versailles Saint-Quentin-en-Yvelines (UVSQ), Vélizy, France
| | - Frédéric Lofaso
- Sleep Unit, Department of Physiology, Raymond Poincaré Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Clinical Neurophysiology and Neuromodulation Unit, SMART_VNS Platform, Department of Physiology, Raymond Poincaré Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Laboratory « End:icap », INSERM UMR 1179, University of Versailles Saint-Quentin-en-Yvelines (UVSQ), Paris-Saclay University, Paris, France
| | - Antoine Leotard
- Sleep Unit, Department of Physiology, Raymond Poincaré Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Laboratory « End:icap », INSERM UMR 1179, University of Versailles Saint-Quentin-en-Yvelines (UVSQ), Paris-Saclay University, Paris, France
| | - Eric Azabou
- Clinical Neurophysiology and Neuromodulation Unit, SMART_VNS Platform, Department of Physiology, Raymond Poincaré Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Laboratory of Infection and Inflammation (2I) INSERM UMR 1173, University of Versailles Saint-Quentin-en-Yvelines (UVSQ), Paris-Saclay University, Paris, France
| |
Collapse
|
3
|
Deacon NL, McEvoy RD, Stadler DL, Catcheside PG. Intermittent hypercapnic hypoxia during sleep does not induce ventilatory long-term facilitation in healthy males. J Appl Physiol (1985) 2017; 123:534-543. [DOI: 10.1152/japplphysiol.01005.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 06/13/2017] [Accepted: 06/13/2017] [Indexed: 11/22/2022] Open
Abstract
Intermittent hypoxia-induced ventilatory neuroplasticity is likely important in obstructive sleep apnea pathophysiology. Although concomitant CO2levels and arousal state critically influence neuroplastic effects of intermittent hypoxia, no studies have investigated intermittent hypercapnic hypoxia effects during sleep in humans. Thus the purpose of this study was to investigate if intermittent hypercapnic hypoxia during sleep induces neuroplasticity (ventilatory long-term facilitation and increased chemoreflex responsiveness) in humans. Twelve healthy males were exposed to intermittent hypercapnic hypoxia (24 × 30 s episodes of 3% CO2and 3.0 ± 0.2% O2) and intermittent medical air during sleep after 2 wk washout period in a randomized crossover study design. Minute ventilation, end-tidal CO2, O2saturation, breath timing, upper airway resistance, and genioglossal and diaphragm electromyograms were examined during 10 min of stable stage 2 sleep preceding gas exposure, during gas and intervening room air periods, and throughout 1 h of room air recovery. There were no significant differences between conditions across time to indicate long-term facilitation of ventilation, genioglossal or diaphragm electromyogram activity, and no change in ventilatory response from the first to last gas exposure to suggest any change in chemoreflex responsiveness. These findings contrast with previous intermittent hypoxia studies without intermittent hypercapnia and suggest that the more relevant gas disturbance stimulus of concomitant intermittent hypercapnia frequently occurring in sleep apnea influences acute neuroplastic effects of intermittent hypoxia. These findings highlight the need for further studies of intermittent hypercapnic hypoxia during sleep to clarify the role of ventilatory neuroplasticity in the pathophysiology of sleep apnea.NEW & NOTEWORTHY Both arousal state and concomitant CO2levels are known modulators of the effects of intermittent hypoxia on ventilatory neuroplasticity. This is the first study to investigate the effects of combined intermittent hypercapnic hypoxia during sleep in humans. The lack of neuroplastic effects suggests a need for further studies more closely replicating obstructive sleep apnea to determine the pathophysiological relevance of intermittent hypoxia-induced ventilatory neuroplasticity.
Collapse
Affiliation(s)
- Naomi L. Deacon
- Discipline of Physiology, School of Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
- Adelaide Institute for Sleep Health: A Flinders Centre of Research Excellence, Repatriation General Hospital, Daw Park, South Australia, Australia; and
| | - R. Doug McEvoy
- Discipline of Physiology, School of Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
- Adelaide Institute for Sleep Health: A Flinders Centre of Research Excellence, Repatriation General Hospital, Daw Park, South Australia, Australia; and
- School of Medicine, Flinders University, Bedford Park, South Australia, Australia
| | - Daniel L. Stadler
- Adelaide Institute for Sleep Health: A Flinders Centre of Research Excellence, Repatriation General Hospital, Daw Park, South Australia, Australia; and
| | - Peter G. Catcheside
- Discipline of Physiology, School of Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
- Adelaide Institute for Sleep Health: A Flinders Centre of Research Excellence, Repatriation General Hospital, Daw Park, South Australia, Australia; and
- School of Medicine, Flinders University, Bedford Park, South Australia, Australia
| |
Collapse
|
4
|
Pamenter ME, Powell FL. Time Domains of the Hypoxic Ventilatory Response and Their Molecular Basis. Compr Physiol 2016; 6:1345-85. [PMID: 27347896 DOI: 10.1002/cphy.c150026] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ventilatory responses to hypoxia vary widely depending on the pattern and length of hypoxic exposure. Acute, prolonged, or intermittent hypoxic episodes can increase or decrease breathing for seconds to years, both during the hypoxic stimulus, and also after its removal. These myriad effects are the result of a complicated web of molecular interactions that underlie plasticity in the respiratory control reflex circuits and ultimately control the physiology of breathing in hypoxia. Since the time domains of the physiological hypoxic ventilatory response (HVR) were identified, considerable research effort has gone toward elucidating the underlying molecular mechanisms that mediate these varied responses. This research has begun to describe complicated and plastic interactions in the relay circuits between the peripheral chemoreceptors and the ventilatory control circuits within the central nervous system. Intriguingly, many of these molecular pathways seem to share key components between the different time domains, suggesting that varied physiological HVRs are the result of specific modifications to overlapping pathways. This review highlights what has been discovered regarding the cell and molecular level control of the time domains of the HVR, and highlights key areas where further research is required. Understanding the molecular control of ventilation in hypoxia has important implications for basic physiology and is emerging as an important component of several clinical fields. © 2016 American Physiological Society. Compr Physiol 6:1345-1385, 2016.
Collapse
Affiliation(s)
| | - Frank L Powell
- Physiology Division, Department of Medicine, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
5
|
The role of high loop gain induced by intermittent hypoxia in the pathophysiology of obstructive sleep apnoea. Sleep Med Rev 2015; 22:3-14. [DOI: 10.1016/j.smrv.2014.10.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 10/03/2014] [Accepted: 10/07/2014] [Indexed: 02/06/2023]
|
6
|
Nichols NL, Johnson RA, Satriotomo I, Mitchell GS. Neither serotonin nor adenosine-dependent mechanisms preserve ventilatory capacity in ALS rats. Respir Physiol Neurobiol 2014; 197:19-28. [PMID: 24681328 DOI: 10.1016/j.resp.2014.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 03/13/2014] [Accepted: 03/15/2014] [Indexed: 02/04/2023]
Abstract
In rats over-expressing SOD1G93A, ventilation is preserved despite significant loss of respiratory motor neurons. Thus, unknown forms of compensatory respiratory plasticity may offset respiratory motor neuron cell death. Although mechanisms of such compensation are unknown, other models of respiratory motor plasticity may provide a conceptual guide. Multiple cellular mechanisms give rise to phrenic motor facilitation; one mechanism requires spinal serotonin receptor and NADPH oxidase activity whereas another requires spinal adenosine receptor activation. Here, we studied whether these mechanisms contribute to compensatory respiratory plasticity in SOD1G93A rats. Using plethysmography, we assessed ventilation in end-stage SOD1G93A rats after: (1) serotonin depletion with parachlorophenylalanine (PCPA), (2) serotonin (methysergide) and A2A (MSX-3) receptor inhibition, (3) NADPH oxidase inhibition (apocynin), and (4) combined treatments. The ability to increase ventilation was not decreased by individual or combined treatments; thus, these mechanisms do not maintain breathing capacity at end-stage motor neuron disease. Possible mechanisms giving rise to enhanced breathing capacity with combined treatment in end-stage SOD1G93A rats are discussed.
Collapse
Affiliation(s)
- N L Nichols
- Department of Comparative Biosciences, University of Wisconsin, School of Veterinary Medicine, 2015 Linden Drive, Madison, WI 53706, United States
| | - R A Johnson
- Department of Surgical Sciences, University of Wisconsin, School of Veterinary Medicine, 2015 Linden Drive, Madison, WI 53706, United States
| | - I Satriotomo
- Department of Comparative Biosciences, University of Wisconsin, School of Veterinary Medicine, 2015 Linden Drive, Madison, WI 53706, United States
| | - G S Mitchell
- Department of Comparative Biosciences, University of Wisconsin, School of Veterinary Medicine, 2015 Linden Drive, Madison, WI 53706, United States.
| |
Collapse
|
7
|
Pamenter ME, Powell FL. Signalling mechanisms of long term facilitation of breathing with intermittent hypoxia. F1000PRIME REPORTS 2013; 5:23. [PMID: 23864930 PMCID: PMC3702218 DOI: 10.12703/p5-23] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Intermittent hypoxia causes long-term facilitation (LTF) of respiratory motor nerve activity and ventilation, which manifests as a persistent increase over the normoxic baseline for an hour or more after the acute hypoxic ventilatory response. LTF is likely involved in sleep apnea, but its exact role is uncertain. Previously, LTF was defined as a serotonergic mechanism, but new evidence shows that multiple signaling pathways can elicit LTF. This raises new questions about the interactions between signaling pathways in different time domains of the hypoxic ventilatory response, which can no longer be defined simply in terms of neurochemical mechanisms.
Collapse
Affiliation(s)
- Matthew E Pamenter
- Physiology Division, Department of Medicine, University of California San DiegoLa Jolla, CA 92092-0623USA
- Department of Zoology, University of British ColumbiaVancouver, BC V6T 1Z4Canada
| | - Frank L Powell
- Physiology Division, Department of Medicine, University of California San DiegoLa Jolla, CA 92092-0623USA
| |
Collapse
|
8
|
Baker-Herman TL, Strey KA. Similarities and differences in mechanisms of phrenic and hypoglossal motor facilitation. Respir Physiol Neurobiol 2011; 179:48-56. [PMID: 21745601 PMCID: PMC3183164 DOI: 10.1016/j.resp.2011.06.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 06/27/2011] [Accepted: 06/27/2011] [Indexed: 12/17/2022]
Abstract
Intermittent hypoxia-induced long-term facilitation (LTF) is variably expressed in the motor output of several inspiratory nerves, such as the phrenic and hypoglossal. Compared to phrenic LTF (pLTF), less is known about hypoglossal LTF (hLTF), although it is often assumed that cellular mechanisms are the same. While fundamental mechanisms appear to be similar, potentially important differences exist in the modulation of pLTF and hLTF. The primary objectives of this paper are to: (1) review similarities and differences in pLTF and hLTF, pointing out knowledge gaps and (2) present new data suggesting that reduced respiratory neural activity elicits differential plasticity in phrenic and hypoglossal output (inactivity-induced phrenic and hypoglossal motor facilitation, iPMF and iHMF), suggesting that these motor pool-specific differences are not unique to LTF. Differences in fundamental mechanisms or modulation of plasticity among motor pools may confer the capacity to mount a complex ventilatory response to specific challenges, particularly in motor pools with different "jobs" in the control of breathing.
Collapse
Affiliation(s)
- Tracy L. Baker-Herman
- Department of Comparative Biosciences, University of Wisconsin (Madison), 53706, USA
| | - Kristi A. Strey
- Department of Comparative Biosciences, University of Wisconsin (Madison), 53706, USA
| |
Collapse
|
9
|
Mahamed S, Strey KA, Mitchell GS, Baker-Herman TL. Reduced respiratory neural activity elicits phrenic motor facilitation. Respir Physiol Neurobiol 2011; 175:303-9. [PMID: 21167322 PMCID: PMC3062195 DOI: 10.1016/j.resp.2010.12.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 12/07/2010] [Accepted: 12/08/2010] [Indexed: 11/27/2022]
Abstract
We hypothesized that reduced respiratory neural activity elicits compensatory mechanisms of plasticity that enhance respiratory motor output. In urethane-anesthetized and ventilated rats, we reversibly reduced respiratory neural activity for 25-30 min using: hypocapnia (end tidal CO(2)=30 mmHg), isoflurane (~1%) or high frequency ventilation (HFV; ~100 breaths/min). In all cases, increased phrenic burst amplitude was observed following restoration of respiratory neural activity (hypocapnia: 92±22%; isoflurane: 65±22%; HFV: 54±13% baseline), which was significantly greater than time controls receiving the same surgery, but no interruptions in respiratory neural activity (3±5% baseline, p<0.05). Hypocapnia also elicited transient increases in respiratory burst frequency (9±2 versus 1±1bursts/min, p<0.05). Our results suggest that reduced respiratory neural activity elicits a unique form of plasticity in respiratory motor control which we refer to as inactivity-induced phrenic motor facilitation (iPMF). iPMF may prevent catastrophic decreases in respiratory motor output during ventilatory control disorders associated with abnormal respiratory activity.
Collapse
Affiliation(s)
- Safraaz Mahamed
- Department of Comparative Biosciences, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706-1102, USA
| | | | | | | |
Collapse
|
10
|
Hoffman MS, Mitchell GS. Spinal 5-HT7 receptor activation induces long-lasting phrenic motor facilitation. J Physiol 2011; 589:1397-407. [PMID: 21242254 DOI: 10.1113/jphysiol.2010.201657] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Acute intermittent hypoxia elicits a form of serotonin-dependent respiratory plasticity known as phrenic long term facilitation (pLTF). Episodic spinal serotonin-2 (5-HT2) receptor activation on or near phrenic motor neurons is necessary for pLTF. A hallmark of pLTF is the requirement for serotonin-dependent synthesis of brain-derived neurotrophic factor (BDNF), and activation of its high affinity receptor, TrkB. Activation of spinal Gs protein-coupled adenosine 2A receptors (GsPCRs) elicits a unique form of long-lasting phrenic motor facilitation (PMF), but via unique mechanisms (BDNF independent TrkB trans-activation).We hypothesized that other GsPCRs elicit PMF, specifically serotonin-7 (5-HT7) receptors, which are expressed in phrenic motor neurons. Cervical spinal (C4) injections of a selective 5-HT7 receptor agonist, AS-19 (10 μM, 5 μl; 3 × 5 min), in anaesthetized, vagotomized and ventilated male Sprague-Dawley rats elicited long-lasting PMF (>120 min), an effect prevented by pretreatment with a 5-HT7 receptor antagonist (SB 269970; 5mM, 7 μl).GsPCR activation 'trans-activates'TrkB by increasing synthesis of an immature TrkB isoform. Spinal injection of a TrkB inhibitor (k252a) and siRNAs that prevent TrkB (but not BDNF) mRNA translation both blocked 5-HT7 agonist-induced PMF, confirming a requirement for TrkB synthesis and activity. k252a affected late PMF (≥ 90 min) only. Spinal inhibition of the PI3K/AKT pathway blocked 5-HT7 agonist-induced PMF, whereas MEK/ERK inhibition delayed, but did not block, PMF. An understanding of signalling mechanisms giving rise to PMF may guide development of novel therapeutic strategies to treat ventilatory control disorders associated with respiratory insufficiency, such as spinal injury and motor neuron disease.
Collapse
Affiliation(s)
- M S Hoffman
- Department of Comparative Biosciences, University of Wisconsin, 2015 Linden Drive, Madison, WI, 53706, USA
| | | |
Collapse
|
11
|
Pavlinac I, Pecotic R, Dogas Z, Valic M. Role of 5-HT1A receptors in induction and preservation of phrenic long-term facilitation in rats. Respir Physiol Neurobiol 2011; 175:146-52. [DOI: 10.1016/j.resp.2010.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 10/21/2010] [Accepted: 10/21/2010] [Indexed: 10/18/2022]
|
12
|
Cao Y, Liu C, Ling L. Glossopharyngeal long-term facilitation requires serotonin 5-HT2 and NMDA receptors in rats. Respir Physiol Neurobiol 2010; 170:164-72. [PMID: 20026287 PMCID: PMC2819572 DOI: 10.1016/j.resp.2009.12.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 12/11/2009] [Accepted: 12/14/2009] [Indexed: 10/20/2022]
Abstract
Although the glossopharyngeal nerve (IX) is mainly a sensory nerve, it innervates stylopharyngeus and some other pharyngeal muscles, whose excitations would likely improve upper airway patency since electrical IX stimulation increases pharyngeal airway size. As acute intermittent hypoxia (AIH) induces hypoglossal and genioglossal long-term facilitation (LTF), we hypothesized that AIH induces glossopharyngeal LTF, which requires serotonin 5-HT(2) and NMDA receptors. Integrated IX activity was recorded in anesthetized, vagotomized, paralyzed and ventilated rats before, during and after 5 episodes of 3-min isocapnic 12% O(2) with 3-min intervals of 50% O(2). Either saline, ketanserin (5-HT(2) antagonist, 2mg/kg) or MK-801 (NMDA antagonist, 0.2mg/kg) was (i.v.) injected 30-60 min before AIH. Both phasic and tonic IX activities were persistently increased (both P<0.05) after AIH in vehicle, but not ketanserin or MK-801, rats. Hypoxic glossopharyngeal responses were minimally changed after either drug. These data suggest that AIH induces both phasic and tonic glossopharyngeal LTF, which requires activation of 5-HT(2) and NMDA receptors.
Collapse
Affiliation(s)
- Ying Cao
- Division of Sleep Medicine, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Avenue, BLI-043B, Boston, MA 02115, USA
| | | | | |
Collapse
|
13
|
Dale-Nagle EA, Hoffman MS, MacFarlane PM, Mitchell GS. Multiple pathways to long-lasting phrenic motor facilitation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 669:225-30. [PMID: 20217354 PMCID: PMC3021942 DOI: 10.1007/978-1-4419-5692-7_45] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Plasticity is a hallmark of neural systems, including the neural system controlling breathing (Mitchell and Johnson 2003). Despite its biological and potential clinical significance, our understanding of mechanisms giving rise to any form of respiratory plasticity remains incomplete. Here we discuss recent advances in our understanding of cellular mechanisms giving rise to phrenic long-term facilitation (pLTF), a long-lasting increase in phrenic motor output induced by acute intermittent hypoxia (AIH). Recently, we have come to realize that multiple, distinct mechanisms are capable of giving rise to long-lasting phrenic motor facilitation (PMF); we use PMF as a general term that includes AIH-induced pLTF. It is important to begin an appreciation and understanding of these diverse pathways. Hence, we introduce a nomenclature based on upstream steps in the signaling cascade leading to PMF. Two pathways are featured here: the "Q" and the "S" pathways, named because they are induced by metabotropic receptors coupled to Gq and Gs proteins, respectively. These pathways appear to interact in complex and interesting ways, thus providing a range of potential responses in the face of changing physiological conditions or the onset of disease.
Collapse
Affiliation(s)
- Erica A. Dale-Nagle
- Department of Comparative Biosciences; University of Wisconsin; Madison, WI 53706 USA
| | - Michael S. Hoffman
- Department of Comparative Biosciences; University of Wisconsin; Madison, WI 53706 USA
| | - Peter M. MacFarlane
- Department of Comparative Biosciences; University of Wisconsin; Madison, WI 53706 USA
| | - Gordon S. Mitchell
- Department of Comparative Biosciences; University of Wisconsin; Madison, WI 53706 USA
| |
Collapse
|
14
|
Aalbers M, Rijkers K, van Winden L, Hoogland G, Vles J, Majoie H. Horner's syndrome: A complication of experimental carotid artery surgery in rats. Auton Neurosci 2009; 147:64-9. [DOI: 10.1016/j.autneu.2009.01.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 01/08/2009] [Accepted: 01/14/2009] [Indexed: 11/30/2022]
|
15
|
Ling L. Serotonin and NMDA receptors in respiratory long-term facilitation. Respir Physiol Neurobiol 2008; 164:233-41. [PMID: 18606575 PMCID: PMC2654195 DOI: 10.1016/j.resp.2008.05.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Revised: 05/15/2008] [Accepted: 05/19/2008] [Indexed: 11/16/2022]
Abstract
Some have postulated that long-term facilitation (LTF), a persistent augmentation of respiratory activity after episodic hypoxia, may play a beneficial role in helping stabilize upper airway patency in obstructive sleep apnea (OSA) patients. However, the neuronal and cellular mechanisms underlying this plasticity of respiratory motor behavior are still poorly understood. The main purpose of this review is to summarize recent findings about serotonin and NMDA receptors involved in both LTF and its enhancement after chronic intermittent hypoxia (CIH). The potential roles of these receptors in the initiation, formation and/or maintenance of LTF, as well as the CIH effect on LTF, will be discussed. As background, different paradigms for the stimulus protocol, different patterns of LTF expression and their mechanistic implications in LTF will also be discussed.
Collapse
Affiliation(s)
- Liming Ling
- Division of Sleep Medicine, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
16
|
Golder FJ, Martinez SD. Bilateral vagotomy differentially alters the magnitude of hypoglossal and phrenic long-term facilitation in anesthetized mechanically ventilated rats. Neurosci Lett 2008; 442:213-8. [DOI: 10.1016/j.neulet.2008.07.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Revised: 07/12/2008] [Accepted: 07/15/2008] [Indexed: 10/21/2022]
|
17
|
Abstract
Established treatments for depression are often effective. However, a significant number of patients show limited or no response. With advancements in the explanation of the underlying neurobiology of depression, several novel therapeutic approaches have been developed. Emerging drug targets include novel monoamine oxidase inhibitors, triple monoamine re-uptake inhibitors, omega-3 fatty acids, melatoninergic agonists and receptor antagonists for corticotropin-releasing factor(1), glucocorticoid, substance-P and NMDA. Developments in therapeutic focal brain stimulation include vagus nerve stimulation, transcranial magnetic stimulation, magnetic seizure therapy and deep brain stimulation. The role of psychotherapy, both as monotherapy and as adjunctive therapy, is an active avenue of investigation. Although data on these treatments are limited, preliminary results are encouraging. A major goal that remains to be achieved is the identification of predictors of response to the various antidepressant treatments that have diverse mechanisms of action.
Collapse
Affiliation(s)
- Paul E Holtzheimer
- Emory University School of Medicine, Department of Psychiatry and Behavioural Sciences, 1841 Clifton Rd NE, 4th floor, Atlanta, Georgia 30329, USA.
| | | |
Collapse
|