1
|
Ding S, Abudupataer M, Zhou Z, Chen J, Li H, Xu L, Zhang W, Zhang S, Zou Y, Hong T, Wang TC, Yang X, Ge J. Histamine deficiency aggravates cardiac injury through miR-206/216b-Atg13 axis-mediated autophagic-dependant apoptosis. Cell Death Dis 2018; 9:694. [PMID: 29880830 PMCID: PMC5992227 DOI: 10.1038/s41419-018-0723-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 04/26/2018] [Accepted: 05/07/2018] [Indexed: 01/22/2023]
Abstract
Histamine is a widely distributed biogenic amine involved in the regulation of an array of biological processes. Serum histamine level is markedly elevated in the early stages of acute myocardial infarction, whereas the role it plays remains unclear. Histidine decarboxylase (HDC) is the unique enzyme responsible for histamine production, and cardiac injury is significantly aggravated in HDC knockout mice (HDC−/−), in which histamine is deficient. We also observed that autophagy was highly activated in cardiomyocytes of HDC−/− mice post acute myocardial infarction (AMI), which was abolished by compensation of exogenous histamine. The in vivo and in vitro results showed that acting through histamine 1 receptor, histamine increased miR-206 and miR-216b, which worked in concert to target to Atg13, resulting in the reduction of autophagy activation under hypoxia and AMI condition. Further study revealed that Atg13 interacted with FADD to promote the activation of caspase-8 and cell apoptosis. Taken together, these data unveil a novel intracellular signaling pathway involved in histamine regulating myocardial autophagy and apoptosis under hypoxia and AMI condition, which might help to more comprehensively evaluate the usage of histamine receptor antagonists and to develop new therapeutic targets for myocardial infarction.
Collapse
Affiliation(s)
- Suling Ding
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | | | - Zheliang Zhou
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jinmiao Chen
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Hui Li
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Lili Xu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Weiwei Zhang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Shuning Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Tao Hong
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Timothy C Wang
- Department of Medicine and Irving Cancer Research Center, Columbia University, New York, NY, 10032, USA
| | - Xiangdong Yang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| | - Junbo Ge
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China. .,Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
3
|
Kaur I, Kumar A, Jaggi AS, Singh N. Evidence for the role of histaminergic pathways in neuroprotective mechanism of ischemic postconditioning in mice. Fundam Clin Pharmacol 2017; 31:456-470. [DOI: 10.1111/fcp.12275] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 01/12/2017] [Accepted: 02/02/2017] [Indexed: 01/04/2023]
Affiliation(s)
- Indresh Kaur
- Pharmacology Division; Department of Pharmaceutical Sciences and Drug Research; Faculty of Medicine; Punjabi University; Patiala 147002 Punjab India
| | - Amit Kumar
- Pharmacology Division; Department of Pharmaceutical Sciences and Drug Research; Faculty of Medicine; Punjabi University; Patiala 147002 Punjab India
| | - Amteshwar S. Jaggi
- Pharmacology Division; Department of Pharmaceutical Sciences and Drug Research; Faculty of Medicine; Punjabi University; Patiala 147002 Punjab India
| | - Nirmal Singh
- Pharmacology Division; Department of Pharmaceutical Sciences and Drug Research; Faculty of Medicine; Punjabi University; Patiala 147002 Punjab India
| |
Collapse
|
4
|
Rivers-Auty J, Ashton JC. Neuroinflammation in ischemic brain injury as an adaptive process. Med Hypotheses 2013; 82:151-8. [PMID: 24345344 DOI: 10.1016/j.mehy.2013.11.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 11/12/2013] [Accepted: 11/19/2013] [Indexed: 12/12/2022]
Abstract
Cerebral ischaemia triggers various physiological processes, some of which have been considered deleterious and others beneficial. These processes have been characterized in one influential model as being part of a transition from injury to repair processes. We argue that another important distinction is between dysregulated and regulated processes. Although intervening in the course of dysregulated processes may be neuroprotective, this is unlikely to be true for regulated processes. This is because from an evolutionary perspective, regulated complex processes that are conserved across many species are likely to be adaptive and provide a survival advantage. We argue that the neuroinflammatory cascade is an adaptive process in this sense, and contrast this with a currently popular theory which we term the maladaptive immune response theory. We review the evidence from clinical and preclinical pharmacology with respect to this theory, and deduced that the evidence is inconclusive at best, and probably falsifies the theory. We argue that this is why there are no anti-inflammatory treatments for cerebral ischaemia, despite 30 years of seemingly promising preclinical results. We therefore propose an opposing theory, which we call the adaptive immune response hypothesis.
Collapse
Affiliation(s)
- Jack Rivers-Auty
- Department of Pharmacology and Toxicology, School of Medical Sciences, University of Otago, P.O. Box 913, Dunedin, New Zealand
| | - John C Ashton
- Department of Pharmacology and Toxicology, School of Medical Sciences, University of Otago, P.O. Box 913, Dunedin, New Zealand.
| |
Collapse
|
5
|
Silver R, Curley JP. Mast cells on the mind: new insights and opportunities. Trends Neurosci 2013; 36:513-21. [PMID: 23845731 DOI: 10.1016/j.tins.2013.06.001] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 05/13/2013] [Accepted: 06/06/2013] [Indexed: 12/16/2022]
Abstract
Mast cells (MCs) are both sensors and effectors in communication among nervous, vascular, and immune systems. In the brain, they reside on the brain side of the blood-brain barrier (BBB), and interact with neurons, glia, blood vessels, and other hematopoietic cells via their neuroactive prestored and newly synthesized chemicals. They are first responders, acting as catalysts and recruiters to initiate, amplify, and prolong other immune and nervous responses upon activation. MCs both promote deleterious outcomes in brain function and contribute to normative behavioral functioning, particularly cognition and emotionality. New experimental tools enabling isolation of brain MCs, manipulation of MCs or their products, and measurement of MC products in very small brain volumes present unprecedented opportunities for examining these enigmatic cells.
Collapse
Affiliation(s)
- Rae Silver
- Department of Psychology, Barnard College, 3009 Broadway, New York, NY 10027, USA; Department of Psychology, Columbia University, 1190 Amsterdam Avenue, New York, NY 10027, USA; Department of Pathology and Cell Biology, Columbia University Medical Center, 630 West 168th Street, New York, NY 10032, USA.
| | | |
Collapse
|
6
|
Hu WW, Chen Z. Role of histamine and its receptors in cerebral ischemia. ACS Chem Neurosci 2012; 3:238-47. [PMID: 22860191 DOI: 10.1021/cn200126p] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 02/10/2012] [Indexed: 12/25/2022] Open
Abstract
Histamine is recognized as a neurotransmitter or neuromodulator in the brain, and it plays a major role in the pathogenic progression after cerebral ischemia. Extracellular histamine increases gradually after ischemia, and this may come from histaminergic neurons or mast cells. Histamine alleviates neuronal damage and infarct volume, and it promotes recovery of neurological function after ischemia; the H1, H2, and H3 receptors are all involved. Further studies suggest that histamine alleviates excitotoxicity, suppresses the release of glutamate and dopamine, and inhibits inflammation and glial scar formation. Histamine may also affect cerebral blood flow by targeting to vascular smooth muscle cells, and promote neurogenesis. Moreover, endogenous histamine is an essential mediator in the cerebral ischemic tolerance. Due to its multiple actions, affecting neurons, glia, vascular cells, and inflammatory cells, histamine is likely to be an important target in cerebral ischemia. But due to its low penetration of the blood-brain barrier and its wide actions in the periphery, histamine-related agents, like H3 antagonists and carnosine, show potential for cerebral ischemia therapy. However, important questions about the molecular aspects and pathophysiology of histamine and related agents in cerebral ischemia remain to be answered to form a solid scientific basis for therapeutic application.
Collapse
Affiliation(s)
- Wei-Wei Hu
- Department of Pharmacology, Key Laboratory of Medical
Neurobiology of the Ministry of Health of China, Zhejiang Province
Key Laboratory of Neurobiology, School of Basic Medical Sciences,
College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Zhong Chen
- Department of Pharmacology, Key Laboratory of Medical
Neurobiology of the Ministry of Health of China, Zhejiang Province
Key Laboratory of Neurobiology, School of Basic Medical Sciences,
College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| |
Collapse
|