1
|
Smith PA. K + Channels in Primary Afferents and Their Role in Nerve Injury-Induced Pain. Front Cell Neurosci 2020; 14:566418. [PMID: 33093824 PMCID: PMC7528628 DOI: 10.3389/fncel.2020.566418] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
Sensory abnormalities generated by nerve injury, peripheral neuropathy or disease are often expressed as neuropathic pain. This type of pain is frequently resistant to therapeutic intervention and may be intractable. Numerous studies have revealed the importance of enduring increases in primary afferent excitability and persistent spontaneous activity in the onset and maintenance of peripherally induced neuropathic pain. Some of this activity results from modulation, increased activity and /or expression of voltage-gated Na+ channels and hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. K+ channels expressed in dorsal root ganglia (DRG) include delayed rectifiers (Kv1.1, 1.2), A-channels (Kv1.4, 3.3, 3.4, 4.1, 4.2, and 4.3), KCNQ or M-channels (Kv7.2, 7.3, 7.4, and 7.5), ATP-sensitive channels (KIR6.2), Ca2+-activated K+ channels (KCa1.1, 2.1, 2.2, 2.3, and 3.1), Na+-activated K+ channels (KCa4.1 and 4.2) and two pore domain leak channels (K2p; TWIK related channels). Function of all K+ channel types is reduced via a multiplicity of processes leading to altered expression and/or post-translational modification. This also increases excitability of DRG cell bodies and nociceptive free nerve endings, alters axonal conduction and increases neurotransmitter release from primary afferent terminals in the spinal dorsal horn. Correlation of these cellular changes with behavioral studies provides almost indisputable evidence for K+ channel dysfunction in the onset and maintenance of neuropathic pain. This idea is underlined by the observation that selective impairment of just one subtype of DRG K+ channel can produce signs of pain in vivo. Whilst it is established that various mediators, including cytokines and growth factors bring about injury-induced changes in DRG function and excitability, evidence presently available points to a seminal role for interleukin 1β (IL-1β) in control of K+ channel function. Despite the current state of knowledge, attempts to target K+ channels for therapeutic pain management have met with limited success. This situation may change with the advent of personalized medicine. Identification of specific sensory abnormalities and genetic profiling of individual patients may predict therapeutic benefit of K+ channel activators.
Collapse
Affiliation(s)
- Peter A. Smith
- Department of Pharmacology and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
2
|
Shin DH, Lin H, Zheng H, Kim KS, Kim JY, Chun YS, Park JW, Nam JH, Kim WK, Zhang YH, Kim SJ. HIF-1α-mediated upregulation of TASK-2 K⁺ channels augments Ca²⁺ signaling in mouse B cells under hypoxia. THE JOURNAL OF IMMUNOLOGY 2014; 193:4924-33. [PMID: 25305321 DOI: 10.4049/jimmunol.1301829] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The general consensus is that immune cells are exposed to physiological hypoxia in vivo (PhyO2, 2-5% P(O2)). However, functional studies of B cells in hypoxic conditions are sparse. Recently, we reported the expression in mouse B cells of TASK-2, a member of pH-sensitive two-pore domain K(+) channels with background activity. In this study, we investigated the response of K(+) channels to sustained PhyO2 (sustained hypoxia [SH], 3% P(O2) for 24 h) in WEHI-231 mouse B cells. SH induced voltage-independent background K(+) conductance (SH-K(bg)) and hyperpolarized the membrane potential. The pH sensitivity and the single-channel conductance of SH-K(bg) were consistent with those of TASK-2. Immunoblotting assay results showed that SH significantly increased plasma membrane expressions of TASK-2. Conversely, SH failed to induce any current following small interfering (si)TASK-2 transfection. Similar hypoxic upregulation of TASK-2 was also observed in splenic primary B cells. Mechanistically, upregulation of TASK-2 by SH was prevented by si hypoxia-inducible factor-1α (HIF-1α) transfection or by YC-1, a pharmacological HIF-1α inhibitor. In addition, TASK-2 current was increased in WEHI-231 cells overexpressed with O2-resistant HIF-1α. Importantly, [Ca(2+)]c increment in response to BCR stimulation was significantly higher in SH-exposed B cells, which was abolished by high K(+)-induced depolarization or by siTASK-2 transfection. The data demonstrate that TASK-2 is upregulated under hypoxia via HIF-1α-dependent manner in B cells. This is functionally important in maintaining the negative membrane potential and providing electrical driving force to control Ca(2+) influx.
Collapse
Affiliation(s)
- Dong Hoon Shin
- Department of Physiology, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea; Division of Natural Medical Sciences, College of Health Science, Chosun University, Gwangju 501-759, Republic of Korea
| | - Haiyue Lin
- Department of Physiology, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | - Haifeng Zheng
- Department of Physiology, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | - Kyung Su Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | - Jin Young Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | - Yang Sook Chun
- Department of Physiology, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea; Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | - Jong Wan Park
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea; Department of Pharmacology, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea; and
| | - Joo Hyun Nam
- Channelopathy Research Center, Dongguk University College of Medicine, Goyang 410-773, Republic of Korea
| | - Woo Kyung Kim
- Channelopathy Research Center, Dongguk University College of Medicine, Goyang 410-773, Republic of Korea
| | - Yin Hua Zhang
- Department of Physiology, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea; Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | - Sung Joon Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea; Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea;
| |
Collapse
|
3
|
Manteniotis S, Lehmann R, Flegel C, Vogel F, Hofreuter A, Schreiner BSP, Altmüller J, Becker C, Schöbel N, Hatt H, Gisselmann G. Comprehensive RNA-Seq expression analysis of sensory ganglia with a focus on ion channels and GPCRs in Trigeminal ganglia. PLoS One 2013; 8:e79523. [PMID: 24260241 PMCID: PMC3832644 DOI: 10.1371/journal.pone.0079523] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 10/02/2013] [Indexed: 12/14/2022] Open
Abstract
The specific functions of sensory systems depend on the tissue-specific expression of genes that code for molecular sensor proteins that are necessary for stimulus detection and membrane signaling. Using the Next Generation Sequencing technique (RNA-Seq), we analyzed the complete transcriptome of the trigeminal ganglia (TG) and dorsal root ganglia (DRG) of adult mice. Focusing on genes with an expression level higher than 1 FPKM (fragments per kilobase of transcript per million mapped reads), we detected the expression of 12984 genes in the TG and 13195 in the DRG. To analyze the specific gene expression patterns of the peripheral neuronal tissues, we compared their gene expression profiles with that of the liver, brain, olfactory epithelium, and skeletal muscle. The transcriptome data of the TG and DRG were scanned for virtually all known G-protein-coupled receptors (GPCRs) as well as for ion channels. The expression profile was ranked with regard to the level and specificity for the TG. In total, we detected 106 non-olfactory GPCRs and 33 ion channels that had not been previously described as expressed in the TG. To validate the RNA-Seq data, in situ hybridization experiments were performed for several of the newly detected transcripts. To identify differences in expression profiles between the sensory ganglia, the RNA-Seq data of the TG and DRG were compared. Among the differentially expressed genes (> 1 FPKM), 65 and 117 were expressed at least 10-fold higher in the TG and DRG, respectively. Our transcriptome analysis allows a comprehensive overview of all ion channels and G protein-coupled receptors that are expressed in trigeminal ganglia and provides additional approaches for the investigation of trigeminal sensing as well as for the physiological and pathophysiological mechanisms of pain.
Collapse
|
4
|
Hayashi M, Novak I. Molecular basis of potassium channels in pancreatic duct epithelial cells. Channels (Austin) 2013; 7:432-41. [PMID: 23962792 PMCID: PMC4042478 DOI: 10.4161/chan.26100] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Potassium channels regulate excitability, epithelial ion transport, proliferation, and apoptosis. In pancreatic ducts, K+ channels hyperpolarize the membrane potential and provide the driving force for anion secretion. This review focuses on the molecular candidates of functional K+ channels in pancreatic duct cells, including KCNN4 (KCa3.1), KCNMA1 (KCa1.1), KCNQ1 (Kv7.1), KCNH2 (Kv11.1), KCNH5 (Kv10.2), KCNT1 (KCa4.1), KCNT2 (KCa4.2), and KCNK5 (K2P5.1). We will give an overview of K+ channels with respect to their electrophysiological and pharmacological characteristics and regulation, which we know from other cell types, preferably in epithelia, and, where known, their identification and functions in pancreatic ducts and in adenocarcinoma cells. We conclude by pointing out some outstanding questions and future directions in pancreatic K+ channel research with respect to the physiology of secretion and pancreatic pathologies, including pancreatitis, cystic fibrosis, and cancer, in which the dysregulation or altered expression of K+ channels may be of importance.
Collapse
Affiliation(s)
- Mikio Hayashi
- Department of Biology; University of Copenhagen; Copenhagen, Denmark
| | - Ivana Novak
- Department of Biology; University of Copenhagen; Copenhagen, Denmark
| |
Collapse
|
5
|
Kim GT, Cho YW, Tak HM, Lee JS, Kim EJ, Han J, Kang D. Age-related changes in two-pore domain acid-sensitive K⁺ channel expression in rat dorsal root ganglion neurons. Clin Exp Pharmacol Physiol 2012; 39:43-8. [PMID: 22017174 DOI: 10.1111/j.1440-1681.2011.05634.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1. Two-pore domain K⁺ (K(2P) ) channel expression influences brain development. The K(2P) channels, including two-pore domain acid-sensitive K⁺ (TASK) channels, contribute to the setting of the resting membrane potential of neurons. In addition to neurons in the brain, dorsal root ganglion (DRG) neurons also express K(2P) channels. The aim of the present study was to identify postnatal changes in the expression of TASK channels in DRG neurons. 2. Expression of TASK channels (TASK-1, TASK-2 and TASK-3) was compared between neonatal (postnatal Day (P) 1 or P2) and adult (P120) rat DRG using semiquantitative polymerase chain reaction, western blot analysis, immunostaining and the patch-clamp technique. 3. In adult (P120) rat DRG, expression of TASK-2 mRNA and protein was downregulated, whereas TASK-3 mRNA and protein expression was upregulated. There were no consistent changes in TASK-1 mRNA and protein expression. Single-channel recordings showed very low TASK-2- and TASK-3-like channel expression in P1-P2 DRG neurons (∼10% in TASK-2 and ∼3% in TASK-3). In P120 DRG, there was a reduction in the detection of TASK-2-like channels, whereas the detection of TASK-3-like channels increased. 4. These results show that TASK-2 and TASK-3 mRNA and protein expression undergoes age-related changes in DRG neurons, indicating that TASK-2 and TASK-3 channels are likely to contribute to the setting of the resting membrane potential of DRG neurons in neonates and adults, separately or together, during DRG development.
Collapse
Affiliation(s)
- Gyu-Tae Kim
- Medical Research Centre for Neural Dysfunction, Department of Physiology and Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Korea
| | | | | | | | | | | | | |
Collapse
|
6
|
Leak K⁺ channel mRNAs in dorsal root ganglia: relation to inflammation and spontaneous pain behaviour. Mol Cell Neurosci 2012; 49:375-86. [PMID: 22273507 PMCID: PMC3334831 DOI: 10.1016/j.mcn.2012.01.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 01/02/2012] [Accepted: 01/04/2012] [Indexed: 02/05/2023] Open
Abstract
Two pore domain potassium (K2P) channels (KCNKx.x) cause K + leak currents and are major contributors to resting membrane potential. Their roles in dorsal root ganglion (DRG) neurons normally, and in pathological pain models, are poorly understood. Therefore, we examined mRNA levels for 10 K2P channels in L4 and L5 rat DRGs normally, and 1 day and 4 days after unilateral cutaneous inflammation, induced by intradermal complete Freund's adjuvant (CFA) injections. Spontaneous foot lifting (SFL) duration (spontaneous pain behaviour) was measured in 1 day and 4 day rats < 1 h before DRG harvest. mRNA levels for KCNK channels and Kv1.4 relative to GAPDH (n = 4–6 rats/group) were determined with real-time RT-PCR. This study is the first to demonstrate expression of THIK1, THIK2 and TWIK2 mRNA in DRGs. Abundance in normal DRGs was, in descending order:
Kv1.4 > TRESK(KCNK18) > TRAAK(KCNK4) > TREK2(KCNK10) = TWIK2(KCNK6) > TREK1 (KCNK2) = THIK2(KCNK12) > TASK1(KCNK3) > TASK2(KCNK5) > THIK1(KCNK13) = TASK3(KCNK9).
During inflammation, the main differences from normal in DRG mRNA levels were bilateral, suggesting systemic regulation, although some channels showed evidence of ipsilateral modulation. By 1 day, bilateral K2P mRNA levels had decreased (THIK1) or increased (TASK1, THIK2) but by 4 days they were consistently decreased (TASK2, TASK3) or tended to decrease (excluding TRAAK). The decreased TASK2 mRNA was mirrored by decreased protein (TASK2-immunoreactivity) at 4 days. Ipsilateral mRNA levels at 4 days compared with 1 day were lower (TRESK, TASK1, TASK3, TASK2 and THIK2) or higher (THIK1). Ipsilateral SFL duration during inflammation was positively correlated with ipsilateral TASK1 and TASK3 mRNAs, and contralateral TASK1, TRESK and TASK2 mRNAs. Thus changes in K2P mRNA levels occurred during inflammation and for 4 K2P channels were associated with spontaneous pain behaviour (SFL). K2P channels and their altered expression are therefore associated with inflammation-induced pain.
Collapse
|
7
|
Olschewski A, Schnoebel-Ehehalt R, Li Y, Tang B, Bräu ME, Wolff M. Mexiletine and Lidocaine Suppress the Excitability of Dorsal Horn Neurons. Anesth Analg 2009; 109:258-64. [DOI: 10.1213/ane.0b013e3181a3d5d8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
8
|
Yamamoto S, Kanno T, Yamada K, Yasuda Y, Nishizaki T. Dual regulation of heat-activated K+ channel in rat DRG neurons via α1 and β adrenergic receptors. Life Sci 2009; 85:167-71. [DOI: 10.1016/j.lfs.2009.05.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Revised: 05/07/2009] [Accepted: 05/14/2009] [Indexed: 11/15/2022]
|
9
|
Cohen A, Sagron R, Somech E, Segal-Hayoun Y, Zilberberg N. Pain-associated signals, acidosis and lysophosphatidic acid, modulate the neuronal K(2P)2.1 channel. Mol Cell Neurosci 2008; 40:382-9. [PMID: 19130888 DOI: 10.1016/j.mcn.2008.12.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Revised: 11/28/2008] [Accepted: 12/11/2008] [Indexed: 11/27/2022] Open
Abstract
Pain is a physiological state promoting protective responses to harmful episodes. However, pain can become pathophysiological and become a chronic disruptive condition, damaging quality of life. The mammalian K(2P)2.1 (KCNK2, TREK-1) channel, expressed in sensory neurons of the dorsal root ganglia, was previously identified as a polymodal molecular sensor involved in pain perception. Here, we report that two pain-associated signals, external acidosis and lysophosphatidic acid (LPA), known to rise during injury, inflammation and cancer, profoundly down-modulate human K(2P)2.1 activity. The pH regulatory effect was mediated by activation of proton-sensitive G-protein coupled receptors and phospholipase C. Physiological concentrations of LPA overcame the effects of known K(2P)2.1 activators, such as arachidonic acid, lysophosphatidylcholine and temperature, by activating cell-surface receptors stimulating the G(q) pathway. Furthermore, we identified three K(2P)2.1 carboxy-terminal residues that mediate both pH and LPA regulatory effects. Our results highlight the important role of K(2P)2.1 channels as receptors for mediators known to cause nociception.
Collapse
Affiliation(s)
- Asi Cohen
- Department of Life Sciences, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | | | | | | |
Collapse
|
10
|
Jang I, La JH, Kim GT, Lee JS, Kim EJ, Lee ES, Kim SJ, Seo JM, Ahn SH, Park JY, Hong SG, Kang D, Han J. Single-Channel Recording of TASK-3-like K Channel and Up-Regulation of TASK-3 mRNA Expression after Spinal Cord Injury in Rat Dorsal Root Ganglion Neurons. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2008; 12:245-51. [PMID: 19967063 DOI: 10.4196/kjpp.2008.12.5.245] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Single-channel recordings of TASK-1 and TASK-3, members of two-pore domain K(+) channel family, have not yet been reported in dorsal root ganglion (DRG) neurons, even though their mRNA and activity in whole-cell currents have been detected in these neurons. Here, we report single-channel kinetics of the TASK-3-like K(+) channel in DRG neurons and up-regulation of TASK-3 mRNA expression in tissues isolated from animals with spinal cord injury (SCI). In DRG neurons, the single-channel conductance of TASK-3-like K(+) channel was 33.0+/-0.1 pS at -60 mV, and TASK-3 activity fell by 65+/-5% when the extracellular pH was changed from 7.3 to 6.3, indicating that the DRG K(+) channel is similar to cloned TASK-3 channel. TASK-3 mRNA and protein levels in brain, spinal cord, and DRG were significantly higher in injured animals than in sham-operated ones. These results indicate that TASK-3 channels are expressed and functional in DRG neurons and the expression level is up-regulated following SCI, and suggest that TASK-3 channel could act as a potential background K(+) channel under SCI-induced acidic condition.
Collapse
Affiliation(s)
- Inseok Jang
- Department of Thoracic Surgery, College of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju 660-751, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Cohen A, Ben-Abu Y, Hen S, Zilberberg N. A Novel Mechanism for Human K2P2.1 Channel Gating. J Biol Chem 2008; 283:19448-55. [DOI: 10.1074/jbc.m801273200] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
12
|
Kang D, Kim SH, Hwang EM, Kwon OS, Yang HY, Kim ES, Choi TH, Park JY, Hong SG, Han J. Expression of thermosensitive two-pore domain K+ channels in human keratinocytes cell line HaCaT cells. Exp Dermatol 2008; 16:1016-22. [PMID: 18031461 DOI: 10.1111/j.1600-0625.2007.00626.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent studies have shown that keratinocytes can sense temperature via thermo-transient receptor potential (TRP) channels. It is not known whether other thermosensitive ion channels such as TREK-1, TREK-2 and TRAAK (TREKs/TRAAK) that are members of the two-pore domain K(+) (K(2P)) channel family are expressed in human keratinocytes. Here, we identified the expression of TREKs/TRAAK in human keratinocytes-derived cell line HaCaT cells using RT-PCR, immunocytochemistry, Western blot analysis and patch-clamp technique. RT-PCR showed that all six K(2P) channels tested (TASK-1, TASK-3, TREK-1, TREK-2, TRAAK and TASK-2) were expressed in HaCaT cells, as well as in skin and dorsal root ganglion (DRG) of rat. The expression of TREKs/TRAAK mRNA identified by RT-PCR was further studied at the protein level. Using anti-TREK-1, -TREK-2 and -TRAAK, bands of approximately 46, approximately 60 and approximately 43 kDa, respectively, were observed at plasma membrane of HaCaT cells. Immunostaining also showed that TREK-1, TREK-2 and TRAAK were expressed in all area of cells including plasma membrane. Whole-cell K(+) currents recorded from HaCaT cells were activated by arachidonic acid and heat. These results suggest that TREKs/TRAAK channels could act as thermosensors in human keratinocytes.
Collapse
Affiliation(s)
- Dawon Kang
- Medical Research Center for Neural Dysfunction and Department of Physiology, College of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|