1
|
KLF6 and STAT3 co-occupy regulatory DNA and functionally synergize to promote axon growth in CNS neurons. Sci Rep 2018; 8:12565. [PMID: 30135567 PMCID: PMC6105645 DOI: 10.1038/s41598-018-31101-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/10/2018] [Indexed: 11/26/2022] Open
Abstract
The failure of axon regeneration in the CNS limits recovery from damage and disease. Members of the KLF family of transcription factors can exert both positive and negative effects on axon regeneration, but the underlying mechanisms are unclear. Here we show that forced expression of KLF6 promotes axon regeneration by corticospinal tract neurons in the injured spinal cord. RNA sequencing identified 454 genes whose expression changed upon forced KLF6 expression in vitro, including sub-networks that were highly enriched for functions relevant to axon extension including cytoskeleton remodeling, lipid synthesis, and bioenergetics. In addition, promoter analysis predicted a functional interaction between KLF6 and a second transcription factor, STAT3, and genome-wide footprinting using ATAC-Seq data confirmed frequent co-occupancy. Co-expression of the two factors yielded a synergistic elevation of neurite growth in vitro. These data clarify the transcriptional control of axon growth and point the way toward novel interventions to promote CNS regeneration.
Collapse
|
2
|
Bhattarai S, Sochacka-Marlowe A, Crutchfield G, Khan R, Londraville R, Liu Q. Krüpple-like factors 7 and 6a mRNA expression in adult zebrafish central nervous system. Gene Expr Patterns 2016; 21:41-53. [PMID: 27364471 DOI: 10.1016/j.gep.2016.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 06/15/2016] [Accepted: 06/18/2016] [Indexed: 11/25/2022]
Abstract
Krüpple-like factors (KLFs) are transcription factors with zinc finger DNA binding domains known to play important roles in brain development and central nervous system (CNS) regeneration. There is little information on KLFs expression in adult vertebrate CNS. In this study, we used in situ hybridization to examine Klf7 mRNA (klf7) and Klf6a mRNA (klf6a) expression in adult zebrafish CNS. Both klfs exhibit wide and similar expression in the zebrafish CNS. Brain areas containing strongly labeled cells include the ventricular regions of the dorsomedial telencephalon, the ventromedial telencephalon, periventricular regions of the thalamus and hypothalamus, torus longitudinalis, stratum periventriculare of the optic tectum, granular regions of the cerebellar body and valvula, and superficial layers of the facial and vagal lobes. In the spinal cord, klf7- and klf6a-expressing cells are found in both the dorsal and ventral horns. Numerous sensory structures (e.g. auditory, lateral line, olfactory and visual) and several motor nuclei (e.g. oculomotor, trigeminal, and vagal motor nuclei) contain klf7- and/or klf6a-expressing cells. Our results may provide useful information for determining these Klfs in maintenance and/or function in adult CNS.
Collapse
Affiliation(s)
- Sunil Bhattarai
- Department of Biology and Integrated Bioscience Program, University of Akron, Akron, OH 44325, United States
| | - Alicja Sochacka-Marlowe
- Department of Biology and Integrated Bioscience Program, University of Akron, Akron, OH 44325, United States
| | - Gerald Crutchfield
- Department of Biology and Integrated Bioscience Program, University of Akron, Akron, OH 44325, United States
| | - Ramisha Khan
- Department of Biology and Integrated Bioscience Program, University of Akron, Akron, OH 44325, United States
| | - Richard Londraville
- Department of Biology and Integrated Bioscience Program, University of Akron, Akron, OH 44325, United States
| | - Qin Liu
- Department of Biology and Integrated Bioscience Program, University of Akron, Akron, OH 44325, United States.
| |
Collapse
|
3
|
Dobrivojević M, Habek N, Kapuralin K, Ćurlin M, Gajović S. Krüppel-like transcription factor 8 (Klf8) is expressed and active in the neurons of the mouse brain. Gene 2015; 570:132-40. [PMID: 26071188 DOI: 10.1016/j.gene.2015.06.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 05/27/2015] [Accepted: 06/04/2015] [Indexed: 10/23/2022]
Abstract
Krüppel-like transcription factor 8 (KLF8) is a transcription factor suggested to be involved in various cellular events, including malignant cell transformation, still its expression in the adult rodent brain remained unknown. To analyze Klf8 in the mouse brain and to identify cell types expressing it, a specific transgenic Klf8(Gt1Gaj) mouse was used. The resulting Klf8 gene-driven β-galactosidase activity was visualized by X-gal histochemical staining of the brain sections. The obtained results were complemented by in situ RNA hybridization and immunohistochemistry. Klf8 was highly expressed throughout the adult mouse brain gray matter including the cerebral cortex, hippocampus, olfactory bulb, hypothalamus, pallidum, and striatum, but not in the cerebellum. Immunofluorescent double-labeling revealed that KLF8-immunoreactive cells were neurons, and the staining was located in their nucleus. This was the first study showing that Klf8 was highly expressed in various regions of the mouse brain and in particular in the neurons, where it was localized in the cell nuclei.
Collapse
Affiliation(s)
- Marina Dobrivojević
- University of Zagreb School of Medicine, Croatian Institute for Brain Research, Zagreb, Croatia
| | - Nikola Habek
- University of Zagreb School of Medicine, Croatian Institute for Brain Research, Zagreb, Croatia
| | - Katarina Kapuralin
- University of Zagreb School of Medicine, Croatian Institute for Brain Research, Zagreb, Croatia
| | - Marija Ćurlin
- University of Zagreb School of Medicine, Croatian Institute for Brain Research, Zagreb, Croatia
| | - Srećko Gajović
- University of Zagreb School of Medicine, Croatian Institute for Brain Research, Zagreb, Croatia.
| |
Collapse
|
4
|
MiR-181a regulates blood-tumor barrier permeability by targeting Krüppel-like factor 6. J Cereb Blood Flow Metab 2014; 34:1826-36. [PMID: 25182666 PMCID: PMC4269760 DOI: 10.1038/jcbfm.2014.152] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 06/29/2014] [Accepted: 07/28/2014] [Indexed: 12/18/2022]
Abstract
Blood-tumor barrier (BTB) constitutes an efficient organization of tight junctions that impairs the delivery of therapeutic drugs. However, the methods and molecular mechanisms underlying the BTB opening remain elusive. MicroRNAs (miRNAs) have recently emerged as key regulators of various biologic processes and therapeutic targets. In this study, we have identified microRNA-181a (miR-181a) as a critical miRNA in opening BTB. MicroRNA-181a expression was upregulated in glioma endothelial cells (GECs), which were obtained by coculturing endothelial cells (ECs) with glioma cells. Overexpression of miR-181a resulted in an impaired and permeability increased BTB, and meanwhile reduced the expression of zonula occluden (ZO)-1, occludin, and claudin-5. Kruppel-like factor 6 (KLF6), a transcription factor of the zinc-finger family, was downregulated in GECs. Mechanistic investigations defined it as a direct and functional downstream target of miR-181a, which was involved in the regulation of BTB permeability and the expression of ZO-1, occludin, and claudin-5. Furthermore, luciferase assays and chromatin immunoprecipitation assays showed that KLF6 upregulated the promoter activities and interacted with the promoters of ZO-1, occludin, and claudin-5 in GECs. Collectively, we showed the possibility that overexpression of miR-181a contributes to the increased permeability of BTB by targeting KLF6, thereby revealing potential therapeutic targets for the treatment of brain gliomas.
Collapse
|
5
|
Ollila HM, Kettunen J, Pietiläinen O, Aho V, Silander K, Kronholm E, Perola M, Lahti J, Räikkönen K, Widen E, Palotie A, Eriksson JG, Partonen T, Kaprio J, Salomaa V, Raitakari O, Lehtimäki T, Sallinen M, Härmä M, Porkka-Heiskanen T, Paunio T. Genome-wide association study of sleep duration in the Finnish population. J Sleep Res 2014; 23:609-618. [PMID: 25109461 DOI: 10.1111/jsr.12175] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 05/10/2014] [Indexed: 12/19/2022]
Abstract
Sleep duration is genetically regulated, but the genetic variants are largely unknown. We aimed to identify such genes using a genome-wide association study (GWAS) combined with RNA expression at the population level, and with experimental verification. A GWAS was performed in a Finnish sample (n = 1941), and variants with suggestive association (P < 5 × 10(-5) ) were tested in a follow-up sample from the same population with sleep duration (n = 6834) and time in bed (n = 1720). Variants with pointwise association of P < 0.05 in the follow-up sample were analysed further. First, we correlated genotypes with transcript expression levels with sleep duration (n = 207). The expression levels of significant transcripts were further studied in experimental sleep restriction. Of the 31 variants with P < 5 × 10(-5) in the discovery sample, three variants showed nominal allelic association (P < 0.05) in the follow-up sample: rs10914351, near PTPRU (P = 0.049), rs1037079 in PCDH7-CENTD1 (P = 0.011) and rs2031573 near KLF6 (P = 0.044). The risk alleles for shorter sleep (rs2031573 and rs1037079) were also associated with higher KLF6 and PCDH7 expression levels (P < 0.05). Experimental sleep restriction increased the expression of KLF6 (P < 0.01). These data suggest that rs2031573 near KLF6 or related loci and rs1037079 between PCDH7-CENTD1 or related loci may contribute to the regulation of sleep duration via gene expression. These results illustrate the utility of combining different analytical approaches to identify genetic determinants for traits related to sleep physiology. However, additional studies are needed in order to understand the roles of KLF6 and PCDH7 in sleep regulation.
Collapse
Affiliation(s)
- Hanna M Ollila
- Public Health Genomics Unit and Institute for Molecular Medicine FIMM, National Institute for Health and Welfare, Helsinki, Finland.,Institute of Biomedicine, Physiology, University of Helsinki, Helsinki, Finland.,Department of Psychiatry, University of Helsinki, Helsinki, Finland
| | - Johannes Kettunen
- Public Health Genomics Unit and Institute for Molecular Medicine FIMM, National Institute for Health and Welfare, Helsinki, Finland
| | - Olli Pietiläinen
- Public Health Genomics Unit and Institute for Molecular Medicine FIMM, National Institute for Health and Welfare, Helsinki, Finland.,The Wellcome Trust Sanger Institute, Cambridge, UK
| | - Vilma Aho
- Institute of Biomedicine, Physiology, University of Helsinki, Helsinki, Finland
| | - Kaisa Silander
- Public Health Genomics Unit and Institute for Molecular Medicine FIMM, National Institute for Health and Welfare, Helsinki, Finland
| | - Erkki Kronholm
- Population Studies Unit, Department of Chronic Disease Prevention, National Institute for Health and Welfare, Turku, Finland
| | - Markus Perola
- Public Health Genomics Unit and Institute for Molecular Medicine FIMM, National Institute for Health and Welfare, Helsinki, Finland
| | - Jari Lahti
- Institute of Behavioural Sciences, University of Helsinki, Helsinki, Finland.,Folkhälsan Research Centre, Helsinki, Finland
| | - Katri Räikkönen
- Institute of Behavioural Sciences, University of Helsinki, Helsinki, Finland.,Folkhälsan Research Centre, Helsinki, Finland
| | - Elisabeth Widen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Aarno Palotie
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland.,Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.,Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA.,Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Johan G Eriksson
- Folkhälsan Research Centre, Helsinki, Finland.,Unit of General Practice, Helsinki University Central Hospital, Helsinki, Finland.,Vasa Central Hospital, Vasa, Finland
| | - Timo Partonen
- Department of Mental Health and Substance Abuse Services, National Institute for Health and Welfare, Helsinki, Finland
| | - Jaakko Kaprio
- Department of Mental Health and Substance Abuse Services, National Institute for Health and Welfare, Helsinki, Finland.,Department of Public Health, Hjelt Institute University of Helsinki, Helsinki, Finland
| | - Veikko Salomaa
- Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland
| | - Olli Raitakari
- Research Centre of Applied and Preventive Cardiovascular Medicine and the Department of Clinical Physiology and Nuclear Medicine, University of Turku and Turku University Hospital, Turku, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories and Tampere University School of Medicine, Tampere, Finland
| | - Mikael Sallinen
- Working Hours, Alertness and Professional Traffic Team, Finnish Institute of Occupational Health, Helsinki, Finland
| | - Mikko Härmä
- Working Hours, Alertness and Professional Traffic Team, Finnish Institute of Occupational Health, Helsinki, Finland
| | | | - Tiina Paunio
- Public Health Genomics Unit and Institute for Molecular Medicine FIMM, National Institute for Health and Welfare, Helsinki, Finland.,Department of Psychiatry, University of Helsinki, Helsinki, Finland
| |
Collapse
|
6
|
Gui T, Wang Y, Zhang L, Wang W, Zhu H, Ding W. Krüppel-like factor 6 rendered rat Schwann cell more sensitive to apoptosis via upregulating FAS expression. PLoS One 2013; 8:e82449. [PMID: 24324791 PMCID: PMC3853331 DOI: 10.1371/journal.pone.0082449] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 11/02/2013] [Indexed: 12/12/2022] Open
Abstract
Krüppel-like factor 6 (KLF6) is a tumor suppressor gene and play a role in the regulation of cell proliferation and apoptosis. After the peripheral nerve injury (PNI), the microenvironment created by surrounding Schwann cells (SCs) is a critical determinant of its regenerative potential. In this study, we examined the effects of KLF6 on SCs responses during PNI. Both KLF6 mRNA and protein expression levels were upregulated in the injured sciatic nerve, and immunofluorescence results showed that many KLF6-positive cells simultaneously expressed the SC markers S-100 and p75NTR. The apoptosis inducers TNFα and cisplatin upregulated KLF6 expression in primary cultured SCs and the SC line RSC96. Although KLF6 overexpression exacerbated cisplatin- and TNFα-induced apoptosis, expression levels of the apoptosis regulators Bcl2 and Bax were not significantly affected in either KLF6-overexpressing or KLF6-depleted RSC96 cells. Realtime PCR arrays and qRT-PCR demonstrated that KLF6 overexpression upregulated four pro-apoptotic genes, FAS, TNF, TNFSF12, and PYCARD, and inhibited expression of the anti-apoptotic IL10 gene expression. Further analysis revealed that FAS protein expression was positively correlated with KLF6 expression in SCs. These data suggest that KLF6 upregulation may render SCs more vulnerable to apoptosis after injury via upregulating FAS expression.
Collapse
Affiliation(s)
- Ting Gui
- Department of Anatomy, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yueming Wang
- Department of Anatomy, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lixing Zhang
- State Key Laboratrory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjing Wang
- Department of Anatomy, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Zhu
- Department of Anatomy, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenlong Ding
- Department of Anatomy, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- * E-mail:
| |
Collapse
|
7
|
Nagata K, Hama I, Kiryu-Seo S, Kiyama H. microRNA-124 is down regulated in nerve-injured motor neurons and it potentially targets mRNAs for KLF6 and STAT3. Neuroscience 2013; 256:426-32. [PMID: 24184980 DOI: 10.1016/j.neuroscience.2013.10.055] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 10/23/2013] [Accepted: 10/23/2013] [Indexed: 10/26/2022]
Abstract
MicroRNA (miRNA) is a small non-coding RNA that regulates gene expression by degrading target mRNAs or inhibiting translation. Although many miRNAs play important roles in various conditions, it is unclear whether miRNAs are involved in motor nerve regeneration. In this study, we identified the possible implication of miR-124 in nerve regeneration using a mouse hypoglossal nerve injury model. The significant down-regulation of miR-124 was observed in injured hypoglossal motor neurons after nerve injury, and this transient down-regulation showed a clear inverse correlation with the up-regulation of KLF6 and STAT3, known as axon elongation factor and regeneration-associated molecules, respectively. Furthermore, the luciferase assay and in vitro gain of function methods supported that both genes could be potent targets of miR-124. These results suggest that injury-induced repression of miR-124 may be implicated in the regulation of expression of several injury-associated transcription factors, which are crucial for appropriate nerve regeneration.
Collapse
Affiliation(s)
- K Nagata
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - I Hama
- Department of Anatomy and Neurobiology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan
| | - S Kiryu-Seo
- Department of Anatomy and Neurobiology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan; Department of Functional Anatomy & Neuroscience, Graduate School of Medicine, 65 Tsurumaicho, Showa-ku, Nagoya 466-8550, Japan; CREST, JST, Nagoya University, Graduate School of Medicine, 65 Tsurumaicho, Showa-ku, Nagoya 466-8550, Japan
| | - H Kiyama
- Department of Anatomy and Neurobiology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan; Department of Functional Anatomy & Neuroscience, Graduate School of Medicine, 65 Tsurumaicho, Showa-ku, Nagoya 466-8550, Japan; CREST, JST, Nagoya University, Graduate School of Medicine, 65 Tsurumaicho, Showa-ku, Nagoya 466-8550, Japan.
| |
Collapse
|
8
|
Suppression of a MEF2-KLF6 survival pathway by PKA signaling promotes apoptosis in embryonic hippocampal neurons. J Neurosci 2012; 32:2790-803. [PMID: 22357862 DOI: 10.1523/jneurosci.3609-11.2012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In the mammalian nervous system, regulation of transcription factor activity is a crucial determinant of neuronal cell survival, differentiation, and death. The myocyte enhancer factor 2 (MEF2) transcription factors have been implicated in cellular processes underlying neuronal survival and differentiation. A core component of the MEF2 complex is the MEF2D subunit. Recently, we reported that cAMP-dependent protein kinase (cAMP/PKA) signaling negatively regulates MEF2D function in myogenic cells. Here, we assessed whether cAMP signaling converges on the prosurvival role of MEF2D in Sprague Dawley rat embryonic (E18) hippocampal neurons. Initially, we observed that experimental induction of cAMP/PKA signaling promotes apoptosis in primary hippocampal neurons as indicated by TUNEL and FACS analysis. Luciferase reporter gene assays revealed that PKA potently represses MEF2D trans-activation properties in neurons. This effect was largely reversed by engineered neutralizing mutations of PKA phospho-acceptor sites on MEF2D (S121/190A). Krüppel-like factor 6 (KLF6) was identified as a key transcriptional target of MEF2 in hippocampal neurons, and siRNA-mediated knockdown of KLF6 expression promotes neuronal cell death and also antagonizes the prosurvival role of MEF2D. These observations have important implications for understanding the pathways controlling cell survival and death in the mammalian nervous system.
Collapse
|
9
|
Moore DL, Goldberg JL. Multiple transcription factor families regulate axon growth and regeneration. Dev Neurobiol 2012; 71:1186-211. [PMID: 21674813 DOI: 10.1002/dneu.20934] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Understanding axon regenerative failure remains a major goal in neuroscience, and reversing this failure remains a major goal for clinical neurology. Although an inhibitory central nervous system environment clearly plays a role, focus on molecular pathways within neurons has begun to yield fruitful insights. Initial steps forward investigated the receptors and signaling pathways immediately downstream of environmental cues, but recent work has also shed light on transcriptional control mechanisms that regulate intrinsic axon growth ability, presumably through whole cassettes of gene target regulation. Here we will discuss transcription factors that regulate neurite growth in vitro and in vivo, including p53, SnoN, E47, cAMP-responsive element binding protein (CREB), signal transducer and activator of transcription 3 (STAT3), nuclear factor of activated T cell (NFAT), c-Jun activating transcription factor 3 (ATF3), sex determining region Ybox containing gene 11 (Sox11), nuclear factor κ-light chain enhancer of activated B cells (NFκB), and Krüppel-like factors (KLFs). Revealing the similarities and differences among the functions of these transcription factors may further our understanding of the mechanisms of transcriptional regulation in axon growth and regeneration.
Collapse
Affiliation(s)
- Darcie L Moore
- Bascom Palmer Eye Institute and the Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Florida, USA
| | | |
Collapse
|
10
|
Moore DL, Apara A, Goldberg JL. Krüppel-like transcription factors in the nervous system: novel players in neurite outgrowth and axon regeneration. Mol Cell Neurosci 2011; 47:233-43. [PMID: 21635952 DOI: 10.1016/j.mcn.2011.05.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 05/16/2011] [Indexed: 01/25/2023] Open
Abstract
The Krüppel-like family of transcription factors (KLFs) have been widely studied in proliferating cells, though very little is known about their role in post-mitotic cells, such as neurons. We have recently found that the KLFs play a role in regulating intrinsic axon growth ability in retinal ganglion cells (RGCs), a type of central nervous system (CNS) neuron. Previous KLF studies in other cell types suggest that there may be cell-type specific KLF expression patterns, and that their relative expression allows them to compete for binding sites, or to act redundantly to compensate for another's function. With at least 15 of 17 KLF family members expressed in neurons, it will be important for us to determine how this complex family functions to regulate the intricate gene programs of axon growth and regeneration. By further characterizing the mechanisms of the KLF family in the nervous system, we may better understand how they regulate neurite growth and axon regeneration.
Collapse
Affiliation(s)
- Darcie L Moore
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | | | | |
Collapse
|
11
|
Upregulation of Krüppel-like factor 6 in the mouse hippocampus after pilocarpine-induced status epilepticus. Neuroscience 2011; 186:170-8. [PMID: 21362463 DOI: 10.1016/j.neuroscience.2011.02.046] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 01/21/2011] [Accepted: 02/18/2011] [Indexed: 11/22/2022]
Abstract
Krüppel-like factor 6 (KLF6) is a transcriptional regulator involved in a broad range of cellular processes. To date, however, the expression of KLF6 in brains with pathophysiological conditions, such as epilepsy, has not been reported. Therefore, the present study investigated the temporal pattern of KLF6 expression in the mouse hippocampus and identified cell types expressing KLF6 after pilocarpine-induced status epilepticus (SE). Seizures were induced by administrating pilocarpine hydrochloride (280 mg/kg, i.p.) 30 min after an injection of atropine methyl nitrate (3 mg/kg, i.p.). Pilocarpine- and saline-injected animals were sacrificed 1, 3, 7, 14, or 28 days after the onset of SE. Immunohistochemistry showed that the proportion of KLF6-positive cells increased in the hippocampus 1 day after SE onset, peaked at 3 days after SE, and then gradually decreased until 28 days after SE, consistent with the results from our immunoblot analysis. Cells expressing increased levels of KLF6 following pilocarpine-induced SE also expressed GFAP and Ox-42, markers for astrocytes and microglia, respectively. Quantitative analysis revealed that astrocytes were the major type of KLF6-expressing glial cells. These cells also expressed heat shock protein 47 (HSP47), a collagen-specific molecular chaperone. This is the first report showing that KLF6 is inducible in the hippocampus and may be associated with glial responses, especially HSP47-related tissue remodeling after pilocarpine-induced SE.
Collapse
|
12
|
Cammalleri M, Martini D, Ristori C, Timperio AM, Bagnoli P. Vascular endothelial growth factor up-regulation in the mouse hippocampus and its role in the control of epileptiform activity. Eur J Neurosci 2010; 33:482-98. [DOI: 10.1111/j.1460-9568.2010.07529.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
13
|
Identification and analysis of the promoter region of the human DHCR24 gene: involvement of DNA methylation and histone acetylation. Mol Biol Rep 2010; 38:1091-101. [PMID: 20568014 DOI: 10.1007/s11033-010-0206-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 06/11/2010] [Indexed: 10/19/2022]
Abstract
Mutations in the DHCR24 gene, which encodes the cholesterol biosynthesis enzyme 3ß-hydroxysterol-∆24 reductase, result in an autosomal recessive disease called desmosterolosis. Further, reduced expression of DHCR24 is found in the temporal cortex of Alzheimer's disease patients. This suggests that variability in the regulatory regions of DHCR24 may contribute to the development of this neurodegenerative disease. In this work, we functionally characterised the proximal fragment of the human DHCR24 gene, for the first time. We show that the transcription of DHCR24 is initiated from a single CpG-rich promoter that is regulated by DNA methylation in some cell types. An activator sequence was also uncovered in the -1203/-665 bp region by reporter gene assays. Furthermore, sodium butyrate (a well-known HDAC inhibitor) increased DHCR24 expression in SH-SY5Y cells by recruiting acetylated core histones H3 and H4 to the enhancer region, as demonstrated by transient transfection and chromatin immunoprecipitation assays. Understanding the regulation of the DHCR24 gene may lead to alternative therapeutic strategies in at least some Alzheimer's patients.
Collapse
|