1
|
Colard J, Jubeau M, Duclay J, Cattagni T. Regulation of primary afferent depolarization and homosynaptic post-activation depression during passive and active lengthening, shortening and isometric conditions. Eur J Appl Physiol 2023; 123:1257-1269. [PMID: 36781424 DOI: 10.1007/s00421-023-05147-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/26/2023] [Indexed: 02/15/2023]
Abstract
PURPOSE This study aimed to determine whether the modulation of primary afferent depolarization (PAD) and homosynaptic post-activation depression (HPAD) are involved in the lower efficacy of Ia-afferent-α-motoneuron transmission commonly observed during lengthening compared to isometric and shortening conditions. METHODS 15 healthy young individuals participated in two experimental sessions dedicated to measurement in passive and active muscle states, respectively. In each session, PAD, HPAD and the efficacy of Ia-afferent-α-motoneuron transmission were evaluated during lengthening, shortening and isometric conditions. PAD was evaluated with D1 inhibition technique. Posterior tibial nerve stimulation was used to study HPAD and the efficacy of the Ia-afferent-α-motoneuron transmission through the recording of the soleus Hoffmann reflex (H reflex). RESULTS PAD was increased in lengthening than shortening (11.2%) and isometric (12.3%) conditions regardless of muscle state (P < 0.001). HPAD was increased in lengthening than shortening (5.1%) and isometric (4.2%) conditions in the passive muscle state (P < 0.05), while no difference was observed in the active muscle state. H reflex was lower in lengthening than shortening (- 13.2%) and isometric (- 9.4%) conditions in both muscle states (P < 0.001). CONCLUSION These results highlight the specific regulation of PAD and HPAD during lengthening conditions. However, the differences observed during passive lengthening compared to shortening and isometric conditions seem to result from an increase in Ia-afferent discharge, while the variations highlighted during active lengthening might come from polysynaptic descending pathways involving supraspinal centres that could regulate PAD mechanism.
Collapse
Affiliation(s)
- Julian Colard
- Nantes University, Movement-Interactions-Performance, MIP, 25 Bis Boulevard Guy Mollet-BP 72206, UR 4334, 44322, Nantes, France
| | - Marc Jubeau
- Nantes University, Movement-Interactions-Performance, MIP, 25 Bis Boulevard Guy Mollet-BP 72206, UR 4334, 44322, Nantes, France.
| | - Julien Duclay
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Thomas Cattagni
- Nantes University, Movement-Interactions-Performance, MIP, 25 Bis Boulevard Guy Mollet-BP 72206, UR 4334, 44322, Nantes, France
| |
Collapse
|
2
|
Papitsa A, Paizis C, Papaiordanidou M, Martin A. Specific modulation of presynaptic and recurrent inhibition of the soleus muscle during lengthening and shortening submaximal and maximal contractions. J Appl Physiol (1985) 2022; 133:1327-1340. [PMID: 36356258 DOI: 10.1152/japplphysiol.00065.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The study analyzed neural mechanisms mediating spinal excitability modulation during eccentric (ECC) movement (passive muscle lengthening, submaximal, and maximal ECC contractions) as compared with concentric (CON) conditions. Twenty-two healthy subjects participated in three experiments. Experiment A (n = 13) examined D1 presynaptic inhibition (D1 PI) and recurrent inhibition (RI) modulation during passive muscle lengthening and shortening, by conditioning the soleus (SOL) H-reflex with common peroneal nerve submaximal and tibial nerve maximal stimulation, respectively. Experiment B (n = 13) analyzed the effect of passive muscle lengthening on D1 PI and heteronymous Ia facilitation (HF, conditioning the SOL H-reflex by femoral stimulation). Experiment C (n = 13) focused on the effect of muscle contraction level (20%, 50%, and 100% of maximal voluntary contraction) on D1 PI and RI. Results showed a significantly higher level of D1 PI during passive muscle lengthening than shortening (P < 0.01), whereas RI and HF were not affected by passive muscle movement. D1 PI and RI were both higher during ECC as compared with CON contractions (P < 0.001). However, the amount of D1 PI was independent of the torque level, whereas RI was reduced as the torque level increased (P < 0.05). The decreased spinal excitability induced by muscle lengthening during both passive and active conditions is mainly attributed to D1 PI, whereas RI also plays a role in the control of the specific motoneuron output during ECC contractions. Both inhibitory mechanisms are centrally controlled, but the fact that they evolve differently with torque increases, suggests a distinct supraspinal control.NEW & NOTEWORTHY Presynaptic (PI) and recurrent inhibitions (RI) were studied during passive muscle lengthening and eccentric contractions. Results indicate that the increased PI during passive muscle lengthening accounts for the decreased spinal excitability at rest. During eccentric contraction both mechanisms contribute to spinal excitability modulation. The same amount of PI was observed during eccentric contractions, while RI decreased as developed torque increased. This distinct modulation according to torque level suggests a distinct supraspinal control of these mechanisms.
Collapse
Affiliation(s)
- Athina Papitsa
- Department of Physical Education and Sport Sciences at Serres, Aristotle University of Thessaloniki, Thessaloniki Greece
| | - Christos Paizis
- Faculty of Sport Sciences, CAPS, INSERM U1093, University of Bourgogne Franche-Comté, Dijon, France.,Faculty of Sport Sciences, Centre for Performance Expertise, CAPS, U1093 INSERM, University of Bourgogne Franche-Comté, Dijon, France
| | - Maria Papaiordanidou
- Faculty of Sport Sciences, CAPS, INSERM U1093, University of Bourgogne Franche-Comté, Dijon, France
| | - Alain Martin
- Faculty of Sport Sciences, CAPS, INSERM U1093, University of Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
3
|
Effect of Long-Term Classical Ballet Dance Training on Postactivation Depression of the Soleus Hoffmann-Reflex. Motor Control 2022; 26:169-180. [PMID: 34986460 DOI: 10.1123/mc.2021-0079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/01/2021] [Accepted: 11/05/2021] [Indexed: 11/18/2022]
Abstract
Classical ballet dancing is a good model for studying the long-term activity-dependent plasticity of the central nervous system in humans, as it requires unique ankle movements to maintain ballet postures. The purpose of this study was to investigate whether postactivation depression is changed through long-term specific motor training. Eight ballet dancers and eight sedentary subjects participated in this study. The soleus Hoffmann reflexes were elicited at after the completion of a slow, passive dorsiflexion of the ankle. The results demonstrated that the depression of the soleus Hoffmann reflex (i.e., postactivation depression) was larger in classical ballet dancers than in sedentary subjects at two poststretch intervals. This suggests that the plastic change through long-term specific motor training is also expressed in postactivation depression of the soleus Hoffmann reflex. Increased postactivation depression would strengthen the supraspinal control of the plantarflexors and may contribute to fine ankle movements in classical ballet dancers.
Collapse
|
4
|
Cè E, Coratella G, Doria C, Rampichini S, Borrelli M, Longo S, Esposito F. No effect of passive stretching on neuromuscular function and maximum force-generating capacity in the antagonist muscle. Eur J Appl Physiol 2021; 121:1955-1965. [PMID: 33770238 PMCID: PMC8192325 DOI: 10.1007/s00421-021-04646-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/14/2021] [Indexed: 11/25/2022]
Abstract
Purpose The present study investigated whether or not passive stretching increases the force-generating capacity of the antagonist muscle, and the possible neuromuscular mechanisms behind. Methods To this purpose, the neuromuscular function accompanying the force-generating capacity was assessed in 26 healthy male volunteers after passive stretching and in a control session. Before and after passive intermittent static stretching of the plantar flexors consisting of five sets × 45 s + 15 s-rest, maximum voluntary isometric contraction (MVC) and surface electromyographic root mean square (sEMG RMS) were measured in the tibialis anterior (the antagonist muscle). Additionally, evoked V wave, H-reflex, and M wave were elicited by nerve stimulation at rest and during MVC. Ankle range of motion (ROM) and plantar flexors MVC and EMG RMS were measured to check for the effectiveness of the stretching manoeuvre. Results No change in MVC [p = 0.670; effect size (ES) − 0.03] and sEMG RMS/M wave during MVC (p = 0.231; ES − 0.09) was observed in the antagonist muscle after passive stretching. Similarly, no change in V wave (p = 0.531; ES 0.16), H-reflex at rest and during MVC (p = 0.656 and 0.597; ES 0.11 and 0.23, respectively) and M wave at rest and during MVC (p = 0.355 and 0.554; ES 0.04 and 0.01, respectively) was observed. An increase in ankle ROM (p < 0.001; ES 0.55) and a decrease in plantar flexors MVC (p < 0.001; ES − 1.05) and EMG RMS (p < 0.05; ES − 1.72 to − 0.13 in all muscles) indicated the effectiveness of stretching protocol. Conclusion No change in the force-generating capacity and neuromuscular function of the antagonist muscle after passive stretching was observed.
Collapse
Affiliation(s)
- Emiliano Cè
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Giuseppe Colombo 71, 20133, Milano, Italy
- IRCSS Galeazzi Orthopaedic Institute, Milano, Italy
| | - Giuseppe Coratella
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Giuseppe Colombo 71, 20133, Milano, Italy.
| | - Christian Doria
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Giuseppe Colombo 71, 20133, Milano, Italy
| | - Susanna Rampichini
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Giuseppe Colombo 71, 20133, Milano, Italy
| | - Marta Borrelli
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Giuseppe Colombo 71, 20133, Milano, Italy
| | - Stefano Longo
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Giuseppe Colombo 71, 20133, Milano, Italy
| | - Fabio Esposito
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Via Giuseppe Colombo 71, 20133, Milano, Italy
- IRCSS Galeazzi Orthopaedic Institute, Milano, Italy
| |
Collapse
|
5
|
Presynaptic inhibition mechanisms may subserve the spinal excitability modulation induced by neuromuscular electrical stimulation. J Electromyogr Kinesiol 2018; 40:95-101. [DOI: 10.1016/j.jelekin.2018.04.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/30/2018] [Accepted: 04/23/2018] [Indexed: 11/20/2022] Open
|
6
|
Grosprêtre S, Lebon F, Papaxanthis C, Martin A. New evidence of corticospinal network modulation induced by motor imagery. J Neurophysiol 2015; 115:1279-88. [PMID: 26719089 DOI: 10.1152/jn.00952.2015] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/11/2015] [Indexed: 02/01/2023] Open
Abstract
Motor imagery (MI) is the mental simulation of movement, without the corresponding muscle contraction. Whereas the activation of cortical motor areas during MI is established, the involvement of spinal structures is still under debate. We used original and complementary techniques to probe the influence of MI on spinal structures. Amplitude of motor-evoked potentials (MEPs), cervico-medullary-evoked potentials (CMEPs), and Hoffmann (H)-reflexes of the flexor carpi radialis (FCR) muscle and of the triceps surae muscles was measured in young, healthy subjects at rest and during MI. Participants were asked to imagine maximal voluntary contraction of the wrist and ankle, while the targeted limb was fixed (static condition). We confirmed previous studies with an increase of FCR MEPs during MI compared with rest. Interestingly, CMEPs, but not H-reflexes, also increased during MI, revealing a possible activation of subcortical structures. Then, to investigate the effect of MI on the spinal network, we used two techniques: 1) passive lengthening of the targeted muscle via an isokinetic dynamometer and 2) conditioning of H-reflexes with stimulation of the antagonistic nerve. Both techniques activate spinal inhibitory presynaptic circuitry, reducing the H-reflex amplitude at rest. In contrast, no reduction of H-reflex amplitude was observed during MI. These findings suggest that MI has modulatory effects on the spinal neuronal network. Specifically, the activation of low-threshold spinal structures during specific conditions (lengthening and H-reflex conditioning) highlights the possible generation of subliminal cortical output during MI.
Collapse
Affiliation(s)
- Sidney Grosprêtre
- Institut National de la Santé et de la Recherche Médicale U1093, Faculté des sciences du sport, Dijon, France; and Université de Bourgogne Franche-Comté, Besançon, France
| | - Florent Lebon
- Institut National de la Santé et de la Recherche Médicale U1093, Faculté des sciences du sport, Dijon, France; and Université de Bourgogne Franche-Comté, Besançon, France
| | - Charalambos Papaxanthis
- Institut National de la Santé et de la Recherche Médicale U1093, Faculté des sciences du sport, Dijon, France; and Université de Bourgogne Franche-Comté, Besançon, France
| | - Alain Martin
- Institut National de la Santé et de la Recherche Médicale U1093, Faculté des sciences du sport, Dijon, France; and Université de Bourgogne Franche-Comté, Besançon, France
| |
Collapse
|
7
|
Mezzarane RA, Magalhães FH, Chaud VM, Elias LA, Kohn AF. Enhanced D1 and D2 inhibitions induced by low-frequency trains of conditioning stimuli: differential effects on H- and T-reflexes and possible mechanisms. PLoS One 2015; 10:e0121496. [PMID: 25807195 PMCID: PMC4373906 DOI: 10.1371/journal.pone.0121496] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 02/01/2015] [Indexed: 11/26/2022] Open
Abstract
Mechanically evoked reflexes have been postulated to be less sensitive to presynaptic inhibition (PSI) than the H-reflex. This has implications on investigations of spinal cord neurophysiology that are based on the T-reflex. Preceding studies have shown an enhanced effect of PSI on the H-reflex when a train of ~10 conditioning stimuli at 1 Hz was applied to the nerve of the antagonist muscle. The main questions to be addressed in the present study are if indeed T-reflexes are less sensitive to PSI and whether (and to what extent and by what possible mechanisms) the effect of low frequency conditioning, found previously for the H-reflex, can be reproduced on T-reflexes from the soleus muscle. We explored two different conditioning-to-test (C-T) intervals: 15 and 100 ms (corresponding to D1 and D2 inhibitions, respectively). Test stimuli consisted of either electrical pulses applied to the posterior tibial nerve to elicit H-reflexes or mechanical percussion to the Achilles tendon to elicit T-reflexes. The 1 Hz train of conditioning electrical stimuli delivered to the common peroneal nerve induced a stronger effect of PSI as compared to a single conditioning pulse, for both reflexes (T and H), regardless of C-T-intervals. Moreover, the conditioning train of pulses (with respect to a single conditioning pulse) was proportionally more effective for T-reflexes as compared to H-reflexes (irrespective of the C-T interval), which might be associated with the differential contingent of Ia afferents activated by mechanical and electrical test stimuli. A conceivable explanation for the enhanced PSI effect in response to a train of stimuli is the occurrence of homosynaptic depression at synapses on inhibitory interneurons interposed within the PSI pathway. The present results add to the discussion of the sensitivity of the stretch reflex pathway to PSI and its functional role.
Collapse
Affiliation(s)
- Rinaldo André Mezzarane
- Laboratory of Signal Processing and Motor Control, College of Physical Education, Universidade de Brasília—UnB, Brasília, Brazil
- Biomedical Engineering Laboratory, Escola Politécnica, PTC, Universidade de São Paulo, São Paulo, Brazil
- * E-mail:
| | - Fernando Henrique Magalhães
- Biomedical Engineering Laboratory, Escola Politécnica, PTC, Universidade de São Paulo, São Paulo, Brazil
- School of Arts, Sciences and Humanities—EACH, Universidade de São Paulo, São Paulo, Brazil
| | - Vitor Martins Chaud
- Biomedical Engineering Laboratory, Escola Politécnica, PTC, Universidade de São Paulo, São Paulo, Brazil
- Department of Electrical Engineering, Universidade Federal do Triângulo Mineiro—UFTM, Uberaba, Brazil
| | - Leonardo Abdala Elias
- Biomedical Engineering Laboratory, Escola Politécnica, PTC, Universidade de São Paulo, São Paulo, Brazil
- Department of Biomedical Engineering, School of Electrical and Computer Engineering, University of Campinas—UNICAMP, Campinas, Brazil
| | - André Fabio Kohn
- Biomedical Engineering Laboratory, Escola Politécnica, PTC, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Hatzikotoulas K, Patikas D, Ratel S, Bassa E, Kotzamanidis C. Central and peripheral fatigability in boys and men during maximal contraction. Med Sci Sports Exerc 2015; 46:1326-33. [PMID: 24389527 DOI: 10.1249/mss.0000000000000239] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE The purpose of this study was to examine central and peripheral factors of fatigability that could explain the differences in fatigability between adults and prepubertal boys after maximal sustained isometric contraction. METHODS A total of 11 untrained adult men and 10 prepubescent boys volunteered to participate in this study. The level of voluntary activation was assessed before and after fatigue by means of the twitch interpolation technique as well as peak twitch torque, maximum rate of torque development and maximum M-wave (Mmax) area of the soleus and medial gastrocnemius. The fatigue-inducing protocol consisted of a sustained maximal voluntary contraction (MVC) of the ankle's plantar flexor at 100% of MVC until the task could no longer be sustained at 50% of MVC. RESULTS During the fatigue-inducing protocol, boys were fatigued less, showing longer endurance limit and delayed torque and agonist EMG decrease. After fatigue, the level of activation decreased to a similar extent in both groups, and boys were less affected regarding their peak twitch torque and rate of torque development, whereas no differentiation between the groups was observed regarding the decrease in Mmax area of the examined muscles. CONCLUSIONS The results obtained provide evidence that the greater fatigability resistance in prepubertal children during sustained maximal contractions is mainly explained by peripheral rather than central factors.
Collapse
Affiliation(s)
- Konstantinos Hatzikotoulas
- 1Department of Physical Education and Sport Science, School of Physical Education and Sport Science, Aristotle University of Thessaloniki, Thessaloniki, GREECE; 2Department of Physical Education and Sport Science at Serres, School of Physical Education and Sport Science, Aristotle University of Thessaloniki, Thessaloniki, GREECE; and 3Laboratory of Metabolic Adaptations of Exercise on Physiological and Pathological Conditions, University of Blaise Pascal, Clermont University, Clermont-Ferrand, FRANCE
| | | | | | | | | |
Collapse
|
9
|
Ekblom MMN, Thorstensson A. Effects of prolonged vibration on H-reflexes, muscle activation, and dynamic strength. Med Sci Sports Exerc 2012; 43:1933-9. [PMID: 21407131 DOI: 10.1249/mss.0b013e318217d720] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
UNLABELLED Neural activation is generally lower during maximal voluntary lengthening compared with shortening and isometric muscle actions, but the mechanisms underlying these differences are unclear. In maximal voluntary isometric actions, reduced Ia-afferent input induced by prolonged tendon vibration has been shown to impair neural activation and strength. PURPOSE This study aimed to investigate whether reducing Ia-afferent input influences neural activation in maximal voluntary dynamic muscle actions and, if so, whether it affects shortening and lengthening muscle actions differently. METHODS Eight women participated in three familiarization sessions and two randomly ordered experiments. In one experiment, 30-min vibration at 100 Hz was applied to the Achilles tendon to decrease Ia-afferent input as measured by the H-reflex. In the control experiment, rest substituted the vibration. Root mean square EMG from plantar and dorsiflexor muscles and plantar flexor strength were measured during maximal voluntary plantar flexor shortening and lengthening actions (20°·s(-1)) before and after vibration and rest, respectively. Soleus H-reflexes and M-waves were elicited before each set of strength tests. RESULTS The vibration caused a decrease in H-reflex amplitude by, on the average, 33%, but root mean square EMG and plantar flexor strength remained largely unaffected in both action types. CONCLUSIONS The findings suggest that Ia-afferent input may not substantially contribute to maximal voluntary dynamic muscle strength of the plantar flexor muscles, as tested here, and thus, the results do not support the notion that Ia-afferent excitation would contribute differently to neural activation in maximal voluntary lengthening and shortening muscle actions.
Collapse
Affiliation(s)
- Maria M Nordlund Ekblom
- Biomechanics and Motor Control Laboratory, The Swedish School of Sport and Health Sciences (GIH), Stockholm, Sweden.
| | | |
Collapse
|
10
|
Uematsu A, Sekiguchi H, Kobayashi H, Hortobágyi T, Suzuki S. Contraction history produces task-specific variations in spinal excitability in healthy human soleus muscle. Muscle Nerve 2011; 43:851-8. [PMID: 21488052 DOI: 10.1002/mus.21989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2010] [Indexed: 11/12/2022]
Abstract
INTRODUCTION In human movements muscles lengthen and then shorten, or occasionally shorten and then lengthen, but it is unclear whether the nature of neural activation of the initial phase influences the neural state of the subsequent phase. We examined whether contraction history modulates spinal excitability in the healthy human soleus muscle. METHODS Subjects performed six blocks of 10 repetitions of four muscle actions consisting of specific combinations of passive shortening (PAS), and passive lengthening (PAL), shortening contraction (SHO), and lengthening contraction (LEN); that is: (1) SHO+PAL; (2) PAS+LEN; (3) PAS+PAL; and (4) SHO+LEN. RESULTS Compared with baseline, the H-reflex increased in the block of 300-400 s after SHO+PAL and decreased in the block of 0-100 s after PAS+LEN and SHO+LEN. CONCLUSIONS Our results suggest that spinal excitability is potentiated during a muscle action preceded by muscle shortening, but it becomes depressed during a muscle action preceded by muscle lengthening.
Collapse
Affiliation(s)
- Azusa Uematsu
- Motor Control and Biomechanics Laboratory, Graduate School of Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa 359-1192, Japan.
| | | | | | | | | |
Collapse
|
11
|
Nordlund Ekblom MM. Improvements in dynamic plantar flexor strength after resistance training are associated with increased voluntary activation and V-to-M ratio. J Appl Physiol (1985) 2010; 109:19-26. [DOI: 10.1152/japplphysiol.01307.2009] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The aim of this study was to investigate if, and via what mechanisms, resistance training of the plantar flexor muscles affects voluntary activation during maximal voluntary eccentric and concentric muscle actions. Twenty healthy subjects were randomized into a resistance training group ( n = 9) or a passive control group ( n = 11). Training consisted of 15 sessions of unilateral mainly eccentric plantar flexor exercise over a 5-wk period. During pre- and posttraining testing, dynamic plantar flexor strength was measured and voluntary activation was calculated using the twitch interpolation technique. The soleus Hoffman reflex (H-reflex) was used to assess motoneurone excitability and presynaptic inhibition of Ia afferents, whereas the soleus V-wave was used to test for changes in both presynaptic inhibition of Ia afferents and supraspinal inputs to the motoneurone pool. H-reflexes, V-waves, supramaximal M-waves, and twitches were evoked as the foot was moved at 5°/s through an angle of 90° during passive ankle rotations (passive H-relexes and M-waves) and during maximal voluntary concentric and eccentric plantar flexions [maximal voluntary contraction (MVC) H-reflexes, M-waves, and V-waves]. Training induced significant improvements in plantar flexor strength and voluntary activation during both concentric and eccentric maximal voluntary actions. Soleus passive and MVC H-to-M ratios remained unchanged after training, whereas the soleus V-to-M ratio was increased during both concentric and eccentric contractions after training. No changes were found in the control group for any of the parameters. The enhanced voluntary strength could be attributed partly to an increase in voluntary activation induced by eccentric training. Since the passive and MVC H-to-M ratios remained unchanged, the increase in activation is probably not due to decreased presynaptic inhibition. The increased V-to-M ratio for both action types indicates that increased voluntary drive from supraspinal centers and/or modulation in afferents other than Ia afferents may have contributed to such an increase in voluntary activation.
Collapse
Affiliation(s)
- M. M. Nordlund Ekblom
- Biomechanics and Motor Control Laboratory, Department of Neuroscience, Karolinska Institutet, and The Swedish School of Sport and Health Sciences, Stockholm, Sweden
| |
Collapse
|
12
|
Vleggeert-Lankamp CLAM. The role of evaluation methods in the assessment of peripheral nerve regeneration through synthetic conduits: a systematic review. J Neurosurg 2007; 107:1168-89. [DOI: 10.3171/jns-07/12/1168] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object
A number of evaluation methods that are currently used to compare peripheral nerve regeneration with alternative repair methods and to judge the outcome of a new paradigm were hypothesized to lack resolving power. This would too often lead to the conclusion that the outcome of a new paradigm could not be discerned from the outcome of the current gold standard, the autograft. As a consequence, the new paradigm would incorrectly be judged as successful.
Methods
An overview of the methods that were used to evaluate peripheral nerve regeneration after grafting of the rat sciatic nerve was prepared. All articles that were published between January 1975 and December 2004 and concerned grafting of the rat sciatic nerve (minimum graft length 5 mm) and in which the experimental method was compared with an untreated or another grafted nerve were included. The author scored the presence of statistically significant differences between paradigms.
Results
Evaluation of nerve fiber count, nerve fiber density, N-ratio, nerve histological success ratio, compound muscle action potential, muscle weight, and muscle tetanic force are methods that were demonstrated to have resolving power.
Conclusions
A number of evaluation methods are not suitable to demonstrate a significant difference between experimental paradigms in peripheral nerve regeneration. It is preferable to apply a combination of evaluation methods with resolving power to evaluate nerve regeneration properly.
Collapse
|
13
|
Oya T, Cresswell AG. Evidence for reduced efficacy of the Ia-pathway during shortening plantar flexions with increasing effort. Exp Brain Res 2007; 185:699-707. [DOI: 10.1007/s00221-007-1198-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Accepted: 10/23/2007] [Indexed: 10/22/2022]
|
14
|
Brink-Elfegoun T, Holmberg HC, Ekblom MN, Ekblom B. Neuromuscular and circulatory adaptation during combined arm and leg exercise with different maximal work loads. Eur J Appl Physiol 2007; 101:603-11. [PMID: 17690901 DOI: 10.1007/s00421-007-0526-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2007] [Indexed: 10/23/2022]
Abstract
Cardiopulmonary kinetics and electromyographic activity (EMG) during exhausting exercise were measured in 8 males performing three maximal combined arm+leg exercises (cA+L). These exercises were performed at different rates of work (mean+/-SD; 373+/-48, 429+/-55 and 521+/-102 W) leading to different average exercise work times in all tests and subjects. VO2 reached a plateau versus work rate in every maximal cA+L exercise (range 6 min 33 s to 3 min 13 s). The three different exercise protocols gave a maximal oxygen consumption (VO2MAX) of 4.67+/-0.57, 4.58+/-0.52 and 4.66+/-0.53 l min(-1) (P=0.081), and a maximal heart rate (HRmax) of 190+/-6, 189+/-4 and 189+/-6 beats min(-1) (P=0.673), respectively. Root mean square EMG (EMGRMS) of the vastus lateralis and the triceps brachii muscles increased with increasing rate of work and time in all three cA+L protocols. The study demonstrates that despite different maximal rates of work, leading to different times to exhaustion, the circulatory adaptation to maximal exercise was almost identical in all three protocols that led to a VO2 plateau. The EMG(RMS) data showed increased muscle recruitment with increasing work rate, even though the HRmax and VO2MAX was the same in all three cA+L protocols. In conclusion, these findings do not support the theory of the existence of a central governor (CG) that regulates circulation and neuronal output of skeletal muscles during maximal exercise.
Collapse
|
15
|
Abstract
Whole-body vibration (WBV) has been suggested to have a beneficial effect on muscle strength. Manufacturers of vibration platforms promote WBV as an effective alternative or complement to resistance training. This study aimed to review systematically the current (August 2005) scientific support for effects of WBV on muscle strength and jump performance. MEDLINE and SPORT DISCUS were searched for the word vibration in combination with strength or training. Twelve articles were included in the final analysis. In four of the five studies that used an adequate design with a control group performing the same exercises as the WBV group, no difference in performance improvement was found between groups, suggesting no or only minor additional effects of WBV as such. Proposed neural mechanisms are discussed.
Collapse
Affiliation(s)
- M M Nordlund
- The Swedish School of Sport and Health Sciences (GIH), Stockholm, Sweden.
| | | |
Collapse
|
16
|
Duclay J, Martin A. Evoked H-Reflex and V-Wave Responses During Maximal Isometric, Concentric, and Eccentric Muscle Contraction. J Neurophysiol 2005; 94:3555-62. [PMID: 16049144 DOI: 10.1152/jn.00348.2005] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study was designed to investigate the modulations of H-reflex and V-wave responses during passive and maximal active dynamic actions. Experiments were performed on 16 healthy males [age: 24 ± 4 (SD) yr]. Maximal H-reflexes ( Hmax) and M-waves ( MmaxR) were evoked at the same muscle length during passive isometric, shortening and lengthening actions and during maximal voluntary isometric, concentric, and eccentric plantar-flexion. In all contraction types, supra-maximal stimulus intensity was used to evoke the superimposed maximal M wave ( MmaxA) and V wave ( V) of the soleus muscle. At rest, the Hmax/ MmaxR ratio was significantly reduced during lengthening with respect to isometric and shortening actions ( P < 0.05). For each action type, the ratio between H reflex superimposed to the contraction ( Hsup) and MmaxA was not different from Hmax/ MmaxR ratio. When plantar flexors were maximally voluntary activated, the Hsup/ MmaxA ratio was still lower during eccentric contraction as compared with isometric and concentric efforts (0.33 ± 0.03 vs. 0.47 ± 0.02 and 0.50 ± 0.03, P < 0.001), whereas V/ MmaxA ratios were similar for all contraction types (isometric 0.26 ± 0.02; concentric 0.23 ± 0.03, and eccentric 0.24 ± 0.02; P > 0.05). The V/ MmaxA ratio was significantly lower than Hsup/ MmaxA during isometric and concentric MVC ( P < 0.001). No difference was observed between V/ MmaxA and Hsup/ MmaxA ratios during eccentric efforts. The H-reflex modulations, present during lengthening actions, were mainly attributed to presynaptic inhibition of Ia afferents and to homosynaptic postactivation depression. Results on V wave and H reflex suggest that during eccentric MVC, the spinal loop is specifically modulated by the supra-spinal centers and/or neural mechanisms at spinal level.
Collapse
Affiliation(s)
- Julien Duclay
- INSERM/ERM 207 Motricité-Plasticité, Faculté des Sciences du Sport, BP 27 877-21 078 Dijon Cedex, France.
| | | |
Collapse
|