1
|
Sawada S, Hitomi S, Hayashi Y, Yoshikawa K, Yagasaki F, Shinozuka H, Yonehara Y, Tsuboi Y, Iwata K, Shinoda M. P2Y 12 signaling in muscle satellite cells contributes to masseter muscle contraction-induced pain. THE JOURNAL OF PAIN 2025; 30:105360. [PMID: 40057215 DOI: 10.1016/j.jpain.2025.105360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/28/2025] [Accepted: 03/03/2025] [Indexed: 03/16/2025]
Abstract
The mechanism behind masseter muscle pain, a major symptom of temporomandibular disorder (TMD), has remained poorly understood. Previous report indicates that adenosine triphosphate (ATP) is involved in the masseter muscle pain development, but the role of its hydrolysis product, adenosine diphosphate (ADP), remains uncertain. Consequently, this study aimed to elucidate the ADP role derived from the sustained masseter muscle contraction in the masseter muscle pain development. The right masseter muscle was electrically stimulated daily by placing electrodes on the muscle fascia, inducing strong contraction and mechanical allodynia. This led to an increment of the ATP release from the masseter muscle and a consequent increase in ADP produced by the hydrolysis of ATP. The mechanical allodynia was suppressed by intramuscular P2Y12 receptor antagonism and tumor necrosis factor alpha (TNF-α) inhibition. Additionally, muscle satellite cells expressed P2Y12 receptors, and the increase in amount of TNF-α released from these cells due to sustained contraction of the masseter muscle was suppressed by intramuscular P2Y12 receptor antagonism. These findings suggest that sustained masseter muscle contraction increases ADP levels within the muscle; this ADP, produced by the hydrolysis of ATP, promotes the release of TNF-α via P2Y12 receptors. The TNF-α signaling is likely to enhance the excitability of primary neurons projecting to the masseter muscle, thereby inducing masseter muscle pain. Therefore, it is plausible that TNF-α-induced nociceptive neuronal hyperexcitability through enhanced ADP signaling via P2Y12 receptors in satellite cells could be a candidate for therapeutic intervention for masseter muscle pain, a major symptom of TMD. PERSPECTIVE: Sustained masseter muscle contraction in rats induced mechanical allodynia and increased the amount of ADP within the muscle. Muscle satellite cells expressed P2Y12 receptors, and ADP-P2Y12 signaling increased the TNF-α release from these cells. TNF-α signaling enhanced the primary neuronal excitability, inducing masseter muscle pain.
Collapse
Affiliation(s)
- Sho Sawada
- Department of Oral and Maxillofacial Surgery Ⅱ, Nihon University School of Dentistry, Tokyo, Japan
| | - Suzuro Hitomi
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Yoshinori Hayashi
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Kenji Yoshikawa
- Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, Tokyo, Japan
| | - Fumitaka Yagasaki
- Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, Tokyo, Japan
| | - Hirotaka Shinozuka
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Yoshiyuki Yonehara
- Department of Oral and Maxillofacial Surgery Ⅱ, Nihon University School of Dentistry, Tokyo, Japan
| | - Yoshiyuki Tsuboi
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Koichi Iwata
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Masamichi Shinoda
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan.
| |
Collapse
|
2
|
Kurisu R, Saigusa T, Aono Y, Hayashi Y, Hitomi S, Shimada M, Iwata K, Shinoda M. Pannexin 1 role in the trigeminal ganglion in infraorbital nerve injury-induced mechanical allodynia. Oral Dis 2022; 29:1770-1781. [PMID: 35029007 DOI: 10.1111/odi.14129] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 11/27/2022]
Abstract
OBJECTIVES The detailed pathological mechanism of orofacial neuropathic pain remains unknown. We aimed to examine the pannexin 1 (Panx1) signaling in the trigeminal ganglion (TG) involvement in infraorbital nerve injury (IONI)-induced orofacial neuropathic pain. MATERIALS AND METHODS Mechanical head-withdrawal threshold (MHWT) was measured in IONI-treated rats receiving intra-TG Panx1 inhibitor or metabotropic glutamate receptor 5 (mGluR5) antagonist administration and MHWTs in naive rats receiving intra-TG mGluR5 agonist administration post-IONI. Glutamate and Panx1 in the TG were measured post-IONI. Panx1, mGluR5, and glutamine synthetase expression in TG were immunohistochemically identified, and changes in the number of mGluR5-P2X3 -expressed TG neurons were examined. RESULTS MHWT was significantly decreased post-IONI, and this decrease was reversed by Panx1 inhibition or mGluR5 antagonism. mGluR5 agonism induced a decrease in the MHWT. IONI increased extracellular glutamate in TG. Panx1 was expressed in satellite glial cells and TG neurons, and intra-TG mGluR5 antagonism decreased the number of mGluR5 and P2X3 positive TG neurons post-IONI. CONCLUSIONS IONI facilitates glutamate release via Panx1 that activates mGluR5 which was expressed in the nociceptive TG neurons innervating the orofacial region. In turn, P2X3 receptor-expressed TG neurons is enhanced via mGluR5 signaling, resulting in orofacial neuropathic pain.
Collapse
Affiliation(s)
- Ryoko Kurisu
- Dental Anesthesiology and Orofacial Pain Management, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tadashi Saigusa
- Department of Pharmacology, Nihon University School of Dentistry at Matsudo, Matsudo, Japan
| | - Yuri Aono
- Department of Pharmacology, Nihon University School of Dentistry at Matsudo, Matsudo, Japan
| | - Yoshinori Hayashi
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Suzuro Hitomi
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Masahiko Shimada
- Dental Anesthesiology and Orofacial Pain Management, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Koichi Iwata
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Masamichi Shinoda
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| |
Collapse
|
3
|
Matsubara T, Hayashi K, Wakatsuki K, Abe M, Ozaki N, Yamanaka A, Mizumura K, Taguchi T. Thin-fibre receptors expressing acid-sensing ion channel 3 contribute to muscular mechanical hypersensitivity after exercise. Eur J Pain 2019; 23:1801-1813. [PMID: 31314951 DOI: 10.1002/ejp.1454] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/25/2019] [Accepted: 07/10/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Delayed onset muscle soreness (DOMS) is characterized by mechanical hyperalgesia after lengthening contractions (LC). It is relatively common and causes disturbance for many people who require continuous exercise, yet its molecular and peripheral neural mechanisms are poorly understood. METHODS We examined whether muscular myelinated Aδ-fibres, in addition to unmyelinated C-fibres, are involved in LC-induced mechanical hypersensitivity, and whether acid-sensing ion channel (ASIC)-3 expressed in thin-fibre afferents contributes to this type of pain using a rat model of DOMS. The peripheral contribution of ASIC3 was investigated using single-fibre electrophysiological recordings in extensor digitorum longus muscle-peroneal nerve preparations in vitro. RESULTS Behavioural tests demonstrated a significant decrease of the muscular mechanical withdrawal threshold following LC to ankle extensor muscles, and it was improved by intramuscular injection of APETx2 (2.2 μM), a selective blocker of ASIC3. The lower concentration of APETx2 (0.22 µM) and its vehicle had no effect on the threshold. Intramuscular injection of APETx2 (2.2 μM) in naïve rats without LC did not affect the withdrawal threshold. In the ankle extensor muscles that underwent LC one day before the electrophysiological recordings, the mechanical response of Aδ- and C-fibres was significantly facilitated (i.e. decreased response threshold and increased magnitude of the response). The facilitated mechanical response of the Aδ- and C-fibres was significantly suppressed by selective blockade of ASIC3 with APETx2, but not by its vehicle. CONCLUSIONS These results clearly indicate that ASIC3 contributes to the augmented mechanical response of muscle thin-fibre receptors in delayed onset muscular mechanical hypersensitivity after LC. SIGNIFICANCE Here, we show that not only C- but also Aδ-fibre nociceptors in the muscle are involved in mechanical hypersensitivity after lengthening contractions, and that acid-sensing ion channel (ASIC)-3 expressed in the thin-fibre nociceptors is responsible for the mechanical hypersensitivity. ASIC3 might be a novel pharmacological target for pain after exercise.
Collapse
Affiliation(s)
- Takanori Matsubara
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.,Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Functional Anatomy, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Koei Hayashi
- Department of Functional Anatomy, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Koji Wakatsuki
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Masahiro Abe
- Medical Information Department, Vitacain Pharmaceutical Co. Ltd, Osaka, Japan
| | - Noriyuki Ozaki
- Department of Functional Anatomy, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Akihiro Yamanaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.,Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazue Mizumura
- Department of Physical Therapy, College of Life and Health Sciences, Chubu University, Kasugai, Japan
| | - Toru Taguchi
- Department of Physical Therapy, Faculty of Rehabilitation, Niigata University of Health and Welfare, Niigata, Japan
| |
Collapse
|
4
|
Sylow L, Kleinert M, Richter EA, Jensen TE. Exercise-stimulated glucose uptake - regulation and implications for glycaemic control. Nat Rev Endocrinol 2017; 13:133-148. [PMID: 27739515 DOI: 10.1038/nrendo.2016.162] [Citation(s) in RCA: 289] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Skeletal muscle extracts glucose from the blood to maintain demand for carbohydrates as an energy source during exercise. Such uptake involves complex molecular signalling processes that are distinct from those activated by insulin. Exercise-stimulated glucose uptake is preserved in insulin-resistant muscle, emphasizing exercise as a therapeutic cornerstone among patients with metabolic diseases such as diabetes mellitus. Exercise increases uptake of glucose by up to 50-fold through the simultaneous stimulation of three key steps: delivery, transport across the muscle membrane and intracellular flux through metabolic processes (glycolysis and glucose oxidation). The available data suggest that no single signal transduction pathway can fully account for the regulation of any of these key steps, owing to redundancy in the signalling pathways that mediate glucose uptake to ensure maintenance of muscle energy supply during physical activity. Here, we review the molecular mechanisms that regulate the movement of glucose from the capillary bed into the muscle cell and discuss what is known about their integrated regulation during exercise. Novel developments within the field of mass spectrometry-based proteomics indicate that the known regulators of glucose uptake are only the tip of the iceberg. Consequently, many exciting discoveries clearly lie ahead.
Collapse
Affiliation(s)
- Lykke Sylow
- Molecular Physiology Group, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Maximilian Kleinert
- Molecular Physiology Group, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Erik A Richter
- Molecular Physiology Group, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Thomas E Jensen
- Molecular Physiology Group, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Nöbel M, Feistel S, Ellrich J, Messlinger K. ATP-sensitive muscle afferents activate spinal trigeminal neurons with meningeal afferent input in rat - pathophysiological implications for tension-type headache. J Headache Pain 2016; 17:75. [PMID: 27565510 PMCID: PMC5001961 DOI: 10.1186/s10194-016-0668-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 08/17/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Tension-type headache and other primary headaches may be triggered or aggravated by disorders of pericranial muscles, which is possibly due to convergent or collateral afferent input from meningeal and muscular receptive areas. In rodent models high extracellular concentrations of ATP caused muscle nociception and central sensitization of second order neurons. In a rat model of meningeal nociception we asked if spinal trigeminal activity induced by ATP can be modulated by local anaesthesia of distinct muscles. METHODS Ongoing activity was recorded from spinal trigeminal neurons with afferent input from the cranial dura mater, the temporal muscle and neck muscles. The stable ATP analogue α,β-methylene adenosine 5'-triphosphate (α,β-meATP, 10 mM) was injected into the ipsilateral temporal muscle, 30 min later followed by injection of local anaesthetics (lidocaine, 2 %) into the ipsilateral neck muscles and/or the temporal muscle. RESULTS Injection of α,β-meATP into the temporal muscle caused progressive increase in ongoing activity of most of the spinal trigeminal neurons within 30 min. Injection of lidocaine into the neck muscles and/or the temporal muscle reduced this activation to previous levels within 10 min. CONCLUSIONS Distinct spinal trigeminal neurons processing meningeal nociceptive information are under the control of convergent afferent input from several pericranial muscles. Blockade of at least one of these inputs can normalize central trigeminal activity. This may explain why therapeutic manipulations of head muscles can be beneficial in primary headaches.
Collapse
Affiliation(s)
- Moritz Nöbel
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University of Erlangen-Nürnberg, Universitätsstr. 17, 91054, Erlangen, Germany
| | - Stephan Feistel
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University of Erlangen-Nürnberg, Universitätsstr. 17, 91054, Erlangen, Germany
| | - Jens Ellrich
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University of Erlangen-Nürnberg, Universitätsstr. 17, 91054, Erlangen, Germany.,Department of Health Science and Technology, Medical Faculty, Aalborg University, Aalborg, Denmark
| | - Karl Messlinger
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-University of Erlangen-Nürnberg, Universitätsstr. 17, 91054, Erlangen, Germany.
| |
Collapse
|
6
|
Matsuda T, Kubo A, Taguchi T, Mizumura K. ATP decreases mechanical sensitivity of muscle thin-fiber afferents in rats. Neurosci Res 2015; 97:36-44. [PMID: 25862944 DOI: 10.1016/j.neures.2015.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 02/23/2015] [Accepted: 04/01/2015] [Indexed: 10/23/2022]
Abstract
ATP is an energy rich substance contained in cells in the order of mM. It is released when cells are damaged and when muscle is compressed or contracted. Subcutaneous injection of ATP induces pain-related behavior and hyperalgesia to mechanical and heat stimulation in rats. However, the effects of ATP in muscle have not been fully studied. In the present study we examined the effects of ATP on muscle C-fiber afferent activities using single fiber recordings, and on nociceptive behavior. Muscle C-fiber activities were recorded in vitro using extensor digitorum longus muscle-common peroneal nerve preparations excised from rats deeply anesthetized with pentobarbital. ATP (100 μM and 1 mM, but not 1 μM) superfused for 5 min before the mechanical stimulation suppressed the mechanical responses of muscle thin fibers irrespective of whether they excited the fiber. This suppressive effect was reversed by P2X receptor antagonists PPADS (100 μM) and suramin (300 μM). We also found that subcutaneous injection of ATP (10 mM) induced nociceptive behavior, whereas intramuscular injection had no effect. These findings showed that effects of ATP on muscle afferents differ from those on cutaneous afferents.
Collapse
Affiliation(s)
- Teru Matsuda
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan; Department of Physical Therapy, College of Life and Health Sciences, Chubu University, Kasugai, Japan
| | - Asako Kubo
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan; Department of Physical Therapy, College of Life and Health Sciences, Chubu University, Kasugai, Japan
| | - Toru Taguchi
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Kazue Mizumura
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan; Department of Physical Therapy, College of Life and Health Sciences, Chubu University, Kasugai, Japan.
| |
Collapse
|
7
|
Effect of protons on the mechanical response of rat muscle nociceptive fibers and neurons in vitro. Neurosci Res 2015; 92:46-52. [DOI: 10.1016/j.neures.2014.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 11/02/2014] [Accepted: 11/05/2014] [Indexed: 01/16/2023]
|
8
|
Burnstock G, Arnett TR, Orriss IR. Purinergic signalling in the musculoskeletal system. Purinergic Signal 2013; 9:541-72. [PMID: 23943493 PMCID: PMC3889393 DOI: 10.1007/s11302-013-9381-4] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 07/12/2013] [Indexed: 12/11/2022] Open
Abstract
It is now widely recognised that extracellular nucleotides, signalling via purinergic receptors, participate in numerous biological processes in most tissues. It has become evident that extracellular nucleotides have significant regulatory effects in the musculoskeletal system. In early development, ATP released from motor nerves along with acetylcholine acts as a cotransmitter in neuromuscular transmission; in mature animals, ATP functions as a neuromodulator. Purinergic receptors expressed by skeletal muscle and satellite cells play important pathophysiological roles in their development or repair. In many cell types, expression of purinergic receptors is often dependent on differentiation. For example, sequential expression of P2X5, P2Y1 and P2X2 receptors occurs during muscle regeneration in the mdx model of muscular dystrophy. In bone and cartilage cells, the functional effects of purinergic signalling appear to be largely negative. ATP stimulates the formation and activation of osteoclasts, the bone-destroying cells. Another role appears to be as a potent local inhibitor of mineralisation. In osteoblasts, the bone-forming cells, ATP acts via P2 receptors to limit bone mineralisation by inhibiting alkaline phosphatase expression and activity. Extracellular ATP additionally exerts significant effects on mineralisation via its hydrolysis product, pyrophosphate. Evidence now suggests that purinergic signalling is potentially important in several bone and joint disorders including osteoporosis, rheumatoid arthritis and cancers. Strategies for future musculoskeletal therapies might involve modulation of purinergic receptor function or of the ecto-nucleotidases responsible for ATP breakdown or ATP transport inhibitors.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| | | | | |
Collapse
|
9
|
Abstract
A latent myofascial trigger point (MTP) is defined as a focus of hyperirritability in a muscle taut band that is clinically associated with local twitch response and tenderness and/or referred pain upon manual examination. Current evidence suggests that the temporal profile of the spontaneous electrical activity at an MTP is similar to focal muscle fiber contraction and/or muscle cramp potentials, which contribute significantly to the induction of local tenderness and pain and motor dysfunctions. This review highlights the potential mechanisms underlying the sensory-motor dysfunctions associated with latent MTPs and discusses the contribution of central sensitization associated with latent MTPs and the MTP network to the spatial propagation of pain and motor dysfunctions. Treating latent MTPs in patients with musculoskeletal pain may not only decrease pain sensitivity and improve motor functions, but also prevent latent MTPs from transforming into active MTPs, and hence, prevent the development of myofascial pain syndrome.
Collapse
Affiliation(s)
- Hong-You Ge
- Center for Sensory-Motor Interaction (SMI), Department of Health Science and Technology, Aalborg University, Fredrik Bajersvej 7-D3, Aalborg 9220, Denmark.
| | | |
Collapse
|
10
|
|
11
|
Taguchi T, Tomotoshi K, Mizumura K. Excitatory actions of mushroom poison (acromelic acid) on unmyelinated muscular afferents in the rat. Neurosci Lett 2009; 456:69-73. [PMID: 19429136 DOI: 10.1016/j.neulet.2009.03.102] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 03/27/2009] [Accepted: 03/29/2009] [Indexed: 11/26/2022]
Abstract
Ingestion of a poisonous mushroom, Clitocybe acromelalga, results in strong and long-lasting allodynia, burning pain, redness and swelling in the periphery of the body. Acromelic acid (ACRO), a kainate analogue isolated from the mushroom, is assumed to be involved in the poisoning. ACRO has two isomers, ACRO-A and ACRO-B. The potency of ACRO-A is a million times higher than that of ACRO-B for induction of allodynia when intrathecally administered in mice. The effect of ACRO on the primary afferents of somatic tissues remains largely unknown. The aim of the present study was to examine the effect of ACRO-A on the response behavior of unmyelinated afferents in the skeletal muscle. For this purpose single fiber recordings of C-afferents were made from rat extensor digitorum longus (EDL) muscle-common peroneal nerve preparations in vitro. Intramuscular injections of ACRO-A at three different concentrations (10(-12), 10(-10) and 10(-8)M, 5 microl over 5s) near the receptive field in the EDL muscle elicited excitation of C-afferents (12%, 50% and 44%, respectively). ACRO-A at the concentration of 10(-10)M induced the strongest excitation. The incidence of ACRO-A responsive fibers at the concentration of 10(-10) and 10(-8)M was significantly higher than that at 10(-12)M. The responses to mechanical and heat stimulations did not differ between ACRO-A sensitive and insensitive fibers. These results clearly demonstrated the powerful excitatory action of ACRO-A on mechanosensitive unmyelinated afferents in the rat skeletal muscle.
Collapse
Affiliation(s)
- Toru Taguchi
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | | | | |
Collapse
|
12
|
Reitz M, Makowska A, Ellrich J. Excitatory and inhibitory purinergic control of neck muscle nociception in anaesthetized mice. Cephalalgia 2009; 29:58-67. [PMID: 19126119 DOI: 10.1111/j.1468-2982.2008.01700.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tension-type headache is associated with noxious input from neck muscles. Due to the importance of purinergic mechanisms in muscle nociception, experimental studies typically inject alpha,beta-methyleneadenosine 5'-triphosphate (alpha,beta-meATP). In contrast to native adenosine 5'-triphosphate (ATP), alpha,beta-meATP has a narrow receptor profile and remains stable in tissue. The present study administered alpha,beta-meATP or ATP in semi-spinal neck muscles in anaesthetized mice (n = 65) in order to address different effects in neck muscle nociception. The jaw-opening reflex monitored the impact of neck muscle noxious input on brainstem processing. Injection of alpha,beta-meATP induced reflex facilitation in a dose-dependent manner. In contrast, only the lowest ATP dosage evoked facilitation. Preceding P2Y(1) receptor blockade revealed facilitation even under high-dosage ATP. Ongoing facilitation after alpha,beta-meATP injection neutralized under subsequent activation of P2Y(1) receptors. Results demonstrate opposing excitatory P2X and inhibitory P2Y effects of ATP in neck muscle nociception. These mechanisms may be involved in the pathophysiology of neck muscle pain in man.
Collapse
Affiliation(s)
- M Reitz
- Experimental Neurosurgery Section, Department of Neurosurgery, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | | | | |
Collapse
|