1
|
Smith A, Andruski B, Deng G, Burnham R. Cervical facet joint platelet-rich plasma in people with chronic whiplash-associated disorders: A prospective case series of short-term outcomes. INTERVENTIONAL PAIN MEDICINE 2022; 1:100078. [PMID: 39239374 PMCID: PMC11373031 DOI: 10.1016/j.inpm.2022.100078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/05/2022] [Accepted: 02/15/2022] [Indexed: 09/07/2024]
Abstract
Objective To explore the safety and feasibility of a single autologous injection of platelet-rich plasma (PRP) in cervical facet joints of people with chronic WAD and facet-mediated pain, and explore the association between pain relief reported with diagnostic medial branch blocks (MBBs) and 3-months post-PRP. Design A prospective case series of people with chronic whiplash-associated disorders and cervical facet joint mediated pain in a community setting. Interventions A single autologous PRP injection was provided to cervical facet joints under ultrasound and fluoroscopic guidance. Measures Adverse events were recorded one-week, and measures of pain (numerical pain rating scale - NPRS) and disability (Neck Disability Index - NDI) were collected prior to and 3-months following cervical facet joint PRP. People not reached for follow-up were considered failures for worst-case analysis. The correlation between percentage response to diagnostic cervical medial branch blocks (MBBs) and percentage pain relief reported at 3-months was also investigated. Results Forty-four people (82% female; mean age (SD): 45.2 (10.8) years) underwent cervical facet joint PRP. There was a significant improvement in pain and disability following PRP. Seventy percent of people exceeded MCID for pain. For NDI scores, 80% of people exceeded MCID. Forty-one percent of people reported greater than 50% relief of pain 3-months post-cervical facet joint PRP.There was no significant correlation between percentage relief of pain with cervical MBBs and percentage relief of pain 3-months post-PRP (r = 0.06, p = 0.73).There were no adverse events reported. Conclusion In people with chronic WAD and facet-mediated pain, preliminary data suggests that PRP is safe and it is feasible to move forwards with randomized studies to further investigate efficacy and effectiveness.
Collapse
Affiliation(s)
- Ashley Smith
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada 2500 University Drive, Calgary, Alberta, T2N 1N4, Canada
- VivoCura Health, Calgary, Alberta, Canada #100, 325 Manning Rd NE, Calgary, Alberta, T2E 2P5, Canada
| | - Ben Andruski
- VivoCura Health, Calgary, Alberta, Canada #100, 325 Manning Rd NE, Calgary, Alberta, T2E 2P5, Canada
| | - George Deng
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada 2500 University Drive, Calgary, Alberta, T2N 1N4, Canada
- VivoCura Health, Calgary, Alberta, Canada #100, 325 Manning Rd NE, Calgary, Alberta, T2E 2P5, Canada
| | - Robert Burnham
- VivoCura Health, Calgary, Alberta, Canada #100, 325 Manning Rd NE, Calgary, Alberta, T2E 2P5, Canada
- Central Alberta Pain and Rehabilitation Institute, Lacombe, Alberta, Canada #1, 6220 AB-2A, Lacombe, Alberta, T4L 2G5, Canada
- Division of Physical Medicine and Rehabilitation, University of Alberta, Edmonton, Canada 116 St & 85 Ave, Edmonton, AB, T6G 2R3, Canada
| |
Collapse
|
2
|
Analysis of Potential Hub Genes for Neuropathic Pain Based on Differential Expression in Rat Models. Pain Res Manag 2022; 2022:6571987. [PMID: 35281346 PMCID: PMC8913144 DOI: 10.1155/2022/6571987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/03/2022] [Accepted: 01/21/2022] [Indexed: 11/30/2022]
Abstract
Objective Neuropathic pain (NP) is a type of intractable chronic pain with complicated etiology. The exact molecular mechanism underlying NP remains unclear. In this study, we searched for molecular biomarkers of NP. Methods Differentially expressed genes (DEGs) were predicted by analyzing three NP-related microarray datasets in Gene Expression Omnibus with robust rank aggregation. A weighted gene coexpression network analysis was conducted to construct a network of differentially expressed genes, followed by the evaluation of correlations between gene sets and the determination of hub genes. The candidate genes from the key module were identified using a gene set enrichment analysis. Results In total, 353 upregulated and 383 downregulated genes were obtained, among which five hub genes were determined to be related to pain phenotypes. Reverse transcription-quantitative polymerase chain reaction was performed to verify the expression of these hub genes in the dorsal root ganglia of rats with spared nerve injury, which revealed the decreased expression of EMC4. Hence, EMC4 was defined as a biomarker for NP development. Conclusions The results of this study form a basis for further research into the mechanism of NP development and are expected to aid in the development of novel therapeutic strategies.
Collapse
|
3
|
Dubový P, Hradilová-Svíženská I, Brázda V, Joukal M. Toll-Like Receptor 9-Mediated Neuronal Innate Immune Reaction Is Associated with Initiating a Pro-Regenerative State in Neurons of the Dorsal Root Ganglia Non-Associated with Sciatic Nerve Lesion. Int J Mol Sci 2021; 22:ijms22147446. [PMID: 34299065 PMCID: PMC8304752 DOI: 10.3390/ijms22147446] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 12/27/2022] Open
Abstract
One of the changes brought about by Wallerian degeneration distal to nerve injury is disintegration of axonal mitochondria and consequent leakage of mitochondrial DNA (mtDNA)—the natural ligand for the toll-like receptor 9 (TLR9). RT-PCR and immunohistochemical or Western blot analyses were used to detect TLR9 mRNA and protein respectively in the lumbar (L4-L5) and cervical (C7-C8) dorsal root ganglia (DRG) ipsilateral and contralateral to a sterile unilateral sciatic nerve compression or transection. The unilateral sciatic nerve lesions led to bilateral increases in levels of both TLR9 mRNA and protein not only in the lumbar but also in the remote cervical DRG compared with naive or sham-operated controls. This upregulation of TLR9 was linked to activation of the Nuclear Factor kappa B (NFκB) and nuclear translocation of the Signal Transducer and Activator of Transcription 3 (STAT3), implying innate neuronal immune reaction and a pro-regenerative state in uninjured primary sensory neurons of the cervical DRG. The relationship of TLR9 to the induction of a pro-regenerative state in the cervical DRG neurons was confirmed by the shorter lengths of regenerated axons distal to ulnar nerve crush following a previous sciatic nerve lesion and intrathecal chloroquine injection compared with control rats. The results suggest that a systemic innate immune reaction not only triggers the regenerative state of axotomized DRG neurons but also induces a pro-regenerative state further along the neural axis after unilateral nerve injury.
Collapse
|
4
|
Ghorayeb JH. The nosological classification of whiplash-associated disorder: a narrative review. THE JOURNAL OF THE CANADIAN CHIROPRACTIC ASSOCIATION 2021; 65:76-93. [PMID: 34035543 PMCID: PMC8128336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Whiplash-associated disorder (WAD) is the most common complaint and purported cause of chronic disability associated with motor vehicle collisions in North America. However, its construct validity remains controversial. This narrative review of the literature summarises the evidence underlying the most commonly theorised biological and psychosocial mechanisms of WAD pathogenesis. While the face validity of WAD is good, empirical evidence supporting the various constructs suggesting a causal link between a trauma mechanism and the development of symptoms is poor. Because individual expectations of recovery are outcome-predictive, future research is necessary to develop a better understanding of how to enhance expectancies in order to help affected motorists gain a greater sense of control over their health and wellbeing.
Collapse
|
5
|
Singh S, Kartha S, Bulka BA, Stiansen NS, Winkelstein BA. Physiologic facet capsule stretch can induce pain & upregulate matrix metalloproteinase-3 in the dorsal root ganglia when preceded by a physiological mechanical or nonpainful chemical exposure. Clin Biomech (Bristol, Avon) 2019; 64:122-130. [PMID: 29523370 PMCID: PMC6067996 DOI: 10.1016/j.clinbiomech.2018.01.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 12/22/2017] [Accepted: 01/15/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Neck pain from cervical facet loading is common and induces inflammation and upregulation of nerve growth factor (NGF) that can sensitize the joint afferents. Yet, the mechanisms by which these occur and whether afferents can be pre-conditioned by certain nonpainful stimuli are unknown. This study tested the hypothesis that a nonpainful mechanical or chemical insult predisposes a facet joint to generate pain after a later exposure to typically nonpainful distraction. METHODS Rats were exposed to either a nonpainful distraction or an intra-articular subthreshold dose of NGF followed by a nonpainful distraction two days later. Mechanical hyperalgesia was measured daily and C6 dorsal root ganglia (DRG) tissue was assayed for NGF and matrix metalloproteinase-3 (MMP-3) expression on day 7. FINDINGS The second distraction increased joint displacement and strains compared to its first application (p = 0.0011). None of the initial exposures altered behavioral sensitivity in either of the groups being pre-conditioned or in controls; but, sensitivity was established in both groups receiving a second distraction within one day that lasted until day 7 (p < 0.024). NGF expression in the DRG was increased in both groups undergoing a pre-conditioning exposure (p < 0.0232). Similar findings were observed for MMP-3 expression, with a pre-conditioning exposure increasing levels after an otherwise nonpainful facet distraction. INTERPRETATION These findings suggest that nonpainful insults to the facet joint, when combined, can generate painful outcomes, possibly mediated by upregulation of MMP-3 and mature NGF.
Collapse
Affiliation(s)
- Sagar Singh
- Department of Bioengineering, University of Pennsylvania, 210 S. 33rd Street, 240 Skirkanich Hall, Philadelphia, PA 19104, USA
| | - Sonia Kartha
- Department of Bioengineering, University of Pennsylvania, 210 S. 33rd Street, 240 Skirkanich Hall, Philadelphia, PA 19104, USA
| | - Ben A Bulka
- Department of Bioengineering, University of Pennsylvania, 210 S. 33rd Street, 240 Skirkanich Hall, Philadelphia, PA 19104, USA
| | - Nicholas S Stiansen
- Department of Bioengineering, University of Pennsylvania, 210 S. 33rd Street, 240 Skirkanich Hall, Philadelphia, PA 19104, USA
| | - Beth A Winkelstein
- Department of Bioengineering, University of Pennsylvania, 210 S. 33rd Street, 240 Skirkanich Hall, Philadelphia, PA 19104, USA; Department of Neurosurgery, University of Pennsylvania, 210 S. 33rd Street, 240 Skirkanich Hall, Philadelphia, PA 19104, USA.
| |
Collapse
|
6
|
Kartha S, Bulka BA, Stiansen NS, Troche HR, Winkelstein BA. Repeated High Rate Facet Capsular Stretch at Strains That are Below the Pain Threshold Induces Pain and Spinal Inflammation With Decreased Ligament Strength in the Rat. J Biomech Eng 2018; 140:2679583. [PMID: 30003250 PMCID: PMC6056195 DOI: 10.1115/1.4040023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 04/12/2018] [Indexed: 12/21/2022]
Abstract
Repeated loading of ligamentous tissues during repetitive occupational and physical tasks even within physiological ranges of motion has been implicated in the development of pain and joint instability. The pathophysiological mechanisms of pain after repetitive joint loading are not understood. Within the cervical spine, excessive stretch of the facet joint and its capsular ligament has been implicated in the development of pain. Although a single facet joint distraction (FJD) at magnitudes simulating physiologic strains is insufficient to induce pain, it is unknown whether repeated stretching of the facet joint and ligament may produce pain. This study evaluated if repeated loading of the facet at physiologic nonpainful strains alters the capsular ligament's mechanical response and induces pain. Male rats underwent either two subthreshold facet joint distractions (STFJDs) or sham surgeries each separated by 2 days. Pain was measured before the procedure and for 7 days; capsular mechanics were measured during each distraction and under tension at tissue failure. Spinal glial activation was also assessed to probe potential pathophysiologic mechanisms responsible for pain. Capsular displacement significantly increased (p = 0.019) and capsular stiffness decreased (p = 0.008) during the second distraction compared to the first. Pain was also induced after the second distraction and was sustained at day 7 (p < 0.048). Repeated loading weakened the capsular ligament with lower vertebral displacement (p = 0.041) and peak force (p = 0.014) at tissue rupture. Spinal glial activation was also induced after repeated loading. Together, these mechanical, physiological, and neurological findings demonstrate that repeated loading of the facet joint even within physiologic ranges of motion can be sufficient to induce pain, spinal inflammation, and alter capsular mechanics similar to a more injurious loading exposure.
Collapse
Affiliation(s)
- Sonia Kartha
- Department of Bioengineering,
University of Pennsylvania,
Suite 240 Skirkanich Hall,
210 South 33rd Street,
Philadelphia, PA 19104
e-mail:
| | - Ben A. Bulka
- Department of Bioengineering,
University of Pennsylvania,
Suite 240 Skirkanich Hall,
210 South 33rd Street,
Philadelphia, PA 19104
e-mail:
| | - Nick S. Stiansen
- Department of Bioengineering,
University of Pennsylvania,
Suite 240 Skirkanich Hall,
210 South 33rd Street,
Philadelphia, PA 19104
e-mail:
| | - Harrison R. Troche
- Department of Bioengineering,
University of Pennsylvania,
Suite 240 Skirkanich Hall,
210 South 33rd Street,
Philadelphia, PA 19104
e-mail:
| | - Beth A. Winkelstein
- Fellow ASME
Department of Bioengineering,
University of Pennsylvania,
Suite 240 Skirkanich Hall 210,
South 33rd Street,
Philadelphia, PA 19104
e-mail:
| |
Collapse
|
7
|
Sperry MM, Ita ME, Kartha S, Zhang S, Yu YH, Winkelstein B. The Interface of Mechanics and Nociception in Joint Pathophysiology: Insights From the Facet and Temporomandibular Joints. J Biomech Eng 2017; 139:2597611. [PMID: 28056123 DOI: 10.1115/1.4035647] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Indexed: 12/16/2022]
Abstract
Chronic joint pain is a widespread problem that frequently occurs with aging and trauma. Pain occurs most often in synovial joints, the body's load bearing joints. The mechanical and molecular mechanisms contributing to synovial joint pain are reviewed using two examples, the cervical spinal facet joints and the temporomandibular joint (TMJ). Although much work has focused on the macroscale mechanics of joints in health and disease, the combined influence of tissue mechanics, molecular processes, and nociception in joint pain has only recently become a focus. Trauma and repeated loading can induce structural and biochemical changes in joints, altering their microenvironment and modifying the biomechanics of their constitutive tissues, which themselves are innervated. Peripheral pain sensors can become activated in response to changes in the joint microenvironment and relay pain signals to the spinal cord and brain where pain is processed and perceived. In some cases, pain circuitry is permanently changed, which may be a potential mechanism for sustained joint pain. However, it is most likely that alterations in both the joint microenvironment and the central nervous system (CNS) contribute to chronic pain. As such, the challenge of treating joint pain and degeneration is temporally and spatially complicated. This review summarizes anatomy, physiology, and pathophysiology of these joints and the sensory pain relays. Pain pathways are postulated to be sensitized by many factors, including degeneration and biochemical priming, with effects on thresholds for mechanical injury and/or dysfunction. Initiators of joint pain are discussed in the context of clinical challenges including the diagnosis and treatment of pain.
Collapse
Affiliation(s)
- Megan M Sperry
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 S. 33rd Street, Philadelphia, PA 19104-6321 e-mail:
| | - Meagan E Ita
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 S. 33rd Street, Philadelphia, PA 19104-6321 e-mail:
| | - Sonia Kartha
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 S. 33rd Street, Philadelphia, PA 19104-6321 e-mail:
| | - Sijia Zhang
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 S. 33rd Street, Philadelphia, PA 19104-6321 e-mail:
| | - Ya-Hsin Yu
- Department of Endodontics, School of Dental Medicine, University of Pennsylvania, 240 Skirkanich Hall, 210 S. 33rd Street, Philadelphia, PA 19104-6321 e-mail:
| | - Beth Winkelstein
- Departments of Bioengineering and Neurosurgery, University of Pennsylvania, 240 Skirkanich Hall, 210 S. 33rd Street, Philadelphia, PA 19104-6321 e-mail:
| |
Collapse
|
8
|
Byrne RM, Zhou Y, Zheng L, Chowdhury SK, Aiyangar A, Zhang X. Segmental variations in facet joint translations during in vivo lumbar extension. J Biomech 2017; 70:88-95. [PMID: 29096984 DOI: 10.1016/j.jbiomech.2017.09.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/05/2017] [Accepted: 09/25/2017] [Indexed: 10/18/2022]
Abstract
The lumbar facet joint (FJ) is often associated with pathogenesis in the spine, but quantification of normal FJ motion remains limited to in vitro studies or static imaging of non-functional poses. The purpose of this study was to quantify lumbar FJ kinematics in healthy individuals during functional activity with dynamic stereo radiography (DSX) imaging. Ten asymptomatic participants lifted three known weights starting from a trunk-flexed (∼75°) position to an upright position while being imaged within the DSX system. High resolution computed tomography (CT) scan-derived 3D models of their lumbar vertebrae (L2-S1) were registered to the biplane 2D radiographs using a markerless model-based tracking technique providing instantaneous 3D vertebral kinematics throughout the lifting tasks. Effects of segment level and weight lifted were assessed using mixed-effect repeated measures ANOVA. Superior-inferior (SI) translation dominated FJ translation, with L5S1 showing significantly less translation magnitudes (Median (Md) = 3.5 mm, p < 0.0001) than L2L3, L3L4, and L4L5 segments (Md = 5.9 mm, 6.3 mm and 6.6 mm respectively). Linear regression-based slopes of continuous facet translations revealed strong linearity for SI translation (r2 > 0.94), reasonably high linearity for sideways sliding (Z-) (r2 > 0.8), but much less linearity for facet gap change (X-) (r2 ∼ 0.5). Caudal segments (L4-S1), particularly L5S1, displayed greater coupling compared to cranial (L2-L4) segments, revealing distinct differences overall in FJ translation trends at L5S1. No significant effect of weight lifted on FJ translations was detected. The study presents a hitherto unavailable and highly precise baseline dataset of facet translations measured during a functional, dynamic lifting task.
Collapse
Affiliation(s)
- Ryan M Byrne
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA 15203, USA
| | - Yu Zhou
- Department of Industrial & Systems Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Liying Zheng
- Health Effects Lab Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - Suman K Chowdhury
- Department of Industrial & Systems Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Ameet Aiyangar
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15203, USA; Mechanical Systems Engineering, EMPA (Swiss Federal Laboratories for Materials Science and Technology), 8600 Duebendorf, Switzerland.
| | - Xudong Zhang
- Department of Industrial & Systems Engineering, Texas A&M University, College Station, TX 77843, USA; Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
9
|
Zhang S, Kartha S, Lee J, Winkelstein BA. Techniques for Multiscale Neuronal Regulation via Therapeutic Materials and Drug Design. ACS Biomater Sci Eng 2017; 3:2744-2760. [DOI: 10.1021/acsbiomaterials.7b00012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Sijia Zhang
- Department of Bioengineering, University of Pennsylvania, 210 S. 33rd Street, 240 Skirkanich
Hall, Philadelphia, Pennsylvania 19104, United States
| | - Sonia Kartha
- Department of Bioengineering, University of Pennsylvania, 210 S. 33rd Street, 240 Skirkanich
Hall, Philadelphia, Pennsylvania 19104, United States
| | - Jasmine Lee
- Department of Physics and Astronomy, University of Pennsylvania, 209 S. 33rd Street, David Rittenhouse Laboratory, Philadelphia, Pennsylvania 19104, United States
| | - Beth A. Winkelstein
- Department of Bioengineering, University of Pennsylvania, 210 S. 33rd Street, 240 Skirkanich
Hall, Philadelphia, Pennsylvania 19104, United States
- Department
of Neurosurgery, University of Pennsylvania, Stemmler Hall, 3450 Hamilton Walk, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
10
|
Manchikanti L, Hirsch JA, Falco FJE, Boswell MV. Management of lumbar zygapophysial (facet) joint pain. World J Orthop 2016; 7:315-337. [PMID: 27190760 PMCID: PMC4865722 DOI: 10.5312/wjo.v7.i5.315] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 10/13/2015] [Accepted: 01/29/2016] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the diagnostic validity and therapeutic value of lumbar facet joint interventions in managing chronic low back pain.
METHODS: The review process applied systematic evidence-based assessment methodology of controlled trials of diagnostic validity and randomized controlled trials of therapeutic efficacy. Inclusion criteria encompassed all facet joint interventions performed in a controlled fashion. The pain relief of greater than 50% was the outcome measure for diagnostic accuracy assessment of the controlled studies with ability to perform previously painful movements, whereas, for randomized controlled therapeutic efficacy studies, the primary outcome was significant pain relief and the secondary outcome was a positive change in functional status. For the inclusion of the diagnostic controlled studies, all studies must have utilized either placebo controlled facet joint blocks or comparative local anesthetic blocks. In assessing therapeutic interventions, short-term and long-term reliefs were defined as either up to 6 mo or greater than 6 mo of relief. The literature search was extensive utilizing various types of electronic search media including PubMed from 1966 onwards, Cochrane library, National Guideline Clearinghouse, clinicaltrials.gov, along with other sources including previous systematic reviews, non-indexed journals, and abstracts until March 2015. Each manuscript included in the assessment was assessed for methodologic quality or risk of bias assessment utilizing the Quality Appraisal of Reliability Studies checklist for diagnostic interventions, and Cochrane review criteria and the Interventional Pain Management Techniques - Quality Appraisal of Reliability and Risk of Bias Assessment tool for therapeutic interventions. Evidence based on the review of the systematic assessment of controlled studies was graded utilizing a modified schema of qualitative evidence with best evidence synthesis, variable from level I to level V.
RESULTS: Across all databases, 16 high quality diagnostic accuracy studies were identified. In addition, multiple studies assessed the influence of multiple factors on diagnostic validity. In contrast to diagnostic validity studies, therapeutic efficacy trials were limited to a total of 14 randomized controlled trials, assessing the efficacy of intraarticular injections, facet or zygapophysial joint nerve blocks, and radiofrequency neurotomy of the innervation of the facet joints. The evidence for the diagnostic validity of lumbar facet joint nerve blocks with at least 75% pain relief with ability to perform previously painful movements was level I, based on a range of level I to V derived from a best evidence synthesis. For therapeutic interventions, the evidence was variable from level II to III, with level II evidence for lumbar facet joint nerve blocks and radiofrequency neurotomy for long-term improvement (greater than 6 mo), and level III evidence for lumbosacral zygapophysial joint injections for short-term improvement only.
CONCLUSION: This review provides significant evidence for the diagnostic validity of facet joint nerve blocks, and moderate evidence for therapeutic radiofrequency neurotomy and therapeutic facet joint nerve blocks in managing chronic low back pain.
Collapse
|
11
|
Manchikanti L, Hirsch JA, Kaye AD, Boswell MV. Cervical zygapophysial (facet) joint pain: effectiveness of interventional management strategies. Postgrad Med 2015; 128:54-68. [PMID: 26653406 DOI: 10.1080/00325481.2016.1105092] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Diagnostic facet joint nerve blocks have been utilized in the diagnosis of cervical facet joint pain in patients without disk herniation or radicular pain due to a lack of reliable noninvasive diagnostic measures. Therapeutic interventions include intra-articular injections, facet joint nerve blocks and radiofrequency neurotomy. The diagnostic accuracy and effectiveness of facet joint interventions have been assessed in multiple diagnostic accuracy studies, randomized controlled trials (RCTs), and systematic reviews in managing chronic neck pain. This assessment shows there is Level II evidence based on a total of 11 controlled diagnostic accuracy studies for diagnosing cervical facet joint pain in patients without disk herniation or radicular pain utilizing controlled diagnostic blocks. Due to significant variability and internal inconsistency regarding prevalence in a heterogenous population; despite 11 studies, evidence is determined as Level II. Prevalence ranged from 36% to 67% with at least 80% pain relief as the criterion standard with a false-positive rate ranging from 27% to 63%. The evidence is Level II for the long-term effectiveness of radiofrequency neurotomy and facet joint nerve blocks in managing cervical facet joint pain. There is Level III evidence for cervical intra-articular injections.
Collapse
Affiliation(s)
- Laxmaiah Manchikanti
- a Pain Management Center of Paducah , Paducah , KY , USA.,b Department of Anesthesiology and Perioperative Medicine , University of Louisville , Louisville , KY , USA
| | - Joshua A Hirsch
- c Neuroendovascular Program , Massachusetts General Hospital , Boston , MA , USA
| | - Alan D Kaye
- d Department of Anesthesia , LSU Health Science Center , New Orleans , LA , USA
| | - Mark V Boswell
- b Department of Anesthesiology and Perioperative Medicine , University of Louisville , Louisville , KY , USA
| |
Collapse
|
12
|
Loud preimpact tones reduce the cervical multifidus muscle response during rear-end collisions: a potential method for reducing whiplash injuries. Spine J 2015; 15:153-61. [PMID: 25110275 DOI: 10.1016/j.spinee.2014.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 06/24/2014] [Accepted: 08/02/2014] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Neck muscle responses after unexpected rear-end collisions consist of a stereotypical combination of postural and startle responses. Prior work using surface electromyography (EMG) has shown that the superficial neck muscle responses can be attenuated when a loud tone (105 dB) is presented 250 milliseconds before impact, but the accompanying response of the deeper multifidus muscles remains unknown. Quantifying this response in multifidus is important because this muscle attaches directly to the cervical facet capsule and can potentially increase the strain in the capsule during an impact and contribute to whiplash injury. PURPOSE To investigate if a loud preimpact tone decreases the cervical multifidus muscle response during rear-end perturbations. STUDY DESIGN After approval by the University Clinical Ethics Review Board, human volunteers experienced a series of three whiplash-like perturbations. PATIENT SAMPLE Twelve subjects with no history of neurologic disorders or whiplash injury were recruited to participate in this experiment. OUTCOME MEASURES Bilateral indwelling EMG of multifidus at the C4 and C6 levels, surface EMG of sternocleidomastoid (SCM) and C4 paraspinals (PARAs), and kinematics of the head/neck were measured. METHODS Subjects experienced three whiplash-like perturbations (peak acceleration of 19.5 m/s(2)) preceded by either no tone or a loud tone (105 dB) presented 250 milliseconds before sled acceleration onset. RESULTS The loud tone decreased the muscle activity of C6 multifidus (42%) and C4 PARAs (30%), but did not affect the C4 multifidus or SCM activity. Peak head kinematic responses (extension angle: 6%, retraction: 9%, linear forward acceleration: 9%, and angular acceleration in extension: 13%) were also decreased by the loud preimpact tone. CONCLUSIONS The attenuation of peak C6 multifidus activity and head kinematic responses suggests that a loud preimpact tone may reduce the strain in the cervical facet capsule, which may reduce the risk of whiplash injury during rear-end collisions.
Collapse
|
13
|
Yang ES, Bae JY, Kim TH, Kim YS, Suk K, Bae YC. Involvement of endoplasmic reticulum stress response in orofacial inflammatory pain. Exp Neurobiol 2014; 23:372-80. [PMID: 25548537 PMCID: PMC4276808 DOI: 10.5607/en.2014.23.4.372] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 10/22/2014] [Accepted: 10/22/2014] [Indexed: 01/06/2023] Open
Abstract
Endoplasmic reticulum (ER) stress is involved in many neurological diseases and inflammatory responses. Inflammatory mediators induce neuronal damage and trigger the neuropathic or inflammatory pain. But there is very little data on the role of the ER stress response in pain mechanisms. In this study, we explored whether the ER stress response is involved in orofacial inflammatory pain by using a complete Freund's adjuvant (CFA)-injected rat model. The thermal pain hypersensitivity increased significantly after CFA injection. We found that the protein and mRNA levels of ER stress response genes, GRP78/Bip and p-eIF2α, increased significantly in trigeminal ganglion (TG) of CFA-injected rats compared to control animals. In immunofluorescence analysis, a significant increase of GRP78 and p-eIF2α immunopositive neurons was observed in CFA-injected TG compared to control TG. When we administered an ER stress modulator, salubrinal, CFA-induced thermal pain hypersensitivity was temporally reduced. Thus, our study suggests that ER stress responses in TG neurons contribute to CFA-induced inflammatory pain, and may comprise an important molecular mechanism underlying the orofacial inflammatory pain pathway.
Collapse
Affiliation(s)
- Eun Sun Yang
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu 700-412, Korea
| | - Jin Young Bae
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu 700-412, Korea
| | - Tae Heon Kim
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu 700-412, Korea
| | - Yun Sook Kim
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu 700-412, Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science & Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu 700-422, Korea
| | - Yong Chul Bae
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu 700-412, Korea
| |
Collapse
|
14
|
Lee DG, Cho YW, Jang SH, Son SM, Kim GJ, Ahn SH. Effectiveness of intra-articular steroid injection for atlanto-occipital joint pain. PAIN MEDICINE 2014; 16:1077-82. [PMID: 25105892 DOI: 10.1111/pme.12474] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVES The aims of this study were to evaluate the role of intra-articular joint injection for atlanto-occipital (AO) joint pain and to determine pain referral sites from that joint. DESIGN Prospective observational study. METHOD We evaluated 29 patients with chronic refractory neck pain and/or headache, and limited range of lateral bending with rotation at the AO joint on physical examination. Of the 24 patients who consented to undergo diagnostic injections, 20 patients had at least 50% relief from pain and underwent two AO intra-articular injections of mixture of local anesthetic and steroid approximately 1 week apart. Patients completed pain drawings, visual analog scales (VASs) for pain, and neck disability index (NDI) for level of function. Patients were evaluated for 2 months after the first injection. RESULT There was headache in 14/20 (70%), posterior neck pain (PNP) in 20, and referred pain in 17 (85%). The average VAS values for headache, PNP, and other referred pains were reduced significantly from 5.64, 5.70, and 5.41, respectively, before treatments to 0.64, 2.30, and 1.71, respectively, two months after injection (P < 0.01). The average NDI value was reduced significantly from 39.95% at pretreatment to 20.40% at 2 months after treatment (P < 0.01). CONCLUSION AO intra-articular steroid injection appears effective for the short-term control of chronic refractory pain arising from the AO joint.
Collapse
Affiliation(s)
- Dong-Gyu Lee
- Department of Physical Medicine and Rehabilitation, Dongsan Medical Center, Keimyung University School of Medicine, Daegu, South Korea
| | - Yun-Woo Cho
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Daegu, South Korea
| | - Sung-Ho Jang
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Daegu, South Korea
| | - Su-Min Son
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Daegu, South Korea
| | - Gook-Joo Kim
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Daegu, South Korea
| | - Sang-Ho Ahn
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Daegu, South Korea
| |
Collapse
|
15
|
Worsfold C. When range of motion is not enough: Towards an evidence-based approach to medico-legal reporting in whiplash injury. J Forensic Leg Med 2014; 25:95-9. [DOI: 10.1016/j.jflm.2014.04.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 03/05/2014] [Accepted: 04/15/2014] [Indexed: 10/25/2022]
|
16
|
Smith AD, Jull G, Schneider G, Frizzell B, Hooper RA, Sterling M. Cervical Radiofrequency Neurotomy Reduces Central Hyperexcitability and Improves Neck Movement in Individuals with Chronic Whiplash. PAIN MEDICINE 2014; 15:128-41. [DOI: 10.1111/pme.12262] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
17
|
Dong L, Crosby ND, Winkelstein BA. Gabapentin alleviates facet-mediated pain in the rat through reduced neuronal hyperexcitability and astrocytic activation in the spinal cord. THE JOURNAL OF PAIN 2013; 14:1564-72. [PMID: 24094695 DOI: 10.1016/j.jpain.2013.07.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 05/21/2013] [Accepted: 07/18/2013] [Indexed: 01/29/2023]
Abstract
UNLABELLED Although joint pain is common, its mechanisms remain undefined, with little known about the spinal neuronal responses that contribute to this type of pain. Afferent activity and sustained spinal neuronal hyperexcitability correlate to facet joint loading and the extent of behavioral sensitivity induced after painful facet injury, suggesting that spinal neuronal plasticity is induced in association with facet-mediated pain. This study used a rat model of painful C6-C7 facet joint stretch, together with intrathecal administration of gabapentin, to investigate the effects of one aspect of spinal neuronal function on joint pain. Gabapentin or saline vehicle was given via lumbar puncture prior to and at 1 day after painful joint distraction. Mechanical hyperalgesia was measured in the forepaw for 7 days. Extracellular recordings of neuronal activity and astrocytic and microglial activation in the cervical spinal cord were evaluated at day 7. Gabapentin significantly (P = .0001) attenuated mechanical hyperalgesia, and the frequency of evoked neuronal firing also significantly decreased (P < .047) with gabapentin treatment. Gabapentin also decreased (P < .04) spinal glial fibrillary acidic protein expression. Although spinal Iba1 expression was doubled over sham, gabapentin did not reduce it. Facet joint-mediated pain appears to be sustained through spinal neuronal modifications that are also associated with astrocytic activation. PERSPECTIVE Intrathecal gabapentin treatment was used to investigate behavioral, neuronal, and glial response in a rat model of painful C6-C7 facet joint stretch. Gabapentin attenuated mechanical hyperalgesia, reduced evoked neuronal firing, and decreased spinal astrocytic activation. This study supports that facet joint pain is sustained through spinal neuronal and astrocytic activation.
Collapse
Affiliation(s)
- Ling Dong
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | |
Collapse
|
18
|
Kras JV, Weisshaar CL, Quindlen J, Winkelstein BA. Brain-derived neurotrophic factor is upregulated in the cervical dorsal root ganglia and spinal cord and contributes to the maintenance of pain from facet joint injury in the rat. J Neurosci Res 2013; 91:1312-21. [PMID: 23918351 DOI: 10.1002/jnr.23254] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 04/26/2013] [Accepted: 04/30/2013] [Indexed: 11/06/2022]
Abstract
The facet joint is commonly associated with neck and low back pain and is susceptible to loading-induced injury. Although tensile loading of the cervical facet joint has been associated with inflammation and neuronal hyperexcitability, the mechanisms of joint loading-induced pain remain unknown. Altered brain-derived neurotrophic factor (BDNF) levels are associated with a host of painful conditions, but the role of BDNF in loading-induced joint pain remains undefined. Separate groups of rats underwent a painful cervical facet joint distraction or a sham procedure. Bilateral forepaw mechanical hypersensitivity was assessed and BDNF mRNA and protein levels were quantified in the dorsal root ganglion (DRG) and spinal cord at days 1 and 7. Facet joint distraction induced significant (P < 0.001) mechanical hypersensitivity at both time points. Painful joint distraction did not alter BDNF mRNA in the DRG compared with sham levels but did significantly increase (P < 0.016) BDNF protein expression over sham in the DRG at day 7. Painful distraction also significantly increased BDNF mRNA (P = 0.031) and protein expression (P = 0.047) over sham responses in the spinal cord at day 7. In a separate study, intrathecal administration of the BDNF-sequestering molecule trkB-Fc on day 5 after injury partially attenuated behavioral sensitivity after joint distraction and reduced pERK in the spinal cord at day 7 (P < 0.045). Changes in BDNF after painful facet joint injury and the effect of spinal BDNF sequestration in partially reducing pain suggest that BDNF signaling contributes to the maintenance of loading-induced facet pain but that additional cellular responses are also likely involved.
Collapse
Affiliation(s)
- Jeffrey V Kras
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | | |
Collapse
|
19
|
Dong L, Smith JR, Winkelstein BA. Ketorolac reduces spinal astrocytic activation and PAR1 expression associated with attenuation of pain after facet joint injury. J Neurotrauma 2013; 30:818-25. [PMID: 23126437 PMCID: PMC3660109 DOI: 10.1089/neu.2012.2600] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Chronic neck pain affects up to 70% of persons, with the facet joint being the most common source. Intra-articular injection of the non-steroidal anti-inflammatory drug ketorolac reduces post-operative joint-mediated pain; however, the mechanism of its attenuation of facet-mediated pain has not been evaluated. Protease-activated receptor-1 (PAR1) has differential roles in pain maintenance depending on the type and location of painful injury. This study investigated if the timing of intra-articular ketorolac injection after painful cervical facet injury affects behavioral hypersensitivity by modulating spinal astrocyte activation and/or PAR1 expression. Rats underwent a painful joint distraction and received an injection of ketorolac either immediately or 1 day later. Separate control groups included injured rats with a vehicle injection at day 1 and sham operated rats. Forepaw mechanical allodynia was measured for 7 days, and spinal cord tissue was immunolabeled for glial fibrillary acidic protein (GFAP) and PAR1 expression in the dorsal horn on day 7. Ketorolac administered on day 1 after injury significantly reduced allodynia (p=0.0006) to sham levels, whereas injection immediately after the injury had no effect compared with vehicle. Spinal astrocytic activation followed behavioral responses and was significantly decreased (p=0.009) only for ketorolac given at day 1. Spinal PAR1 (p=0.0025) and astrocytic PAR1 (p=0.012) were significantly increased after injury. Paralleling behavioral data, astrocytic PAR1 was returned to levels in sham only when ketorolac was administered on day 1. Yet, spinal PAR1 was significantly reduced (p<0.0001) by ketorolac independent of timing. Spinal astrocyte expression of PAR1 appears to be associated with the maintenance of facet-mediated pain.
Collapse
Affiliation(s)
- Ling Dong
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jenell R. Smith
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Beth A. Winkelstein
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
20
|
An anatomical and immunohistochemical characterization of afferents innervating the C6-C7 facet joint after painful joint loading in the rat. Spine (Phila Pa 1976) 2013; 38:E325-31. [PMID: 23324931 PMCID: PMC3600108 DOI: 10.1097/brs.0b013e318285b5bb] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN This study used retrograde neuronal tracing and immunohistochemistry to identify neurons innervating the C6-C7 facet joint and those expressing calcitonin gene-related peptide (CGRP) in the dorsal root ganglion (DRG) of rats after painful cervical facet joint injury. OBJECTIVE The objective of this study was to characterize the innervation of the C6-C7 facet joint after painful joint injury in the rat. SUMMARY OF BACKGROUND DATA The cervical facet joint is a source of neck pain, and its loading can initiate persistent pain. CGRP is a nociceptive neurotransmitter; peptidergic afferents have been identified in the facet joint's capsule. Although studies suggest that facet joint injury alters CGRP expression in joint afferents, the distribution of neurons innervating the C6-C7 facet joint and their expression of CGRP after a painful joint injury have not been investigated. METHODS Holtzman rats (Harlan Sprague-Dawley, Indianapolis, IN) received an intra-articular injection of cholera toxin subunit B in the C6-C7 facet joints. After injection, subgroups underwent either a painful joint distraction or sham procedure. Mechanical sensitivity was assessed, and immunohistochemical techniques were used to quantify CGRP expression and cholera toxin subunit B labeling in the C5-C8 DRGs. RESULTS Facet joint distraction-induced (P ≤ 0.0002) hypersensitivity. Neurons labeled by the joint injection were identified in the C5-C8 DRGs. Significantly, more (P ≤ 0.0001) cholera toxin subunit B-positive neurons were identified in the C7 DRG than any other level. At C7, 54.4% ± 15.3% of those neurons were also CGRP-positive, whereas only 41.5% ± 5.4% of all neurons were CGRP-positive; this difference was significant (P = 0.0084). CONCLUSION The greatest number of afferents from the C6-C7 facet joint has cell bodies in the C7 DRG, implicating this level as the most relevant for pain from this joint. In addition, peptidergic afferents seem to have an important role in facet joint-mediated pain.
Collapse
|
21
|
The prostaglandin E2 receptor, EP2, is upregulated in the dorsal root ganglion after painful cervical facet joint injury in the rat. Spine (Phila Pa 1976) 2013; 38:217-22. [PMID: 22789984 PMCID: PMC3500406 DOI: 10.1097/brs.0b013e3182685ba1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN This study implemented immunohistochemistry to assay prostaglandin E2 (PGE2) receptor EP2 expression in the dorsal root ganglion (DRG) of rats after painful cervical facet joint injury. OBJECTIVE To identify if inflammatory cascades are induced in association with cervical facet joint distraction-induced pain by investigating the time course of EP2 expression in the DRG. SUMMARY OF BACKGROUND DATA The cervical facet joint is a common source of neck pain, and nonphysiological stretch of the facet capsular ligament can initiate pain from the facet joint via mechanical injury. PGE2 levels are elevated in painful inflamed and arthritic joints, and PGE2 sensitizes joint afferents to mechanical stimulation. Although in vitro studies suggest that the EP2 receptor subtype contributes to painful joint disease, the EP2 response has not been investigated for any association with painful mechanical joint injury. METHODS Separate groups of male Holtzman rats underwent either a painful cervical facet joint distraction injury or sham procedure. Bilateral forepaw mechanical allodynia was assessed, and immunohistochemical techniques were used to quantify EP2 expression in the DRG at days 1 and 7. RESULTS Facet joint distraction induced mechanical allodynia that was significant (P < 0.024) at all time points. Painful joint injury also significantly elevated total EP2 expression in the DRG at day 1 (P = 0.009), which was maintained at day 7 (P < 0.001). Neuronal expression of EP2 in the DRG was only increased over sham levels at day 1 (P = 0.013). CONCLUSION Painful cervical facet joint distraction induces an immediate and sustained increase of EP2 expression in the DRG, implicating peripheral inflammation in the initiation and maintenance of facet joint pain. The transient increase in neuronal EP2 suggests, as in other painful joint conditions, that after joint injury nonneuronal cells may migrate to the DRG, some of which likely express EP2.
Collapse
|
22
|
Davis CG. Mechanisms of chronic pain from whiplash injury. J Forensic Leg Med 2012; 20:74-85. [PMID: 23357391 DOI: 10.1016/j.jflm.2012.05.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 05/03/2012] [Accepted: 05/30/2012] [Indexed: 10/28/2022]
Abstract
This article is to provide insights into the mechanisms underlying chronic pain from whiplash injury. Studies show that injury produces plasticity changes of different neuronal structures that are responsible for amplification of nociception and exaggerated pain responses. There is consistent evidence for hypersensitivity of the central nervous system to sensory stimulation in chronic pain after whiplash injury. Tissue damage, detected or not by the available diagnostic methods, is probably the main determinant of central hypersensitivity. Different mechanisms underlie and co-exist in the chronic whiplash condition. Spinal cord hyperexcitability in patients with chronic pain after whiplash injury can cause exaggerated pain following low intensity nociceptive or innocuous peripheral stimulation. Spinal hypersensitivity may explain pain in the absence of detectable tissue damage. Whiplash is a heterogeneous condition with some individuals showing features suggestive of neuropathic pain. A predominantly neuropathic pain component is related to a higher pain/disability level.
Collapse
|
23
|
Dong L, Quindlen JC, Lipschutz DE, Winkelstein BA. Whiplash-like facet joint loading initiates glutamatergic responses in the DRG and spinal cord associated with behavioral hypersensitivity. Brain Res 2012; 1461:51-63. [PMID: 22578356 DOI: 10.1016/j.brainres.2012.04.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 04/05/2012] [Accepted: 04/13/2012] [Indexed: 12/25/2022]
Abstract
The cervical facet joint and its capsule are a common source of neck pain from whiplash. Mechanical hyperalgesia elicited by painful facet joint distraction is associated with spinal neuronal hyperexcitability that can be induced by transmitter/receptor systems that potentiate the synaptic activation of neurons. This study investigated the temporal response of a glutamate receptor and transporters in the dorsal root ganglia (DRG) and spinal cord. Bilateral C6/C7 facet joint distractions were imposed in the rat either to produce behavioral sensitivity or without inducing any sensitivity. Neuronal metabotropic glutamate receptor-5 (mGluR5) and protein kinase C-epsilon (PKCε) expression in the DRG and spinal cord were evaluated on days 1 and 7. Spinal expression of a glutamate transporter, excitatory amino acid carrier 1 (EAAC1), was also quantified at both time points. Painful distraction produced immediate behavioral hypersensitivity that was sustained for 7 days. Increased expression of mGluR5 and PKCε in the DRG was not evident until day 7 and only following painful distraction; this increase was observed in small-diameter neurons. Only painful facet joint distraction produced a significant increase (p<0.001) in neuronal mGluR5 over time, and this increase also was significantly elevated (p≤0.05) over responses in the other groups at day 7. However, there were no differences in spinal PKCε expression on either day or between groups. Spinal EAAC1 expression was significantly increased (p<0.03) only in the nonpainful groups on day 7. Results from this study suggest that spinal glutamatergic plasticity is selectively modulated in association with facet-mediated pain.
Collapse
Affiliation(s)
- Ling Dong
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
24
|
Abstract
STUDY DESIGN Nonsystematic review of cervical spine lesions in whiplash-associated disorders (WAD). OBJECTIVE To describe whiplash injury models in terms of basic and clinical science, to summarize what can and cannot be explained by injury models, and to highlight future research areas to better understand the role of tissue damage in WAD. SUMMARY OF BACKGROUND DATA The frequent lack of detectable tissue damage has raised questions about whether tissue damage is necessary for WAD and what role it plays in the clinical context of WAD. METHODS Nonsystematic review. RESULTS Lesions of various tissues have been documented by numerous investigations conducted in animals, cadavers, healthy volunteers, and patients. Most lesions are undetected by imaging techniques. For zygapophysial (facet) joints, lesions have been predicted by bioengineering studies and validated through animal studies; for zygapophysial joint pain, a valid diagnostic test and a proven treatment are available. Lesions of dorsal root ganglia, discs, ligaments, muscles, and vertebral artery have been documented in biomechanical and autopsy studies, but no valid diagnostic test is available to assess their clinical relevance. The proportion of WAD patients in whom a persistent lesion is the major determinant of ongoing symptoms is unknown. Psychosocial factors, stress reactions, and generalized hyperalgesia have also been shown to predict WAD outcomes. CONCLUSION There is evidence supporting a lesion-based model in WAD. Lack of macroscopically identifiable tissue damage does not rule out the presence of painful lesions. The best available evidence concerns zygapophysial joint pain. The clinical relevance of other lesions needs to be addressed by future research.
Collapse
|
25
|
Abstract
STUDY DESIGN A nonsystematic review of the literature. OBJECTIVE The objective was to present general schema for mechanisms of whiplash pain and review the role of animal models in understanding the development of chronic pain from whiplash injury. SUMMARY OF BACKGROUND DATA Extensive biomechanical and clinical studies of whiplash have been performed to understand the injury mechanisms and symptoms of whiplash injury. However, only recently have animal models of this painful disorder been developed based on other pain models in the literature. METHODS A nonsystematic review was performed and findings were integrated to formulate a generalized picture of mechanisms by which chronic whiplash pain develops from mechanical tissue injuries. RESULTS The development of chronic pain from tissue injuries in the neck due to whiplash involves complex interactions between the injured tissue and spinal neuroimmune circuits. A variety of animal models are beginning to define these mechanisms. CONCLUSION Continued work is needed in developing appropriate animal models to investigate chronic pain from whiplash injuries and care must be taken to determine whether such models aim to model the injury event or the pain symptoms.
Collapse
Affiliation(s)
- Beth A Winkelstein
- Department of Bioengineering and Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104-6321, USA.
| |
Collapse
|
26
|
Abstract
STUDY DESIGN Narrative review. OBJECTIVE To summarize the evidence that implicates the cervical zygapophysial joints as the leading source of chronic neck pain after whiplash. SUMMARY OF BACKGROUND DATA Reputedly a patho-anatomic basis for neck pain after whiplash has been elusive. However, studies conducted in a variety of disparate disciplines indicate that this is not necessarily the case. METHODS Data were retrieved from studies that addressed the postmortem features and biomechanics of injury to the cervical zygapophysial joints, and from clinical studies of the diagnosis and treatment of zygapophysial joint pain, to illustrate convergent validity. RESULTS Postmortem studies show that a spectrum of injuries can befall the zygapophysial joints in motor vehicle accidents. Biomechanics studies of normal volunteers and of cadavers reveal the mechanisms by which such injuries can be sustained. Studies in cadavers and in laboratory animals have produced these injuries.Clinical studies have shown that zygapophysial joint pain is very common among patients with chronic neck pain after whiplash, and that this pain can be successfully eliminated by radiofrequency neurotomy. CONCLUSION The fact that multiple lines of evidence, using independent techniques, consistently implicate the cervical zygapophysial joints as a site of injury and source of pain, strongly implicates injury to these joints as a common basis for chronic neck pain after whiplash.
Collapse
|
27
|
Jaumard NV, Welch WC, Winkelstein BA. Spinal facet joint biomechanics and mechanotransduction in normal, injury and degenerative conditions. J Biomech Eng 2011; 133:071010. [PMID: 21823749 DOI: 10.1115/1.4004493] [Citation(s) in RCA: 214] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The facet joint is a crucial anatomic region of the spine owing to its biomechanical role in facilitating articulation of the vertebrae of the spinal column. It is a diarthrodial joint with opposing articular cartilage surfaces that provide a low friction environment and a ligamentous capsule that encloses the joint space. Together with the disc, the bilateral facet joints transfer loads and guide and constrain motions in the spine due to their geometry and mechanical function. Although a great deal of research has focused on defining the biomechanics of the spine and the form and function of the disc, the facet joint has only recently become the focus of experimental, computational and clinical studies. This mechanical behavior ensures the normal health and function of the spine during physiologic loading but can also lead to its dysfunction when the tissues of the facet joint are altered either by injury, degeneration or as a result of surgical modification of the spine. The anatomical, biomechanical and physiological characteristics of the facet joints in the cervical and lumbar spines have become the focus of increased attention recently with the advent of surgical procedures of the spine, such as disc repair and replacement, which may impact facet responses. Accordingly, this review summarizes the relevant anatomy and biomechanics of the facet joint and the individual tissues that comprise it. In order to better understand the physiological implications of tissue loading in all conditions, a review of mechanotransduction pathways in the cartilage, ligament and bone is also presented ranging from the tissue-level scale to cellular modifications. With this context, experimental studies are summarized as they relate to the most common modifications that alter the biomechanics and health of the spine-injury and degeneration. In addition, many computational and finite element models have been developed that enable more-detailed and specific investigations of the facet joint and its tissues than are provided by experimental approaches and also that expand their utility for the field of biomechanics. These are also reviewed to provide a more complete summary of the current knowledge of facet joint mechanics. Overall, the goal of this review is to present a comprehensive review of the breadth and depth of knowledge regarding the mechanical and adaptive responses of the facet joint and its tissues across a variety of relevant size scales.
Collapse
Affiliation(s)
- Nicolas V Jaumard
- Dept. of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | |
Collapse
|
28
|
Dong L, Guarino BB, Jordan-Sciutto KL, Winkelstein BA. Activating transcription factor 4, a mediator of the integrated stress response, is increased in the dorsal root ganglia following painful facet joint distraction. Neuroscience 2011; 193:377-86. [PMID: 21821103 PMCID: PMC3171593 DOI: 10.1016/j.neuroscience.2011.07.059] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 07/01/2011] [Accepted: 07/24/2011] [Indexed: 02/06/2023]
Abstract
Chronic neck pain is one of the most common musculoskeletal disorders in the US. Although biomechanical and clinical studies have implicated the facet joint as a primary source of neck pain, specific cellular mechanisms still remain speculative. The purpose of this study was to investigate whether a mediator (activating transcription factor; 4ATF4) of the integrated stress response (ISR) is involved in facet-mediated pain. Holtzman rats underwent C6/C7 facet joint loading that produces either painful (n=16) or nonpainful (n=8) responses. A sham group (n=9) was also included as surgical controls. Behavioral sensitivity was measured and the C6 dorsal root ganglia (DRGs) were harvested on day 7 to evaluate the total and neuronal ATF4 expression. In separate groups, an intra-articular ketorolac injection was administered either immediately (D0 ketorolac) or 1 day (D1 ketorolac) after painful facet joint loading. Allodynia was measured at days 1 and 7 after injury to assess the effects on behavioral responses. ATF4 and BiP (an indicator of ISR activation) were separately quantified at day 7. Facet joint loading sufficient to elicit behavioral hypersensitivity produced a threefold increase in total and neuronal ATF4 expression in the DRG. After ketorolac treatment at the time of injury, ATF4 expression was significantly (P<0.01) reduced despite not producing any attenuation of behavioral responses. Interestingly, ketorolac treatment at day 1 significantly (P<0.001) alleviated behavioral sensitivity at day 7, but did not modify ATF4 expression. BiP expression was unchanged after either intervention time. Results suggest that ATF4-dependent activation of the ISR does not directly contribute to persistent pain, but it may sensitize neurons responsible for pain initiation. These behavioral and immunohistochemical findings imply that facet-mediated pain may be sustained through other pathways of the ISR.
Collapse
Affiliation(s)
- Ling Dong
- Department of Bioengineering University of Pennsylvania Philadelphia, PA 19104, USA
| | - Benjamin B. Guarino
- Department of Bioengineering University of Pennsylvania Philadelphia, PA 19104, USA
| | | | - Beth A. Winkelstein
- Department of Bioengineering University of Pennsylvania Philadelphia, PA 19104, USA
- Department of Neurosurgery University of Pennsylvania Philadelphia, PA 19104, USA
| |
Collapse
|
29
|
Dunk NM, Nicholson KJ, Winkelstein BA. Impaired performance on the angle board test is induced in a model of painful whiplash injury but is only transient in a model of cervical radiculopathy. J Orthop Res 2011; 29:562-6. [PMID: 21337396 DOI: 10.1002/jor.21272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Accepted: 09/02/2010] [Indexed: 02/04/2023]
Abstract
Although clinical studies report motor impairment associated with some painful injuries of the neck, assessment of motor function in animal models has been largely limited only to studies of direct trauma to the nervous system. The incline plane test was modified to evaluate motor function in two rodent pain models of facet joint distraction (FJD) and nerve root compression (NRC) injury (n = 5/group). Sham groups were also included as controls. Motor function was measured using the modified inclined plane test with rats facing downward before surgery (baseline) and following surgery on days corresponding to when mechanical sensitivity is established and remains elevated. Mean baseline values of the board angle inducing slip for FJD (45.8 ± 3.1°) was significantly greater (p = 0.014) than that for NRC (43.5 ± 2.5°), but baseline measurements did not vary for either group over time. No changes in motor function were found for shams. Motor function after FJD significantly decreased (p < 0.001) at days 1 and 7 after injury. In contrast, at day 1 after NRC injury, slip occurred at significantly lower (p = 0.0016) incline angles, but returned to baseline levels by day 7. These results show motor function impairment is induced following painful FJD and suggest the incline plane test offers utility to evaluate functional deficits in painful injuries.
Collapse
Affiliation(s)
- Nadine M Dunk
- Department of Bioengineering, University of Pennsylvania, St, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
30
|
Weisshaar CL, Dong L, Bowman AS, Perez FM, Guarino BB, Sweitzer SM, Winkelstein BA. Metabotropic glutamate receptor-5 and protein kinase C-epsilon increase in dorsal root ganglion neurons and spinal glial activation in an adolescent rat model of painful neck injury. J Neurotrauma 2011; 27:2261-71. [PMID: 20925479 DOI: 10.1089/neu.2010.1460] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
There is growing evidence that neck pain is common in adolescence and is a risk factor for the development of chronic neck pain in adulthood. The cervical facet joint and its capsular ligament is a common source of pain in the neck in adults, but its role in adolescent pain remains unknown. The aim of this study was to define the biomechanics, behavioral sensitivity, and indicators of neuronal and glial activation in an adolescent model of mechanical facet joint injury. A bilateral C6-C7 facet joint distraction was imposed in an adolescent rat and biomechanical metrics were measured during injury. Following injury, forepaw mechanical hyperalgesia was measured, and protein kinase C-epsilon (PKCɛ) and metabotropic glutamate receptor-5 (mGluR5) expression in the dorsal root ganglion and markers of spinal glial activation were assessed. Joint distraction induced significant mechanical hyperalgesia during the 7 days post-injury (p < 0.001). Painful injury significantly increased PKCɛ expression in small- and medium-diameter neurons compared to sham (p < 0.05) and naïve tissue (p < 0.001). Similarly, mGluR5 expression was significantly elevated in small-diameter neurons after injury (p < 0.05). Spinal astrocytic activation after injury was also elevated over sham (p < 0.035) and naïve (p < 0.0001) levels; microglial activation was only greater than naïve levels (p < 0.006). Mean strains in the facet capsule during injury were 32.8 ± 12.9%, which were consistent with the strains associated with comparable degrees of hypersensitivity in the adult rat. These results suggest that adolescents may have a lower tissue tolerance to induce pain and associated nociceptive response than do adults.
Collapse
Affiliation(s)
- Christine L Weisshaar
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Dong L, Winkelstein BA. Simulated whiplash modulates expression of the glutamatergic system in the spinal cord suggesting spinal plasticity is associated with painful dynamic cervical facet loading. J Neurotrauma 2010; 27:163-74. [PMID: 19772459 DOI: 10.1089/neu.2009.0999] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The cervical facet joint and its capsule have been reported to be injured during whiplash scenarios and are a common source of chronic neck pain from whiplash. Both the metabotropic glutamate receptor 5 (mGluR5) and the excitatory amino acid carrier 1 (EAAC1) have pivotal roles in chronic pain. In this study, spinal mGluR5 and EAAC1 were quantified following painful facet joint distraction in a rat model of facet-mediated painful loading and were evaluated for their correlation with the severity of capsule loading. Rats underwent either a dynamic C6/C7 joint distraction simulating loading experienced during whiplash (distraction; n = 12) or no distraction (sham; n = 6) to serve as control. The severity of capsular loading was quantified using strain metrics, and mechanical allodynia was assessed after surgery. Spinal cord tissue was harvested at day 7 and the expression of mGluR5 and EAAC1 were quantified using Western blot analysis. Mechanical allodynia following distraction was significantly (p < 0.001) higher than sham. Spinal expression of mGluR5 was also significantly (p < 0.05) greater following distraction relative to sham. However, spinal EAAC1 was significantly (p = 0.0003) reduced compared to sham. Further, spinal mGluR5 expression was significantly positively correlated to capsule strain (p < 0.02) and mechanical allodynia (p < 0.02). Spinal EAAC1 expression was significantly negatively related to one of the strain metrics (p < 0.003) and mechanical allodynia at day 7 (p = 0.03). These results suggest that the spinal glutamatergic system may potentiate the persistent behavioral hypersensitivity that is produced following dynamic whiplash-like joint loading; chronic whiplash pain may be alleviated by blocking mGluR5 expression and/or enhancing glutamate transport through the neuronal transporter EAAC1.
Collapse
Affiliation(s)
- Ling Dong
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6392, USA
| | | |
Collapse
|
32
|
Lee KE, Winkelstein BA. Joint distraction magnitude is associated with different behavioral outcomes and substance P levels for cervical facet joint loading in the rat. THE JOURNAL OF PAIN 2009; 10:436-45. [PMID: 19327645 DOI: 10.1016/j.jpain.2008.11.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 10/26/2008] [Accepted: 11/20/2008] [Indexed: 01/30/2023]
Abstract
UNLABELLED The facet joint is a common source of pain in both the neck and low back, and can be injured by abnormal loading of the spinal joints. Whereas a host of nociceptive changes including neuronal activation, neuropeptide expression, and inflammatory mediator responses has been reported for rat models of joint pain, no such responses have been explicitly investigated or quantified for painful mechanical injury to the facet joint. Two magnitudes of joint loading were separately imposed in a rat model of cervical facet joint distraction: Painful and nonpainful distractions. Behavioral outcomes were defined by assessing mechanical hyperalgesia in the shoulders and forepaws. Substance P (SP) mRNA and protein levels were quantified in the dorsal root ganglion (DRG) and spinal cord at days 1 and 7 following distraction. Painful distraction produced mechanical hyperalgesia that was significantly greater (P < .010) than that for a nonpainful distraction. Painful distraction significantly increased spinal SP mRNA (P = .048) and SP protein expression in the DRG (P = .013) at day 7 compared to nonpainful distraction. However, spinal SP protein for painful distraction was significantly less (P = .024) than that for nonpainful distraction at day 1. Joint distractions producing different behavioral outcomes modulate SP mRNA and protein in the DRG and spinal cord, suggesting that SP responses may be involved with different temporal responses in painful joint loading. PERSPECTIVE SP mRNA and protein in the DRG and spinal cord are quantified at 2 time points after cervical facet joint distractions that separately do or do not produce mechanical hyperalgesia. Studies describe a role for SP to contribute to pain produced by mechanical joint loading.
Collapse
Affiliation(s)
- Kathryn E Lee
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104-6392, USA
| | | |
Collapse
|
33
|
Siegmund GP, Winkelstein BA, Ivancic PC, Svensson MY, Vasavada A. The anatomy and biomechanics of acute and chronic whiplash injury. TRAFFIC INJURY PREVENTION 2009; 10:101-112. [PMID: 19333822 DOI: 10.1080/15389580802593269] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Whiplash injury is the most common motor vehicle injury, yet it is also one of the most poorly understood. Here we examine the evidence supporting an organic basis for acute and chronic whiplash injuries and review the anatomical sites within the neck that are potentially injured during these collisions. For each proposed anatomical site--facet joints, spinal ligaments, intervertebral discs, vertebral arteries, dorsal root ganglia, and neck muscles--we present the clinical evidence supporting that injury site, its relevant anatomy, the mechanism of and tolerance to injury, and the future research needed to determine whether that site is responsible for some whiplash injuries. This article serves as a snapshot of the current state of whiplash biomechanics research and provides a roadmap for future research to better understand and ultimately prevent whiplash injuries.
Collapse
Affiliation(s)
- Gunter P Siegmund
- MEA Forensic Engineers & Scientists, 11-11151 Horseshoe Way, Richmond, BC, Canada.
| | | | | | | | | |
Collapse
|