1
|
Ding L, Hu DX, Yang L, Zhang WJ. Application of olfactory ensheathing cells in peripheral nerve injury and its complication with pathological pain. Neuroscience 2024; 560:120-129. [PMID: 39307415 DOI: 10.1016/j.neuroscience.2024.09.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/28/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024]
Abstract
Direct or indirect injury of peripheral nerve can lead to sensory and motor dysfunction, which can lead to pathological pain and seriously affect the quality of life and psychosomatic health of patients. While the internal repair function of the body after peripheral nerve injury is limited. Nerve regeneration is the key factor hindering the recovery of nerve function. At present, there is no effective treatment. Therefore, more and more attention have been paid to the development of foreground treatment to achieve functional recovery after peripheral nerve injury, including relief of pathological pain. Cell transplantation strategy is a therapeutic method with development potential in recent years, which can exert endogenous alternative repair by transplanting exogenous functional bioactive cells to the site of nerve injury. Olfactory ensheathing cells (OECs) are a special kind of glial cells, which have the characteristics of continuous renewal and survival. The mechanisms of promoting nerve regeneration and functional repair and relieving pathological pain by transplantation of OECs to peripheral nerve injury include secretion of a variety of neurotrophic factors, axonal regeneration and myelination, immune regulation, anti-inflammation, neuroprotection, promotion of vascular growth and improvement of inflammatory microenvironment around nerve injury. Different studies have shown that OECs combined with biomaterials have made some progress in the treatment of peripheral nerve injury and pathological pain. These biomaterials enhance the therapeutic effect of OECs. Therefore, the functional role of OECs in peripheral nerve injury and pathological pain was discussed in this paper.Although OECs are in the primary stage of exploration in the repair of peripheral nerve injury and the application of pain, but OECs transplantation may become a prospective therapeutic strategy for the treatment of peripheral nerve injury and pathological pain.
Collapse
Affiliation(s)
- Lin Ding
- The Second Affiliated Hospital, Nanchang University, Jiangxi Medical College, Nanchang City, Jiangxi Province 343000, China
| | - Dong-Xia Hu
- Rehabilitation Medicine Department, The second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province, China
| | - Liu Yang
- Rehabilitation Medicine Department, The second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province, China
| | - Wen-Jun Zhang
- Rehabilitation Medicine Department, The second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province, China.
| |
Collapse
|
2
|
Clinical application of stem cell therapy in neurogenic bladder: a systematic review and meta-analysis. Int Urogynecol J 2021; 33:2081-2097. [PMID: 34767058 DOI: 10.1007/s00192-021-04986-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/23/2021] [Indexed: 01/26/2023]
Abstract
INTRODUCTION AND HYPOTHESIS This review aims to investigate the effect of stem cell (SC) therapy on the management of neurogenic bladder (NGB) in four neurological diseases, including spinal cord injury (SCI), Parkinson's disease (PD), multiple sclerosis (MS), and stroke, in the clinical setting. METHODS An electronic database search was conducted in the Cochrane Library, EMBASE, Proquest, Clinicaltrial.gov , WHO, Google Scholar, MEDLINE via PubMed, Ovid, Web of Science, Scopus, ongoing trial registers, and conference proceedings in June 2019 and updated by hand searching on 1 February 2021. All randomized controlled trials (RCTs), quasi RCTs, phase I/II clinical trials, case-control, retrospective cohorts, and comprehensive case series that evaluated the regenerative potential of SCs on the management of NGB were included. Cochrane appraisal risk of bias checklist and the standardized critical appraisal instrument from the JBI Meta-Analysis of Statistics, Assessment, and Review Instrument (JBI-MAStARI) were used to appraise the studies. RESULTS Twenty-six studies among 1282 relevant publications met our inclusion criteria. Only SC therapy was applied for SCI or MS patients. Phase I/II clinical trials (without control arm) were the most conducted studies, and only four were RCTs. Four studies with 153 participants were included in the meta-analysis. The main route of transplantation was via lumbar puncture. There were no serious adverse events. Only nine studies in SCI and one in MS have used urodynamics, and the others have reported improvement based on patient satisfaction. SC therapy did not significantly improve residual urine volume, detrusor pressure, and maximum bladder capacity. Also, the quality of these publications was low or unclear. CONCLUSION Although most clinical trials provide evidence of the safety and effectiveness of MSCs on the management of NGB, the meta-analysis results did not show a significant improvement; however, the interpretation of study results is difficult because of the lack of placebo controls.
Collapse
|
3
|
Zhu S, Ge J, Wang Y, Qi F, Ma T, Wang M, Yang Y, Liu Z, Huang J, Luo Z. A synthetic oxygen carrier-olfactory ensheathing cell composition system for the promotion of sciatic nerve regeneration. Biomaterials 2013; 35:1450-61. [PMID: 24246645 DOI: 10.1016/j.biomaterials.2013.10.071] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 10/27/2013] [Indexed: 10/26/2022]
Abstract
The treatment of lengthy peripheral nerve defects is challenging in the field of the regenerative medicine. Thus far, many nerve scaffolds with seeded cells have been developed, which hold great potential to replace nerve autograft in bridging lengthy nerve defects by providing guiding and bioactive cues. However, low oxygen status has been found within nerve scaffolds after their implantation in vivo, which has been shown to result in death or loss of function of supportive cells, and significantly limit nerve regeneration and functional recovery after nerve injury. In the present study, perfluorotributylamine (PFTBA) was introduced into a collagen-chitosan conduit within which olfactory ensheathing cells (OECs) were seeded to increase oxygen supply to OECs, as well as regenerating axons. The "PFTBA-OECs" enriched scaffolds were then used to bridge a 15-mm-long sciatic nerve defect in rats. Both nerve regeneration and functional recovery were examined at pre-defined time points after surgery. We found that the number of GFP-labeled OECs was significantly higher in the "PFTBA-OECs" scaffold than that in the single OECs scaffold. In addition, PFTBA was found to enhance the beneficial effect of OECs-enriched scaffold on axonal regeneration and functional recovery. All these findings indicate that the "PFTBA-OECs" enriched scaffolds are capable of promoting nerve regeneration and functional recovery, which might be attributable, at least in part, to their beneficial effect on the survival of OECs after their implantation in vivo.
Collapse
Affiliation(s)
- Shu Zhu
- Institute of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jun Ge
- Institute of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yuqing Wang
- Institute of Orthopaedics, Bethune International Peace Hospital, Shijiazhuang, Hebei 050082, China
| | - Fengyu Qi
- Department of Orthopaedics, Wuhan General Hospital of Guangzhou Command of Chinese PLA, Wuhan, Hubei 430070, China
| | - Teng Ma
- Institute of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Meng Wang
- General Political Department Hospital of PLA, Beijing 100120, China
| | - Yafeng Yang
- Institute of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Zhongyang Liu
- Institute of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jinghui Huang
- Institute of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Zhuojing Luo
- Institute of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
4
|
Rao Y, Zhu W, Liu H, Jia C, Zhao Q, Wang Y. Clinical application of olfactory ensheathing cells in the treatment of spinal cord injury. J Int Med Res 2013; 41:473-81. [PMID: 23569013 DOI: 10.1177/0300060513476426] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES To investigate the safety and therapeutic efficacy of autologous olfactory ensheathing cell (OEC) transplantation in cervical spinal cord injury (SCI). METHODS Patients with cervical SCI of >6 months' duration were treated with autologous OECs, injected into the area surrounding the SCI under magnetic resonance imaging guidance, twice a week for 4 weeks. Patients were evaluated before treatment and at 3, 6, 12 and 24 months post-treatment, using the American Spinal Injury Association (ASIA) Impairment Scale, the ASIA sensory and motor score and the Functional Independence Measure (FIM) score. RESULTS Eight patients were recruited to the study. Three months after treatment, ASIA and FIM scores had improved significantly compared with pretreatment, though by 1 year no further significant improvements in the ASIA score were seen. The return of substantial sensation and motor activity in various muscles below the injury level was observed in three patients during follow-up. In addition, bladder function was restored in two patients. There were no serious complications postoperatively or during the follow-up period. CONCLUSIONS This study provides preliminary evidence of the safety and possible efficacy of autologous OEC transplantation.
Collapse
Affiliation(s)
- Yaojian Rao
- Luoyang Orthopaedic-Traumatological Hospital, Luoyang, China
| | | | | | | | | | | |
Collapse
|
5
|
Penna V, Stark GB, Wewetzer K, Radtke C, Lang EM. Comparison of Schwann cells and olfactory ensheathing cells for peripheral nerve gap bridging. Cells Tissues Organs 2012; 196:534-42. [PMID: 22699447 DOI: 10.1159/000338059] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2012] [Indexed: 01/21/2023] Open
Abstract
INTRODUCTION Previously, we introduced the biogenic conduit (BC) as a novel autologous nerve conduit for bridging peripheral nerve defects and tested its regenerative capacity in a short- and long-term setting. The aim of the present study was to clarify whether intraluminal application of regeneration-promoting glial cells, including Schwann cells (SC) and olfactory ensheathing cells (OEC), displayed differential effects after sciatic nerve gap bridging. MATERIAL AND METHODS BCs were generated as previously described. The conduits filled with fibrin/SC (n = 8) and fibrin/OEC (n = 8) were compared to autologous nerve transplants (NT; n = 8) in the 15-mm sciatic nerve gap lesion model of the rat. The sciatic functional index was evaluated every 4 weeks. After 16 weeks, histological evaluation followed regarding nerve area, axon number, myelination index and N ratio. RESULTS Common to all groups was a continual improvement in motor function during the observation period. Recovery was significantly better after SC transplantation compared to OEC (p < 0.01). Both cell transplantation groups showed significantly worse function than the NT group (p < 0.01). Whereas nerve area and axon number were correlated to function, being significantly lowest in the OEC group (p < 0.001), both cell groups showed lowered myelination (p < 0.001) and lower N ratio compared to the NT group. DISCUSSION SC-filled BCs led to improved regeneration compared to OEC-filled BCs in a 15-mm-long nerve gap model of the rat.
Collapse
Affiliation(s)
- Vincenzo Penna
- Department of Plastic and Hand Surgery, University Medical Center Freiburg, Freiburg, Germany.
| | | | | | | | | |
Collapse
|
6
|
Saberi H, Firouzi M, Habibi Z, Moshayedi P, Aghayan HR, Arjmand B, Hosseini K, Razavi HE, Yekaninejad MS. Safety of intramedullary Schwann cell transplantation for postrehabilitation spinal cord injuries: 2-year follow-up of 33 cases. J Neurosurg Spine 2011; 15:515-525. [PMID: 21800956 DOI: 10.3171/2011.6.spine10917] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Many experimental studies on spinal cord injuries (SCIs) support behavioral improvement after Schwann cell treatment. This study was conducted to evaluate safety issues 2 years after intramedullary Schwann cell transplantation in 33 consecutively selected patients with SCI. METHODS Of 356 patients with SCIs who had completed at least 6 months of a conventional rehabilitation program and who were screened for the study criteria, 33 were enrolled. After giving their informed consent, they volunteered for participation. They underwent sural nerve harvesting and intramedullary injection of a processed Schwann cell solution. Outcome assessments included a general health questionnaire, neurological examination, and functional recordings in terms of American Spinal Injury Association (ASIA) and Functional Independence Measure scoring, which were documented by independent observers. There were 24 patients with thoracic and 9 with cervical injuries. Sixteen patients were categorized in ASIA Grade A, and the 17 remaining participants had ASIA Grade B. RESULTS There were no cases of deep infection, and the follow-up MR imaging studies obtained at 2 years did not reveal any deformity related to the procedure. There was no case of permanent neurological worsening or any infectious or viral complications. No new increment in syrinx size or abnormal tissue and/or tumor formation were observed on contrast-enhanced MR imaging studies performed 2 years after the treatment. CONCLUSIONS Preliminary results, especially in terms of safety, seem to be promising, paving the way for future cell therapy trials.
Collapse
Affiliation(s)
- Hooshang Saberi
- Department of Neurosurgery, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Windus LCE, Chehrehasa F, Lineburg KE, Claxton C, Mackay-Sim A, Key B, St John JA. Stimulation of olfactory ensheathing cell motility enhances olfactory axon growth. Cell Mol Life Sci 2011; 68:3233-47. [PMID: 21318262 PMCID: PMC11115065 DOI: 10.1007/s00018-011-0630-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 01/06/2011] [Accepted: 01/13/2011] [Indexed: 10/18/2022]
Abstract
Axons of primary olfactory neurons are intimately associated with olfactory ensheathing cells (OECs) from the olfactory epithelium until the final targeting of axons within the olfactory bulb. However, little is understood about the nature and role of interactions between OECs and axons during development of the olfactory nerve pathway. We have used high resolution time-lapse microscopy to examine the growth and interactions of olfactory axons and OECs in vitro. Transgenic mice expressing fluorescent reporters in primary olfactory axons (OMP-ZsGreen) and ensheathing cells (S100ß-DsRed) enabled us to selectively analyse these cell types in explants of olfactory epithelium. We reveal here that rather than providing only a permissive substrate for axon growth, OECs play an active role in modulating the growth of pioneer olfactory axons. We show that the interactions between OECs and axons were dependent on lamellipodial waves on the shaft of OEC processes. The motility of OECs was mediated by GDNF, which stimulated cell migration and increased the apparent motility of the axons, whereas loss of OECs via laser ablation of the cells inhibited olfactory axon outgrowth. These results demonstrate that the migration of OECs strongly regulates the motility of axons and that stimulation of OEC motility enhances axon extension and growth cone activity.
Collapse
Affiliation(s)
- Louisa C. E. Windus
- National Centre for Adult Stem Cell Research, Eskitis Institute For Cell and Molecular Therapies, Griffith University, Nathan 4111, Brisbane, QLD Australia
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD Australia
| | - Fatemeh Chehrehasa
- National Centre for Adult Stem Cell Research, Eskitis Institute For Cell and Molecular Therapies, Griffith University, Nathan 4111, Brisbane, QLD Australia
| | - Katie E. Lineburg
- National Centre for Adult Stem Cell Research, Eskitis Institute For Cell and Molecular Therapies, Griffith University, Nathan 4111, Brisbane, QLD Australia
| | - Christina Claxton
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD Australia
| | - Alan Mackay-Sim
- National Centre for Adult Stem Cell Research, Eskitis Institute For Cell and Molecular Therapies, Griffith University, Nathan 4111, Brisbane, QLD Australia
| | - Brian Key
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD Australia
| | - James A. St John
- National Centre for Adult Stem Cell Research, Eskitis Institute For Cell and Molecular Therapies, Griffith University, Nathan 4111, Brisbane, QLD Australia
| |
Collapse
|
8
|
Wewetzer K, Radtke C, Kocsis J, Baumgärtner W. Species-specific control of cellular proliferation and the impact of large animal models for the use of olfactory ensheathing cells and Schwann cells in spinal cord repair. Exp Neurol 2011; 229:80-7. [DOI: 10.1016/j.expneurol.2010.08.029] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 08/22/2010] [Indexed: 10/19/2022]
|
9
|
Defining the morphological phenotype: 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) is a novel marker for in situ detection of canine but not rat olfactory ensheathing cells. Cell Tissue Res 2011; 344:391-405. [PMID: 21519895 DOI: 10.1007/s00441-011-1168-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 03/23/2011] [Indexed: 10/18/2022]
Abstract
Olfactory ensheathing cells (OECs) are the non-myelinating glial cells of the olfactory nerves and bulb. The fragmentary characterization of OECs in situ during normal development may be due to their small size requiring intricate ultrastructural analysis and to the fact that available markers for in situ detection are either expressed only by OEC subpopulations or lost during development. In the present study, we searched for markers with stable expression in OECs and investigated the spatiotemporal distribution of CNPase, an early oligodendrocyte/Schwann cell marker, in comparison with the prototype marker p75(NTR). Anti-CNPase antibodies labeled canine but not rat OECs in situ, while Schwann cells and oligodendrocytes were positive in both species. CNPase immunoreactivity in the dog was confined to all OECs throughout the postnatal development and associated with the entire cell body, including its finest processes, while p75(NTR) was mainly detected in perineural cells and only in some neonatal OECs. Adult olfactory bulb slices displayed CNPase expression after 4 and 10 days, while p75(NTR) was detectable only after 10 days in vitro. Finally, treatment of purified adult canine OECs with fibroblast growth factor-2 significantly reduced CNPase expression at the protein and mRNA level. Taken together, we conclude that CNPase but not p75(NTR) is a stable marker suitable for in situ visualization of OECs that will facilitate their light-microscopic characterization and challenge our general view of OEC marker expression in situ. The fact that canine but not rat OECs expressed CNPase supports the idea that glia from large animals differs substantially from rodents.
Collapse
|
10
|
Cell surface expression of 27C7 by neonatal rat olfactory ensheathing cells in situ and in vitro is independent of axonal contact. Histochem Cell Biol 2011; 135:397-408. [DOI: 10.1007/s00418-011-0796-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2011] [Indexed: 01/09/2023]
|
11
|
Guérout N, Duclos C, Drouot L, Abramovici O, Bon-Mardion N, Lacoume Y, Jean L, Boyer O, Marie JP. Transplantation of olfactory ensheathing cells promotes axonal regeneration and functional recovery of peripheral nerve lesion in rats. Muscle Nerve 2011; 43:543-51. [PMID: 21305567 DOI: 10.1002/mus.21907] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2010] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Olfactory ensheathing cells (OECs) hold promise for cell therapy because they may promote regeneration of the central nervous system. However, OECs have been less studied after peripheral nerve injury (PNI). The purpose of this investigation was to determine the effect of OEC transplantation on a severe sciatic nerve (SN) lesion. METHODS OECs were injected in rats after section and 2-cm resection of the SN. RESULTS Three months after therapy, muscle strength and morphometric studies showed complete restoration of the contractile properties of the gastrocnemius and complete repair of the SN. Immunohistochemistry and RT-PCR studies indicated an increase in the presence of neurotrophic factors. Interestingly, tracking of green fluorescent protein (GFP)-positive OECs showed that no OECs were present in the SN. DISCUSSION Our results demonstrate that, after severe PNI, OECs have remarkable potential for nerve regeneration by creating a favorable microenvironment.
Collapse
Affiliation(s)
- Nicolas Guérout
- Experimental Surgery Laboratory, Groupe de Recherche sur le Handicap Ventilatoire, UPRES EA 3830, European Institute for Peptide Research (IFRMP 23), Institute for Medical Research, Faculty of Medicine and Pharmacy, University of Rouen, 22 Boulevard Gambetta, 76183 Rouen, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Novikova LN, Lobov S, Wiberg M, Novikov LN. Efficacy of olfactory ensheathing cells to support regeneration after spinal cord injury is influenced by method of culture preparation. Exp Neurol 2010; 229:132-42. [PMID: 20932826 DOI: 10.1016/j.expneurol.2010.09.021] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 09/22/2010] [Accepted: 09/23/2010] [Indexed: 12/27/2022]
Abstract
Olfactory ensheathing cells (OEC) have been shown to stimulate regeneration, myelination and functional recovery in different spinal cord injury models. However, recent reports from several laboratories have challenged this treatment strategy. The discrepancy in results could be attributed to many factors including variations in culture protocols. The present study investigates whether the differences in culture preparation could influence neuroprotective and growth-promoting effects of OEC after transplantation into the injured spinal cord. Primary OEC cultures were purified using method of differential cell adhesion (a-OEC) or separated with immunomagnetic beads (b-OEC). After cervical C4 hemisection in adult rats, short-term (3 weeks) or long-term (7 weeks) cultured OEC were transplanted into the lateral funiculus at 1mm rostral and caudal to the transection site. At 3-8 weeks after transplantation, labeled OEC were mainly found in the injection sites and in the trauma zone. Short-term cultured a-OEC supported regrowth of rubrospinal, raphaespinal and CGRP-positive fibers, and attenuated retrograde degeneration in the red nucleus. Short-term cultured b-OEC failed to promote axonal regrowth but increased the density of rubrospinal axons within the dorsolateral funiculus and provided significant neuroprotection for axotomized rubrospinal neurons. In addition, short-term cultured OEC attenuated sprouting of rubrospinal terminals. In contrast, long-term cultured OEC neither enhanced axonal growth nor prevented retrograde cell death. The results suggest that the age of OEC in culture and the method of cell purification could affect the efficacy of OEC to support neuronal survival and regeneration after spinal cord injury. This article is part of a Special Issue entitled: Understanding olfactory ensheathing glia and their prospect for nervous system repair.
Collapse
Affiliation(s)
- Liudmila N Novikova
- Department of Integrative Medical Biology, Section of Anatomy, Umeå University, Umeå, Sweden
| | | | | | | |
Collapse
|
13
|
Guérout N, Derambure C, Drouot L, Bon-Mardion N, Duclos C, Boyer O, Marie JP. Comparative gene expression profiling of olfactory ensheathing cells from olfactory bulb and olfactory mucosa. Glia 2010; 58:1570-80. [DOI: 10.1002/glia.21030] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
14
|
Pettersson J, Lobov S, Novikova LN. Labeling of olfactory ensheathing glial cells with fluorescent tracers for neurotransplantation. Brain Res Bull 2010; 81:125-32. [PMID: 19828127 DOI: 10.1016/j.brainresbull.2009.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 09/28/2009] [Accepted: 10/05/2009] [Indexed: 01/05/2023]
Abstract
Development of cell-based treatment strategies for repair of the injured nervous system requires cell tracing techniques to follow the fate of transplanted cells and their interaction with the host tissue. The present study investigates the efficacy of fluorescent cell tracers Fast Blue, PKH26, DiO and CMFDA for long-term labeling of olfactory ensheathing glial cells (OEC) in culture and following transplantation into the rat spinal cord. All tested dyes produced very efficient initial labeling of p75-positive OEC in culture. The number of Fast Blue-positive cells remained largely unchanged during the first 4 weeks but only about 21% of the cells retained tracer 6 weeks after labeling. In contrast, the number of cells labeled with PKH26 and DiO was reduced to 51-55% after 2 weeks in culture and reached 8-12% after 4-6 weeks. CMFDA had completely disappeared from the cells 2 weeks after labeling. AlamarBlue assay showed that among four tested tracers only CMFDA reduced proliferation rate of the OEC. After transplantation into spinal cord, Fast Blue-labeled OEC survived for at least 8 weeks but demonstrated very limited migration from the injection sites. Additional immunostaining with glial and neuronal markers revealed signs of dye leakage from the transplanted cells resulted in weak labeling of microglia and spinal neurons. The results show that Fast Blue is an efficient cell marker for cultured OEC. However, transfer of the dye from the transplanted cells to the host tissue should be considered and correctly interpreted.
Collapse
Affiliation(s)
- Jonas Pettersson
- Department of Integrative Medical Biology, Section of Anatomy, Umeå University, SE-901 87 Umeå, Sweden
| | | | | |
Collapse
|
15
|
Radtke C, Lankford KL, Wewetzer K, Imaizumi T, Fodor WL, Kocsis JD. Impaired spinal cord remyelination by long-term cultured adult porcine olfactory ensheathing cells correlates with altered in vitro phenotypic properties. Xenotransplantation 2010; 17:71-80. [DOI: 10.1111/j.1399-3089.2009.00562.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
16
|
Bock P, Rohn K, Beineke A, Baumgärtner W, Wewetzer K. Site-specific population dynamics and variable olfactory marker protein expression in the postnatal canine olfactory epithelium. J Anat 2009; 215:522-35. [PMID: 19788548 DOI: 10.1111/j.1469-7580.2009.01147.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The main olfactory epithelium is a pseudostratified columnar epithelium that displays neurogenesis over the course of a lifetime. New olfactory neurons arise basally and are transferred to the middle third of the epithelium during maturation. It is generally believed that this pattern is present throughout the olfactory area. In the present study, we show that the postnatal canine olfactory epithelium is composed of two distinct types of epithelium, designated A and B, which not only differ in olfactory neuron morphology, marker expression and basal cell proliferation but also display a patchy distribution and preferential localization within the nasal cavity. Type A epithelium, abundant in the caudal part of the olfactory area, contains well-differentiated olfactory neurons positive for olfactory marker protein but low numbers of immature neurons and proliferating basal cells, as visualized by TrkB/Human Natural Killer-1 (HNK-1) glyco-epitope and Ki-67 immunostaining, respectively. In contrast, type B epithelium is mainly found in the rostral part and contains smaller and elongated neurons that display increased levels of TrkB/Human Natural Killer-1 (HNK-1) glyco-epitope immunoreactivity and a higher number of Ki-67-positive basal cells but lower and variable levels of olfactory marker protein. The vomeronasal organ displays a uniform distribution of molecular markers and proliferating basal cells. The observation that olfactory marker protein in type A and B epithelium is preferentially localized to the nucleus and cytoplasm, respectively, implies correlation between subcellular localization and olfactory neuron maturation and may indicate distinct functional roles of olfactory marker protein. Whether the site-specific population dynamics in the postnatal canine olfactory epithelium revealed in the present study are modulated by physiological parameters, such as airflow, has to be clarified in future studies.
Collapse
Affiliation(s)
- Patricia Bock
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | | | | | | |
Collapse
|
17
|
Techangamsuwan S, Haas L, Rohn K, Baumgärtner W, Wewetzer K. Distinct cell tropism of canine distemper virus strains to adult olfactory ensheathing cells and Schwann cells in vitro. Virus Res 2009; 144:195-201. [PMID: 19433119 DOI: 10.1016/j.virusres.2009.04.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 04/29/2009] [Accepted: 04/30/2009] [Indexed: 10/20/2022]
Abstract
Canine distemper virus (CDV) can enter the brain via infection of olfactory neurons. Whether olfactory ensheathing cells (OECs) are also infected by CDV, and if yes, how they respond to the virus has remained enigmatic. Here, we exposed adult canine OECs in vitro to several attenuated (CDV-2544, CDV-R252, CDV-Ond, CDV-OndeGFP) and one virulent CDV strain (CDV-5804PeGFP) and studied their susceptibility compared to Schwann cells, a closely related cell type sharing the phagocytizing activity. We show that OECs and Schwann cells were infected by CDV strains albeit to different levels. Ten days post-infection (dpi), a mild to severe cytopathic effect ranging from single cell necrosis to layer detachment was noted. The percentage of infection increased during 10 dpi and viral progenies were detected in each culture using virus titration. Interestingly, CDV-2544, CDV-OndeGFP, and CDV-5804PeGFP predominantly infected OECs, while CDV-Ond targeted Schwann cells. No significant differences were found between the virulent and attenuated CDV strains. The observation of a CDV strain-specific cell tropism is evidence for significant molecular differences between OECs and Schwann cells. Whether these differences are either related to strain-specific distemper pathogenesis or support a role of OECs during CDV infection and virus spread needs to be addressed in future studies.
Collapse
Affiliation(s)
- Somporn Techangamsuwan
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | | | | | | | | |
Collapse
|