1
|
Ceballos-Villegas ME, Saldaña Mena JJ, Gutierrez Lozano AL, Sepúlveda-Cañamar FJ, Huidobro N, Manjarrez E, Lomeli J. The Complexity of H-wave Amplitude Fluctuations and Their Bilateral Cross-Covariance Are Modified According to the Previous Fitness History of Young Subjects under Track Training. Front Hum Neurosci 2017; 11:530. [PMID: 29163107 PMCID: PMC5671983 DOI: 10.3389/fnhum.2017.00530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 10/18/2017] [Indexed: 12/28/2022] Open
Abstract
The Hoffmann reflex (H-wave) is produced by alpha-motoneuron activation in the spinal cord. A feature of this electromyography response is that it exhibits fluctuations in amplitude even during repetitive stimulation with the same intensity of current. We herein explore the hypothesis that physical training induces plastic changes in the motor system. Such changes are evaluated with the fractal dimension (FD) analysis of the H-wave amplitude-fluctuations (H-wave FD) and the cross-covariance (CCV) between the bilateral H-wave amplitudes. The aim of this study was to compare the H-wave FD as well as the CCV before and after track training in sedentary individuals and athletes. The training modality in all subjects consisted of running three times per week (for 13 weeks) in a concrete road of 5 km. Given the different physical condition of sedentary vs. athletes, the running time between sedentary and athletes was different. After training, the FD was significantly increased in sedentary individuals but significantly reduced in athletes, although there were no changes in spinal excitability in either group of subjects. Moreover, the CCV between bilateral H-waves exhibited a significant increase in athletes but not in sedentary individuals. These differential changes in the FD and CCV indicate that the plastic changes in the complexity of the H-wave amplitude fluctuations as well as the synaptic inputs to the Ia-motoneuron systems of both legs were correlated to the previous fitness history of the subjects. Furthermore, these findings demonstrate that the FD and CCV can be employed as indexes to study plastic changes in the human motor system.
Collapse
Affiliation(s)
- Maria E Ceballos-Villegas
- Sección de Posgrado e Investigación, Laboratorio de Neurofisiología Humana y Control Motor, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Juan J Saldaña Mena
- Escuela de Quiropráctica, Universidad Estatal del Valle de Ecatepec, Ecatepec de Morelos, Mexico
| | - Ana L Gutierrez Lozano
- Sección de Posgrado e Investigación, Laboratorio de Neurofisiología Humana y Control Motor, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | | | - Nayeli Huidobro
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Elias Manjarrez
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Joel Lomeli
- Sección de Posgrado e Investigación, Laboratorio de Neurofisiología Humana y Control Motor, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
2
|
Escobar-Corona C, Torres-Castillo S, Rodríguez-Torres EE, Segura-Alegría B, Jiménez-Estrada I, Quiroz-González S. Electroacupuncture improves gait locomotion, H-reflex and ventral root potentials of spinal compression injured rats. Brain Res Bull 2017; 131:7-17. [PMID: 28274815 DOI: 10.1016/j.brainresbull.2017.02.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 02/07/2017] [Accepted: 02/23/2017] [Indexed: 02/06/2023]
Abstract
This study explored the effect of electroacupuncture stimulation (EA) on alterations in the Hoffman reflex (H-reflex) response and gait locomotion provoked by spinal cord injury (SCI) in the rat. A compression lesion of the spinal cord was evoked by insufflating a Fogarty balloon located in the epidural space at the T8-9 spinal level of adult Wistar male rats (200-250 gr; n=60). In different groups of SCI rats, EA (frequencies: 2, 50 and 100Hz) was applied simultaneously to Huantiao (GB30), Yinmen (BL37), Jizhong (GV6) and Zhiyang (GV9) acupoints from the third post-injury day until the experimental session. At 1, 2, 3 and 4 post-injury weeks, the BBB scores of the SCI group of rats treated with EA at 50Hz showed a gradual but greater enhancement of locomotor activity than the other groups of rats. Unrestrained gait kinematic analysis of SCI rats treated with EA-50Hz stimulation showed a significant improvement in stride duration, length and speed (p<0.05), whereas a discrete recovery of gait locomotion was observed in the other groups of animals. After four post-injury weeks, the H-reflex amplitude and H-reflex/M wave amplitude ratio obtained in SCI rats had a noticeable enhancement (217%) compared to sham rats (n=10). Meanwhile, SCI rats treated with EA at 50Hz manifested a decreased facilitation of the H-reflex amplitude and H/M amplitude ratio (154%) and a reduced frequency-dependent amplitude depression of the H-reflex (66%). In addition, 50 Hz-EA treatment induced a recovery of the presynaptic depression of the Gs-VRP evoked by PBSt conditioning stimulation in the SCI rat (63.2±8.1%; n=9). In concordance with the latter, it could be suggested that 50 Hz-EA stimulation reduced the hyper-excitability of motoneurons and provokes a partial improvement of the locomotive performance and H reflex responses by a possible recovery of presynaptic mechanisms in the spinal cord of experimentally injured rats.
Collapse
Affiliation(s)
- Carlos Escobar-Corona
- Department of Acupuncture and Rehabilitation, State University of Ecatepec Valley, Av. Central s/n, Esq. Leona Vicario, Col. Valle de Anáhuac, Secc. "A", C.P. 55210, Ecatepec Estado de Mexico, Mexico.
| | - Sergio Torres-Castillo
- Department of Acupuncture and Rehabilitation, State University of Ecatepec Valley, Av. Central s/n, Esq. Leona Vicario, Col. Valle de Anáhuac, Secc. "A", C.P. 55210, Ecatepec Estado de Mexico, Mexico.
| | | | | | - Ismael Jiménez-Estrada
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, AP. 14-740, Mexico City, D.F. CP 07000, Mexico.
| | - Salvador Quiroz-González
- Department of Acupuncture and Rehabilitation, State University of Ecatepec Valley, Av. Central s/n, Esq. Leona Vicario, Col. Valle de Anáhuac, Secc. "A", C.P. 55210, Ecatepec Estado de Mexico, Mexico.
| |
Collapse
|