1
|
Higashide M, Watanabe M, Sato T, Ogawa T, Umetsu A, Suzuki S, Furuhashi M, Ohguro H, Nishikiori N. Unexpected and Synergistical Effects of All-Trans Retinoic Acid and TGF-β2 on Biological Aspects of 2D and 3D Cultured ARPE19 Cells. Biomedicines 2024; 12:2228. [PMID: 39457541 PMCID: PMC11505250 DOI: 10.3390/biomedicines12102228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Objectives: To study the effects of all-trans retinoic acid (ATRA) on TGF-β2-induced effects of human retinal pigment epithelium cells under normoxia and hypoxia conditions. Methods: Two-dimensionally (2D) and three-dimensionally (3D) cultured ARPE19 cells were subjected to cellular functional analyses by transepithelial electrical resistance (TEER) and an extracellular flux assay (2D), measurement of levels of reactive oxygen species (ROS), gene expression analyses of COL1, αSMA, Zo-1, HIF1α, and PGC1α (2D), and physical property analyses (3D). Results: Under a normoxia condition, treatment with 100 nM ATRA substantially decreased barrier function regardless of the presence of 5 ng/mL TGF-β2 in 2D ARPE19 monolayer cells. Under a hypoxia condition, treatment with ATRA conversely increased barrier function, but the effect was masked by a marked increase in effects induced by TGF-β2. Although ATRA alone did not affect cellular metabolism and ROS levels in 2D ARPE cells, treatment with ATRA under a hypoxia condition did not affect ROS levels but shifted cellular metabolism from mitochondrial respiration to glycolysis. The changes of cellular metabolism and ROS levels were more pronounced with treatment of both ATRA and TGF-β2 independently of oxygen conditions. Changes in mRNA expressions of some of the above genes suggested the involvement of synergistical regulation of cellular functions by TGF-β2 and hypoxia. In 3D ARPE spheroids, the size was decreased and the stiffness was increased by either treatment with TGF-β2 or ATRA, but these changes were unexpectedly modulated by both ATRA and TGF-β2 treatment regardless of oxygen conditions. Conclusions: The findings reported herein indicate that TGF-β2 and hypoxia synergistically and differentially induce effects in 2D and 3D cultured ARPE19 cells and that their cellular properties are significantly altered by the presence of ATRA.
Collapse
Affiliation(s)
- Megumi Higashide
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.H.); (M.W.); (A.U.); (S.S.); (H.O.)
| | - Megumi Watanabe
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.H.); (M.W.); (A.U.); (S.S.); (H.O.)
| | - Tatsuya Sato
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (T.O.); (M.F.)
- Departments of Cellular Physiology and Signal Transduction, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan
| | - Toshifumi Ogawa
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (T.O.); (M.F.)
- Departments of Cellular Physiology and Signal Transduction, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan
| | - Araya Umetsu
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.H.); (M.W.); (A.U.); (S.S.); (H.O.)
| | - Soma Suzuki
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.H.); (M.W.); (A.U.); (S.S.); (H.O.)
| | - Masato Furuhashi
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.S.); (T.O.); (M.F.)
| | - Hiroshi Ohguro
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.H.); (M.W.); (A.U.); (S.S.); (H.O.)
| | - Nami Nishikiori
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (M.H.); (M.W.); (A.U.); (S.S.); (H.O.)
| |
Collapse
|
2
|
Vitória JJM, Trigo D, da Cruz E Silva OAB. Revisiting APP secretases: an overview on the holistic effects of retinoic acid receptor stimulation in APP processing. Cell Mol Life Sci 2022; 79:101. [PMID: 35089425 PMCID: PMC11073327 DOI: 10.1007/s00018-021-04090-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 11/18/2021] [Accepted: 12/01/2021] [Indexed: 01/03/2023]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia worldwide and is characterized by the accumulation of the β-amyloid peptide (Aβ) in the brain, along with profound alterations in phosphorylation-related events and regulatory pathways. The production of the neurotoxic Aβ peptide via amyloid precursor protein (APP) proteolysis is a crucial step in AD development. APP is highly expressed in the brain and is complexly metabolized by a series of sequential secretases, commonly denoted the α-, β-, and γ-cleavages. The toxicity of resulting fragments is a direct consequence of the first cleaving event. β-secretase (BACE1) induces amyloidogenic cleavages, while α-secretases (ADAM10 and ADAM17) result in less pathological peptides. Hence this first cleavage event is a prime therapeutic target for preventing or reverting initial biochemical events involved in AD. The subsequent cleavage by γ-secretase has a reduced impact on Aβ formation but affects the peptides' aggregating capacity. An array of therapeutic strategies are being explored, among them targeting Retinoic Acid (RA) signalling, which has long been associated with neuronal health. Additionally, several studies have described altered RA levels in AD patients, reinforcing RA Receptor (RAR) signalling as a promising therapeutic strategy. In this review we provide a holistic approach focussing on the effects of isoform-specific RAR modulation with respect to APP secretases and discuss its advantages and drawbacks in subcellular AD related events.
Collapse
Affiliation(s)
- José J M Vitória
- Department of Medical Sciences, Neurosciences and Signalling Group, Institute of Biomedicine, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Diogo Trigo
- Department of Medical Sciences, Neurosciences and Signalling Group, Institute of Biomedicine, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Odete A B da Cruz E Silva
- Department of Medical Sciences, Neurosciences and Signalling Group, Institute of Biomedicine, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
3
|
Optimising the chick chorioallantoic membrane xenograft model of neuroblastoma for drug delivery. BMC Cancer 2018; 18:28. [PMID: 29301505 PMCID: PMC5755290 DOI: 10.1186/s12885-017-3978-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 12/22/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Neuroblastoma is a paediatric cancer that despite multimodal therapy still has a poor outcome for many patients with high risk tumours. Retinoic acid (RA) promotes differentiation of some neuroblastoma tumours and cell lines, and is successfully used clinically, supporting the view that differentiation therapy is a promising strategy for treatment of neuroblastoma. To improve treatment of a wider range of tumour types, development and testing of novel differentiation agents is essential. New pre-clinical models are therefore required to test therapies in a rapid cost effective way in order to identify the most useful agents. METHODS As a proof of principle, differentiation upon ATRA treatment of two MYCN-amplified neuroblastoma cell lines, IMR32 and BE2C, was measured both in cell cultures and in tumours formed on the chick chorioallantoic membrane (CAM). Differentiation was assessed by 1) change in cell morphology, 2) reduction in cell proliferation using Ki67 staining and 3) changes in differentiation markers (STMN4 and ROBO2) and stem cell marker (KLF4). Results were compared to MLN8237, a classical Aurora Kinase A inhibitor. For the in vivo experiments, cells were implanted on the CAM at embryonic day 7 (E7), ATRA treatment was between E11 and E13 and tumours were analysed at E14. RESULTS Treatment of IMR32 and BE2C cells in vitro with 10 μM ATRA resulted in a change in cell morphology, a 65% decrease in cell proliferation, upregulation of STMN4 and ROBO2 and downregulation of KLF4. ATRA proved more effective than MLN8237 in these assays. In vivo, 100 μM ATRA repetitive treatment at E11, E12 and E13 promoted a change in expression of differentiation markers and reduced proliferation by 43% (p < 0.05). 40 μM ATRA treatment at E11 and E13 reduced proliferation by 37% (p < 0.05) and also changed cell morphology within the tumour. CONCLUSION Differentiation of neuroblastoma tumours formed on the chick CAM can be analysed by changes in cell morphology, proliferation and gene expression. The well-described effects of ATRA on neuroblastoma differentiation were recapitulated within 3 days in the chick embryo model, which therefore offers a rapid, cost effective model compliant with the 3Rs to select promising drugs for further preclinical analysis.
Collapse
|
4
|
Chang YC, Chang YS, Hsieh MC, Wu HJ, Wu MH, Lin CW, Wu WC, Kao YH. All-trans retinoic acid suppresses the adhering ability of ARPE-19 cells via mitogen-activated protein kinase and focal adhesion kinase. J Pharmacol Sci 2016; 132:262-270. [PMID: 27919568 DOI: 10.1016/j.jphs.2016.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 10/21/2016] [Accepted: 11/03/2016] [Indexed: 12/11/2022] Open
Abstract
This study investigated the signaling mechanism underlying the anti-adhesive effect of all-trans retinoic acid (ATRA) on retinal pigment epithelial ARPE-19 cells. Adhesion kinetics with or without ATRA treatment were profiled by adhesion assay. Surface coating with type IV collagen, fibronectin, laminin, but not type I collagen, significantly enhanced adhesion and spreading of ARPE-19 cells, while ATRA at subtoxic doses (ranging from 10-7 to 10-6 M) profoundly suppressed the extracellular matrix-enhanced adhesion ability. Cell attachment on FN activated PI3K/Akt and MAPK cascades, whereas ATRA pretreatment blunted the early phosphorylation of Akt and MAPK signaling mediators including p38 MAPK, JNK1/2, and ERK1/2. Mechanistically, signaling blockade with selective kinase inhibitors demonstrated that all MAPK pathways were involved in the anti-adhesive effect of ATRA, whereas the PI3K inhibitor treatment significantly potentiated the ATRA-suppressed RPE cell adhesion. Moreover, ATRA treatment did not affect intracellular F-actin distribution, but remarkably reduced focal adhesion kinase (FAK) expression and its nuclear localization during ARPE-19 cell attachment. In conclusion, ATRA suppresses the adhering ability of ARPE-19 cells at least in part through MAPK and FAK pathways. Signaling blockade with PI3K inhibitor could be regarded as an alternative modality for treating proliferative vitreoretinopathy.
Collapse
Affiliation(s)
- Yo-Chen Chang
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Ophthalmology, School of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yuh-Shin Chang
- Department of Ophthalmology, Chi Mei Medical Center, Tainan 71004, Taiwan; Graduate Institute of Medical Science, College of Health Science, Chang Jung Christian University, Tainan 71101, Taiwan
| | - Ming-Chu Hsieh
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Horng-Jiun Wu
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Meng-Hsien Wu
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chia-Wei Lin
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Wen-Chuan Wu
- Department of Ophthalmology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Ying-Hsien Kao
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan.
| |
Collapse
|
5
|
Exogenous Modulation of Retinoic Acid Signaling Affects Adult RGC Survival in the Frog Visual System after Optic Nerve Injury. PLoS One 2016; 11:e0162626. [PMID: 27611191 PMCID: PMC5017682 DOI: 10.1371/journal.pone.0162626] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 08/25/2016] [Indexed: 02/04/2023] Open
Abstract
After lesions to the mammalian optic nerve, the great majority of retinal ganglion cells (RGCs) die before their axons have even had a chance to regenerate. Frog RGCs, on the other hand, suffer only an approximately 50% cell loss, and we have previously investigated the mechanisms by which the application of growth factors can increase their survival rate. Retinoic acid (RA) is a vitamin A-derived lipophilic molecule that plays major roles during development of the nervous system. The RA signaling pathway is also present in parts of the adult nervous system, and components of it are upregulated after injury in peripheral nerves but not in the CNS. Here we investigate whether RA signaling affects long-term RGC survival at 6 weeks after axotomy. Intraocular injection of all-trans retinoic acid (ATRA), the retinoic acid receptor (RAR) type-α agonist AM80, the RARβ agonist CD2314, or the RARγ agonist CD1530, returned axotomized RGC numbers to almost normal levels. On the other hand, inhibition of RA synthesis with disulfiram, or of RAR receptors with the pan-RAR antagonist Ro-41-5253, or the RARβ antagonist LE135E, greatly reduced the survival of the axotomized neurons. Axotomy elicited a strong activation of the MAPK, STAT3 and AKT pathways; this activation was prevented by disulfiram or by RAR antagonists. Finally, addition of exogenous ATRA stimulated the activation of the first two of these pathways. Future experiments will investigate whether these strong survival-promoting effects of RA are mediated via the upregulation of neurotrophins.
Collapse
|
6
|
Prokosch V, Chiwitt C, Rose K, Thanos S. Deciphering proteins and their functions in the regenerating retina. Expert Rev Proteomics 2014; 7:775-95. [DOI: 10.1586/epr.10.47] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
7
|
Kapoor A, Wang BJ, Hsu WM, Chang MY, Liang SM, Liao YF. Retinoic acid-elicited RARα/RXRα signaling attenuates Aβ production by directly inhibiting γ-secretase-mediated cleavage of amyloid precursor protein. ACS Chem Neurosci 2013; 4:1093-100. [PMID: 23530929 DOI: 10.1021/cn400039s] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Retinoic acid (RA)-elicited signaling has been shown to play critical roles in development, organogenesis, and the immune response. RA regulates expression of Alzheimer's disease (AD)-related genes and attenuates amyloid pathology in a transgenic mouse model. In this study, we investigated whether RA can suppress the production of amyloid-β (Aβ) through direct inhibition of γ-secretase activity. We report that RA treatment of cells results in significant inhibition of γ-secretase-mediated processing of the amyloid precursor protein C-terminal fragment APP-C99, compared with DMSO-treated controls. RA-elicited signaling was found to significantly increase accumulation of APP-C99 and decrease production of secreted Aβ40. In addition, RA-induced inhibition of γ-secretase activity was found to be mediated through significant activation of extracellular signal-regulated kinases (ERK1/2). Treatment of cells with the specific ERK inhibitor PD98059 completely abolished RA-mediated inhibition of γ-secretase. Consistent with these findings, RA was observed to inhibit secretase-mediated proteolysis of full-length APP. Finally, we have established that RA inhibits γ-secretase through nuclear retinoic acid receptor-α (RARα) and retinoid X receptor-α (RXRα). Our findings provide a new mechanistic explanation for the neuroprotective role of RA in AD pathology and add to the previous data showing the importance of RA signaling as a target for AD therapy.
Collapse
Affiliation(s)
- Arun Kapoor
- Molecular and Biological Agricultural Sciences Program,
Taiwan International Graduate Program, National Chung-Hsing University and Academia Sinica, Taipei 11529, Taiwan
- Graduate Institute of Biotechnology
and Department of Life Sciences, National Chung-Hsing University, Taichung 402, Taiwan
| | - Bo-Jeng Wang
- Institute of Zoology, National Taiwan University, Taipei 106, Taiwan
| | - Wen-Ming Hsu
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 100, Taiwan
| | | | | | - Yung-Feng Liao
- Graduate Institute of Biotechnology
and Department of Life Sciences, National Chung-Hsing University, Taichung 402, Taiwan
| |
Collapse
|
8
|
Sheeba CJ, Palmeirim I, Andrade RP. Retinoic acid signaling regulates embryonic clock hairy2 gene expression in the developing chick limb. Biochem Biophys Res Commun 2012; 423:889-94. [DOI: 10.1016/j.bbrc.2012.06.077] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 06/17/2012] [Indexed: 12/20/2022]
|
9
|
Lu J, Tan L, Li P, Gao H, Fang B, Ye S, Geng Z, Zheng P, Song H. All-trans retinoic acid promotes neural lineage entry by pluripotent embryonic stem cells via multiple pathways. BMC Cell Biol 2009; 10:57. [PMID: 19642999 PMCID: PMC2728515 DOI: 10.1186/1471-2121-10-57] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Accepted: 07/30/2009] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND All-trans retinoic acid (RA) is one of the most important morphogens with pleiotropic actions. Its embryonic distribution correlates with neural differentiation in the developing central nervous system. To explore the precise effects of RA on neural differentiation of mouse embryonic stem cells (ESCs), we detected expression of RA nuclear receptors and RA-metabolizing enzymes in mouse ESCs and investigated the roles of RA in adherent monolayer culture. RESULTS Upon addition of RA, cell differentiation was directed rapidly and exclusively into the neural lineage. Conversely, pharmacological interference with RA signaling suppressed this neural differentiation. Inhibition of fibroblast growth factor (FGF) signaling did not suppress significantly neural differentiation in RA-treated cultures. Pharmacological interference with extracellular signal-regulated kinase (ERK) pathway or activation of Wnt pathway effectively blocked the RA-promoted neural specification. ERK phosphorylation was enhanced in RA-treated cultures at the early stage of differentiation. CONCLUSION RA can promote neural lineage entry by ESCs in adherent monolayer culture systems. This effect depends on RA signaling and its crosstalk with the ERK and Wnt pathways.
Collapse
Affiliation(s)
- Jianfeng Lu
- Department of Molecular Genetics, Shanghai Medical School, Fudan University, Shanghai, PR China.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Expression of enzymes involved in the prostanoid metabolism by cortical astrocytes after LPS-induced inflammation. J Mol Neurosci 2008; 34:177-85. [PMID: 18172772 DOI: 10.1007/s12031-007-9028-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Accepted: 12/04/2007] [Indexed: 10/22/2022]
Abstract
Neuroinflammatory processes are a common epiphenomenon for a number of neurological and neurodegenerative diseases. Besides microglia, astrocytes are implicated in brain inflammation in response to harmful stimuli and pathological processes. Bacterial endotoxins can induce the synthesis and release of proinflammatory mediators, i.e., cytokines and chemokines, by astroglia. In this study, we have investigated the effect of lipopolysaccharide (LPS) treatment on the expression of enzymes of prostanoid synthesis and degradation in cultured mouse cortical astrocytes using an Affymetrix Gene Chip array, quantitative reverse transcriptase polymerase chain reaction (RT-PCR), and an enzyme-immunosorbent assay. LPS treatment induced an upregulation of enzymes responsible for prostaglandin E2 synthesis, a downregulation of enzymes that catalyzes prostaglandin E2 (PGE2) degradation and production of proinflammatory leukotrienes. Changes in enzyme expression were accompanied by a highly significant increase in extracellular PGE2. Our data demonstrate that astrocytes are directly involved in the complex regulation of proinflammatory prostanoids in the CNS under pathological processes, thus being of potential interest as targets for therapeutical interventions. Further studies are required to unravel the different roles and interactions between astroglia and other cells of the brain-intrinsic innate immune system during inflammation.
Collapse
|