1
|
Liu L, Liu SX, Huang Q, Liu QG. The key role of muscle spindles in the pathogenesis of myofascial trigger points according to ramp-and-hold stretch and drug intervention in a rat model. Front Physiol 2024; 15:1353407. [PMID: 38808356 PMCID: PMC11130495 DOI: 10.3389/fphys.2024.1353407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 04/26/2024] [Indexed: 05/30/2024] Open
Abstract
This study investigated whether abnormal peak inversion spontaneous potentials (PISPs) recorded at resting myofascial trigger points (MTrPs) stem from the discharge of muscle spindles. Forty-eight male Sprague-Dawley rats were randomly divided into six groups. Five groups underwent MTrP modeling intervention, whereas one group did not receive intervention and was duly designated as the blank control. After model construction, five rat models were randomly subjected to ramp-and-hold stretch tests, succinylcholine injection, eperisone hydrochloride injection, saline injection, and blank drug intervention. By contrast, the rats in the blank control group were subjected to ramp-and-hold stretch tests as a control. Frequencies and amplitudes of PISPs were recorded pre- and post-interventions and compared with those of the blank group. Stretch tests showed that the depolarization time and amplitude of PISPs ranged from 0.4 ms to 0.9 ms and from 80 uV to 140 μV, respectively. However, no PISPs were observed in the control rats. The frequency of PISPs in the ramp and hold phases and the first second after the hold phase was higher than that before stretching (p < 0.01). Succinylcholine and eperisone exerted excitatory and inhibitory effects on PISPs, respectively. In the group injected with 0.9% saline, no considerable differences of the PISPs were observed during the entire observation period. In conclusion, PISPs recorded at resting MTrPs are closely related to muscle spindles. The formation of MTrPs may be an important factor that regulate dysfunctional muscle spindles.
Collapse
Affiliation(s)
- Lin Liu
- Department of Rehabilitation, School of Sport Health, Nanjing Sport Institute, Nanjing, China
| | - Shi-Xuan Liu
- Department of Rehabilitation, School of Sport Health, Nanjing Sport Institute, Nanjing, China
| | - Qiangmin Huang
- Department of Sport Medicine and the Center of Rehabilitation, School of Sport Science, Shanghai University of Sport, Shanghai, China
- Department of Pain Medicine, Shanghai Yiyang TCM Clinic, Shanghai, China
| | - Qing-Guang Liu
- International College of Football, Tongji University, Shanghai, China
| |
Collapse
|
2
|
Arfat Y, Rani A, Jingping W, Hocart CH. Calcium homeostasis during hibernation and in mechanical environments disrupting calcium homeostasis. J Comp Physiol B 2020; 190:1-16. [DOI: 10.1007/s00360-019-01255-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/21/2019] [Accepted: 12/16/2019] [Indexed: 12/22/2022]
|
3
|
Asano K, Nakano T, Tokutake K, Ishii H, Nishizuka T, Iwatsuki K, Onishi T, Kurimoto S, Yamamoto M, Tatebe M, Hirata H. Muscle spindle reinnervation using transplanted embryonic dorsal root ganglion cells after peripheral nerve transection in rats. Cell Prolif 2019; 52:e12660. [PMID: 31264327 PMCID: PMC6797520 DOI: 10.1111/cpr.12660] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/13/2019] [Accepted: 06/06/2019] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVES Muscle spindles are proprioceptive receptors in the skeletal muscle. Peripheral nerve injury results in a decreased number of muscle spindles and their morphologic deterioration. However, the muscle spindles recover when skeletal muscles are reinnervated with surgical procedures, such as nerve suture or nerve transfer. Morphological changes in muscle spindles by cell transplantation procedure have not been reported so far. Therefore, we hypothesized that transplantation of embryonic sensory neurons may improve sensory neurons in the skeletal muscle and reinnervate the muscle spindles. MATERIALS AND METHODS We collected sensory neurons from dorsal root ganglions of 14-day-old rat embryos and prepared a rat model of peripheral nerve injury by performing sciatic nerve transection and allowing for a period of one week before which we performed the cell transplantations. Six months later, the morphological changes of muscle spindles in the cell transplantation group were compared with the naïve control and surgical control groups. RESULTS Our results demonstrated that transplantation of embryonic dorsal root ganglion cells induced regeneration of sensory nerve fibre and reinnervation of muscle spindles in the skeletal muscle. Moreover, calbindin D-28k immunoreactivity in intrafusal muscle fibres was maintained for six months after denervation in the cell transplantation group, whereas it disappeared in the surgical control group. CONCLUSIONS Cell transplantation therapies could serve as selective targets to modulate mechanosensory function in the skeletal muscle.
Collapse
Affiliation(s)
- Kenichi Asano
- Department of Hand Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomonori Nakano
- Department of Hand Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Katsuhiro Tokutake
- Department of Hand Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hisao Ishii
- Department of Hand Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takanobu Nishizuka
- Department of Hand Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Katsuyuki Iwatsuki
- Department of Hand Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tetsuro Onishi
- Department of Hand Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shigeru Kurimoto
- Department of Hand Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Michiro Yamamoto
- Department of Hand Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahiro Tatebe
- Department of Hand Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hitoshi Hirata
- Department of Hand Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
4
|
Usuki F, Tohyama S. Three Case Reports of Successful Vibration Therapy of the Plantar Fascia for Spasticity Due to Cerebral Palsy-Like Syndrome, Fetal-Type Minamata Disease. Medicine (Baltimore) 2016; 95:e3385. [PMID: 27082608 PMCID: PMC4839852 DOI: 10.1097/md.0000000000003385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Fetal-type Minamata disease is caused by the exposure to high concentrations of methylmercury in the fetal period and shows cerebral palsy-like clinical features. Relief of spasticity is a major task of rehabilitation to improve their activities of daily living. Here we report the effect of long-term vibration therapy on bilateral lower-limb spasticity in 3 patients with fetal-type Minamata disease. We used a simple, inexpensive, and noninvasive approach with hand-held vibration massagers, which were applied to the plantar fascia at 90 Hz for 15 minutes. The effect was observed soon after the first treatment and resulted in better performance of the repetitive facilitation. Vibration therapy for 1 year improved Modified Ashworth Scale for the ankle flexors in 2 cases. The labored gait improved and gait speed increased in another case. Continued vibration therapy for another 1 year further improved Modified Ashworth Scale score and range of motion of ankle dorsiflexion in 1 case. This case showed the decreased amplitude of soleus H-reflex after the 15-minute vibration therapy, suggesting that α-motor neuron excitability was suppressed. Vibration therapy using a hand-held vibration massager may offer safe and effective treatment for lower-limb spasticity in patients with chronic neurological disorders.
Collapse
Affiliation(s)
- Fusako Usuki
- From the Department of Clinical Medicine, National Institute for Minamata Disease, Minamata, Kumamoto, Japan
| | | |
Collapse
|
5
|
Zhang BT, Yeung SS, Cheung KK, Chai ZY, Yeung EW. Adaptive responses of TRPC1 and TRPC3 during skeletal muscle atrophy and regrowth. Muscle Nerve 2014; 49:691-9. [PMID: 23852583 DOI: 10.1002/mus.23952] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 07/04/2013] [Accepted: 07/06/2013] [Indexed: 12/20/2022]
Abstract
INTRODUCTION We assessed the time-dependent changes of transient receptor potential canonical type 1 (TRPC1) and TRPC3 expression and localization associated with muscle atrophy and regrowth in vivo. METHODS Mice were subjected to hindlimb unloading for 7 or 14 days (7U, 14U) followed by 3, 7, or 14 days of reloading (3R, 7R, 14R). RESULTS Soleus muscle mass and tetanic force were reduced significantly at 7U and 14U and recovered by 14R. Recovery of muscle fiber cross-sectional area was observed by 28R. TRPC1 mRNA was unaltered during the unloading-reloading period. However, protein expression remained depressed through 14R. Decreased localization of TRPC1 to the sarcolemma was observed. TRPC3 mRNA and protein expression levels were decreased significantly during the early phase of reloading. CONCLUSIONS Given the known role of these channels in muscle development, changes observed in TRPC1 and TRPC3 may relate closely to muscle atrophy and remodeling processes.
Collapse
Affiliation(s)
- Bao-Ting Zhang
- Muscle Physiology Laboratory, Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | | | | | | | | |
Collapse
|
6
|
Zhao XH, Fan XL, Song XA, Wu SD, Ren JC, Chen MX. Influence of 14-day hind limb unloading on isolated muscle spindle activity in rats. J Muscle Res Cell Motil 2010; 31:155-61. [PMID: 20661631 DOI: 10.1007/s10974-010-9215-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 05/25/2010] [Indexed: 11/24/2022]
Abstract
During hind limb unloading (HU), the soleus is often in a shortened position and the natural physiological stimulus of muscle spindles is altered, such that muscle spindle activity also changes. Using isolated spindle conditions, the present study investigates the electrophysiological activity and ultrastructure of muscle spindles following HU. Results show that muscle spindle discharges fall into either of two main patterns, single spikes or spike clusters in shortened positions, with a steady frequency of 18-38 spikes/s (mean 29.08 +/- 2.45) in an extended position. Following 14-day HU, afferent discharge activity was significantly altered in soleus muscle spindles. Duration of individual spikes was significantly prolonged, from 0.54 +/- 0.05 ms for control rats to 1.53 +/- 0.25 ms for rats in the HU group. In a shortened position, regular rhythm afferent discharges were obviously depressed, and the majority of muscle spindles became silent, while in an extended position, the discharges remained continuous but with decreased frequency. Results also show that the ultrastructure of muscle spindles experience degenerative changes during HU. Altered muscle spindle afference could possibly modify the activity of motor neurons and further affect the activity of extrafusal fibers.
Collapse
Affiliation(s)
- Xue Hong Zhao
- Department of Physiology and Pathophysiology, Medical School, Xi'an JiaoTong University, Xi'an 710061, Shaanxi, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
7
|
Abstract
To date, the medium and long-term space flight is urgent in need and has become a major task of our manned space flight program. There is no doubt that medium and long-term space flight has serious damaging impact upon human physiological systems. For instance, atrophy of the lower limb anti-gravity muscle can be induced during the space flight. Muscle atrophy significantly affects the flight of astronauts in space. Most importantly, it influences the precise manipulation of the astronauts and their response capacity to emergencies on returning to the atmosphere from space. Muscle atrophy caused by weightlessness may also seriously disrupt the normal life and work of the astronauts during the re-adaptation period. Here we summarize the corresponding research concentrating on weightlessness-induced changes of muscular structure and function. By combining research on muscle pain, which is a common clinical pain disease, we further provide a hypothesis concerning a dynamic feedback model of "weightlessness condition right triple arrow muscular atrophy <--> muscle pain". This may be useful to explore the neural mechanisms underlying the occurrence and development of muscular atrophy and muscle pain, through the key study of muscle spindle, and furthermore provide more effective therapy for clinical treatment.
Collapse
|
8
|
Salanova M, Schiffl G, Blottner D. Atypical fast SERCA1a protein expression in slow myofibers and differential S-nitrosylation prevented by exercise during long term bed rest. Histochem Cell Biol 2009; 132:383-94. [DOI: 10.1007/s00418-009-0624-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2009] [Indexed: 10/20/2022]
|
9
|
Shenkman BS, Nemirovskaya TL. Calcium-dependent signaling mechanisms and soleus fiber remodeling under gravitational unloading. J Muscle Res Cell Motil 2009; 29:221-30. [PMID: 19130271 DOI: 10.1007/s10974-008-9164-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Accepted: 12/19/2008] [Indexed: 10/21/2022]
Abstract
The decrease in postural muscle fiber size, diminishing of their contractile properties, slow-to-fast shift in myosin heavy chain expression pattern are known to be the main consequences of gravitational unloading. The Ca(2+) role in these processes has been studied for about 20 years. Ingalls et al. [J Appl Physiol 87(1):382-390, 1999] found the resting Ca(2+) level increase in soleus fibers of hindlimb unloaded mice. Results obtained in our laboratory showed that systemic or local application of nifedipine (L-type Ca(2+) channels' blocker) prevents Ca(2+) accumulation in fibers. Thus, activation of dihydropyridine calcium channels can be supposed to promote resting Ca(2+) loading under disuse. So, calcium-dependent signaling pathways may play an important role in the development of some key events observed under unloading. Since 90th the increased activities of Ca(2+)-dependent proteases (calpains) were considered as the crucial effect of hypogravity-induced muscle atrophy, which was proved later. We observed maintenance of titin and nebulin relative content in soleus muscle under unloading combined with Ca(2+) chelators administration. Nifedipine administration was shown to considerably restrict the slow-to-fast transition of myosin heavy chains (MHC) under unloading (at the RNA level and at the protein level as well). To clarify the role of calcineurin/NFAT signaling system in MHC pattern transition under unloading, we blocked this pathway by cyclosporine A application. Hereby, we demonstrated that calcineurin/NFAT pathway possesses a stabilizing function counteracting the myosin phenotype transformation under gravitational unloading.
Collapse
|