1
|
Schreurs BG, O'Dell DE, Wang D. The Role of Cerebellar Intrinsic Neuronal Excitability, Synaptic Plasticity, and Perineuronal Nets in Eyeblink Conditioning. BIOLOGY 2024; 13:200. [PMID: 38534469 DOI: 10.3390/biology13030200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/29/2024] [Accepted: 03/19/2024] [Indexed: 03/28/2024]
Abstract
Evidence is strong that, in addition to fine motor control, there is an important role for the cerebellum in cognition and emotion. The deep nuclei of the mammalian cerebellum also contain the highest density of perineural nets-mesh-like structures that surround neurons-in the brain, and it appears there may be a connection between these nets and cognitive processes, particularly learning and memory. Here, we review how the cerebellum is involved in eyeblink conditioning-a particularly well-understood form of learning and memory-and focus on the role of perineuronal nets in intrinsic membrane excitability and synaptic plasticity that underlie eyeblink conditioning. We explore the development and role of perineuronal nets and the in vivo and in vitro evidence that manipulations of the perineuronal net in the deep cerebellar nuclei affect eyeblink conditioning. Together, these findings provide evidence of an important role for perineuronal net in learning and memory.
Collapse
Affiliation(s)
- Bernard G Schreurs
- Department of Neuroscience, West Virginia University, Morgantown, WV 26505, USA
| | - Deidre E O'Dell
- Department of Biology, Earth and Environmental Sciences, Pennsylvania Western (PennWest) University, California, PA 15419, USA
| | - Desheng Wang
- Department of Neuroscience, West Virginia University, Morgantown, WV 26505, USA
| |
Collapse
|
2
|
Ventromedial Thalamus-Projecting DCN Neurons Modulate Associative Sensorimotor Responses in Mice. Neurosci Bull 2022; 38:459-473. [PMID: 34989972 PMCID: PMC9106783 DOI: 10.1007/s12264-021-00810-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/09/2021] [Indexed: 10/19/2022] Open
Abstract
The deep cerebellar nuclei (DCN) integrate various inputs to the cerebellum and form the final cerebellar outputs critical for associative sensorimotor learning. However, the functional relevance of distinct neuronal subpopulations within the DCN remains poorly understood. Here, we examined a subpopulation of mouse DCN neurons whose axons specifically project to the ventromedial (Vm) thalamus (DCNVm neurons), and found that these neurons represent a specific subset of DCN units whose activity varies with trace eyeblink conditioning (tEBC), a classical associative sensorimotor learning task. Upon conditioning, the activity of DCNVm neurons signaled the performance of conditioned eyeblink responses (CRs). Optogenetic activation and inhibition of the DCNVm neurons in well-trained mice amplified and diminished the CRs, respectively. Chemogenetic manipulation of the DCNVm neurons had no effects on non-associative motor coordination. Furthermore, optogenetic activation of the DCNVm neurons caused rapid elevated firing activity in the cingulate cortex, a brain area critical for bridging the time gap between sensory stimuli and motor execution during tEBC. Together, our data highlights DCNVm neurons' function and delineates their kinematic parameters that modulate the strength of associative sensorimotor responses.
Collapse
|
3
|
Chen H, Wang YJ, Yang L, Sui JF, Hu ZA, Hu B. Theta synchronization between medial prefrontal cortex and cerebellum is associated with adaptive performance of associative learning behavior. Sci Rep 2016; 6:20960. [PMID: 26879632 PMCID: PMC4754690 DOI: 10.1038/srep20960] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 01/12/2016] [Indexed: 12/11/2022] Open
Abstract
Associative learning is thought to require coordinated activities among distributed brain regions. For example, to direct behavior appropriately, the medial prefrontal cortex (mPFC) must encode and maintain sensory information and then interact with the cerebellum during trace eyeblink conditioning (TEBC), a commonly-used associative learning model. However, the mechanisms by which these two distant areas interact remain elusive. By simultaneously recording local field potential (LFP) signals from the mPFC and the cerebellum in guinea pigs undergoing TEBC, we found that theta-frequency (5.0-12.0 Hz) oscillations in the mPFC and the cerebellum became strongly synchronized following presentation of auditory conditioned stimulus. Intriguingly, the conditioned eyeblink response (CR) with adaptive timing occurred preferentially in the trials where mPFC-cerebellum theta coherence was stronger. Moreover, both the mPFC-cerebellum theta coherence and the adaptive CR performance were impaired after the disruption of endogenous orexins in the cerebellum. Finally, association of the mPFC -cerebellum theta coherence with adaptive CR performance was time-limited occurring in the early stage of associative learning. These findings suggest that the mPFC and the cerebellum may act together to contribute to the adaptive performance of associative learning behavior by means of theta synchronization.
Collapse
Affiliation(s)
- Hao Chen
- Department of Physiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, P.R. China
| | - Yi-jie Wang
- Department of Physiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, P.R. China
| | - Li Yang
- Department of Physiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, P.R. China
| | - Jian-feng Sui
- Department of Physiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, P.R. China
| | - Zhi-an Hu
- Department of Physiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, P.R. China
| | - Bo Hu
- Department of Physiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, P.R. China
| |
Collapse
|
4
|
Hu C, Zhang LB, Chen H, Xiong Y, Hu B. Neurosubstrates and mechanisms underlying the extinction of associative motor memory. Neurobiol Learn Mem 2015. [DOI: 10.1016/j.nlm.2015.07.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Chen H, Yang L, Xu Y, Wu GY, Yao J, Zhang J, Zhu ZR, Hu ZA, Sui JF, Hu B. Prefrontal control of cerebellum-dependent associative motor learning. THE CEREBELLUM 2014; 13:64-78. [PMID: 24013852 DOI: 10.1007/s12311-013-0517-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Behavioral studies have demonstrated that both medial prefrontal cortex (mPFC) and cerebellum play critical roles in trace eyeblink conditioning. However, little is known regarding the mechanism by which the two brain regions interact. By use of electrical stimulation of the caudal mPFC as a conditioned stimulus, we show evidence that persistent outputs from the mPFC to cerebellum are necessary and sufficient for the acquisition and expression of a trace conditioned response (CR)-like response. Specifically, the persistent outputs of caudal mPFC are relayed to the cerebellum via the rostral part of lateral pontine nuclei. Moreover, interfering with persistent activity by blockade of the muscarinic Ach receptor in the caudal mPFC impairs the expression of learned trace CRs. These results suggest an important way for the caudal mPFC to interact with the cerebellum during associative motor learning.
Collapse
Affiliation(s)
- Hao Chen
- Department of Physiology, College of Basic Medical Sciences, Third Military Medical University, Gaotanyan Street 30, Chongqing, 400038, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Wang YJ, Chen H, Hu C, Ke XF, Yang L, Xiong Y, Hu B. Baseline theta activities in medial prefrontal cortex and deep cerebellar nuclei are associated with the extinction of trace conditioned eyeblink responses in guinea pigs. Behav Brain Res 2014; 275:72-83. [PMID: 25200518 DOI: 10.1016/j.bbr.2014.08.059] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/23/2014] [Accepted: 08/30/2014] [Indexed: 12/12/2022]
Abstract
It has been shown that both the medial prefrontal cortex (mPFC) and the cerebellum are involved in the extinction of trace conditioned eyeblink responses (CR). However, the neural mechanisms underlying the extinction are still relatively unclear. Theta oscillation in either the mPFC or the cerebellum has been revealed to correlate with the performance of trace CRs during the asymptotic acquisition. Therefore, we sought to further evaluate the impacts of pre-conditioned stimulus (CS) spontaneous theta (5.0-10.0Hz) oscillations in the mPFC and the deep cerebellar nuclei (DCN) on the extinction of trace CRs. Albino guinea pigs were given acquisition training for ten daily sessions followed by seven daily sessions of extinction. Local field potential (LFP) signals in the mPFC and the DCN were recorded when the animals received the CS-alone extinction training. It was found that higher mPFC relative theta ratios [theta/(delta+beta)] during the baseline period (850-ms prior to the CS onset) were predictive of fewer CR incidences rather than more adaptive CR performance (i.e., higher CR magnitude and later CR peak/onset latencies). Likewise, the pre-CS DCN theta activity was associated with the faster CR extinction. Furthermore, it was revealed that the power of pre-CS theta activities in the mPFC and the DCN were correlated until the extinction training day 2. Collectively, these results suggest that the mPFC and the DCN may interact with each other, and the brain oscillation state in which baseline theta activities in both areas are present contributes to the subsequent extinction of trace CRs.
Collapse
Affiliation(s)
- Yi-jie Wang
- Department of Physiology, College of Basic Medical Sciences, Chongqing 400038, PR China; Battalion 5 of Cadet Brigade, Third Military Medical University, Chongqing 400038, PR China
| | - Hao Chen
- Department of Physiology, College of Basic Medical Sciences, Chongqing 400038, PR China
| | - Chen Hu
- Department of Physiology, College of Basic Medical Sciences, Chongqing 400038, PR China; Battalion 8 of Cadet Brigade, Third Military Medical University, Chongqing 400038, PR China
| | - Xian-feng Ke
- Department of Physiology, College of Basic Medical Sciences, Chongqing 400038, PR China; Battalion 8 of Cadet Brigade, Third Military Medical University, Chongqing 400038, PR China
| | - Li Yang
- Department of Physiology, College of Basic Medical Sciences, Chongqing 400038, PR China
| | - Yan Xiong
- Department of Orthopedics, Daping Hospital, Third Military Medical University, Chongqing 400042, PR China.
| | - Bo Hu
- Department of Physiology, College of Basic Medical Sciences, Chongqing 400038, PR China.
| |
Collapse
|
7
|
Chen H, Wang YJ, Yang L, Hu C, Ke XF, Fan ZL, Sui JF, Hu B. Predictive nature of prefrontal theta oscillation on the performance of trace conditioned eyeblink responses in guinea pigs. Behav Brain Res 2014; 265:121-31. [PMID: 24572215 DOI: 10.1016/j.bbr.2014.02.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 02/11/2014] [Accepted: 02/15/2014] [Indexed: 10/25/2022]
Abstract
Stimulus-evoked theta oscillations are observed in the medial prefrontal cortex (mPFC) when executing a variety of learning tasks. Here, we aimed to further determine whether spontaneous theta-band (5.0-10.0 Hz) oscillations in the mPFC predicted the subsequent behavioral performance in trace eyeblink conditioning (TEBC), in which the conditioned stimulus (CS) was separated from the unconditioned stimulus (US) by 500 ms trace interval. By recording local field potentials (LFP) signals in the guinea pigs performing the TEBC task, we found that, a higher mPFC relative theta ratio [theta/(delta+beta)] during the baseline (850-ms period prior to the onset of the CS) was predictive of higher magnitude and more adaptive timing rather than faster acquisition of trace conditioned eyeblink responses (CR). However, the prediction of baseline mPFC theta activity was time-limited to the well-learning stage. Additionally, the relative power of mPFC theta activity did not correlate with the CR performance if the trace interval between the CS and the US was shortened to 100 ms. These results suggest that the brain state in which the baseline mPFC theta activity is present or absent is detrimental for the subsequent performance of trace CRs especially when the asymptotic learning state is achieved.
Collapse
Affiliation(s)
- Hao Chen
- Department of Physiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, PR China
| | - Yi-jie Wang
- Department of Physiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, PR China; Battalion 5 of Cadet Brigade, Third Military Medical University, Chongqing 400038, PR China
| | - Li Yang
- Department of Physiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, PR China
| | - Chen Hu
- Department of Physiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, PR China; Battalion 8 of Cadet Brigade, Third Military Medical University, Chongqing 400038, PR China
| | - Xian-feng Ke
- Department of Physiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, PR China; Battalion 8 of Cadet Brigade, Third Military Medical University, Chongqing 400038, PR China
| | - Zheng-li Fan
- Department of Physiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, PR China
| | - Jian-feng Sui
- Department of Physiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, PR China; Experimental Center of Basic Medicine, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, PR China.
| | - Bo Hu
- Department of Physiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, PR China.
| |
Collapse
|
8
|
Wu GY, Yao J, Hu B, Zhang HM, Li YD, Li X, Li Q, Sui JF. Reevaluating the role of the hippocampus in delay eyeblink conditioning. PLoS One 2013; 8:e71249. [PMID: 23951119 PMCID: PMC3739805 DOI: 10.1371/journal.pone.0071249] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 06/27/2013] [Indexed: 11/24/2022] Open
Abstract
The role of the hippocampus in delay eyeblink conditioning (DEC) remains controversial. Here, we investigated the involvement of the hippocampus in DEC with a soft tone as the conditioned stimulus (CS) by using electrolytic lesions or muscimol inactivation of guinea pig dorsal hippocampus. Interestingly, when a soft tone was used as a CS, electrolytic lesions of the hippocampus significantly retarded acquisition of the conditioned response (CR), and muscimol infusions into hippocampus distinctly inhibited the acquisition and expression of CR, but had no significant effect on consolidation of well-learned CR. In contrast, both electrolytic lesions and muscimol inactivation of hippocampus produced no significant deficits in the CR when a loud tone was used as the CS. These results demonstrate that the hippocampus is essential for the DEC when the delay task was rendered more difficult.
Collapse
Affiliation(s)
- Guang-yan Wu
- Department of Physiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Juan Yao
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Bo Hu
- Department of Physiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Hui-ming Zhang
- Department of Physiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Yi-ding Li
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Xuan Li
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Qiong Li
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Jian-feng Sui
- Department of Physiology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
- * E-mail:
| |
Collapse
|
9
|
Functional inactivation of orexin 1 receptors in the cerebellum disrupts trace eyeblink conditioning and local theta oscillations in guinea pigs. Behav Brain Res 2013; 250:114-22. [PMID: 23680162 DOI: 10.1016/j.bbr.2013.05.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 05/01/2013] [Accepted: 05/04/2013] [Indexed: 11/24/2022]
Abstract
The cerebellum plays an essential role in motor learning. Recently, orexins, the newfound lateral hypothalamic neuropeptides, have been found to excite Purkinje cells in the cerebellar cortex and neurons in the deep cerebellar nuclei (DCN). However, little is known about their roles in cerebellum-dependent motor learning. Therefore, the present study was designed to investigate the functional significance of hypothalamic orexinergic system during trace eyeblink conditioning, a tractable behavioral model system of cerebellum-dependent motor learning. It was revealed that the orexin 1 receptors (OXR1) were specifically localized on the soma of Purkinje cells and large DCN neurons. Furthermore, interfering with the endogenous orexins' effects on the cerebellum via the selective OXR1 antagonist SB-334867 disrupted the timing rather than the acquisition of trace conditioned eyeblink responses. In addition to the behavioral effects, the SB-334867 prevented the increase in peak amplitude of cerebellar theta oscillations with learning. These results suggest that the endogenous orexins may modulate motor learning via the activation of cerebellar OXR1.
Collapse
|
10
|
Classical eyeblink conditioning using electrical stimulation of caudal mPFC as conditioned stimulus is dependent on cerebellar interpositus nucleus in guinea pigs. Acta Pharmacol Sin 2012; 33:717-27. [PMID: 22562015 DOI: 10.1038/aps.2012.32] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
AIM To determine whether electrical stimulation of caudal medial prefrontal cortex (mPFC) as conditioned stimulus (CS) paired with airpuff unconditioned stimulus (US) was sufficient for establishing eyeblink conditioning in guinea pigs, and whether it was dependent on cerebellar interpositus nucleus. METHODS Thirty adult guinea pigs were divided into 3 conditioned groups, and trained on the delay eyeblink conditioning, short-trace eyeblink conditioning, and long-trace eyeblink conditioning paradigms, respectively, in which electrical stimulation of the right caudal mPFC was used as CS and paired with corneal airpuff US. A pseudo conditioned group of another 10 adult guinea pigs was given unpaired caudal mPFC electrical stimulation and the US. Muscimol (1 μg in 1 μL saline) and saline (1 μL) were infused into the cerebellar interpositus nucleus of the animals through the infusion cannula on d 11 and 12, respectively. RESULTS The 3 eyeblink conditioning paradigms have been successfully established in guinea pigs. The animals acquired the delay and short-trace conditioned responses more rapidly than long-trace conditioned responses. Muscimol infusion into the cerebellar interpositus nucleus markedly impaired the expression of the 3 eyeblink conditioned responses. CONCLUSION Electrical stimulation of caudal mPFC is effective CS for establishing eyeblink conditioning in guinea pigs, and it is dependent on the cerebellar interpositus nucleus.
Collapse
|
11
|
Changes of synaptic ultrastructure in the guinea pig interpositus nuclei associate with response magnitude and timing after trace eyeblink conditioning. Behav Brain Res 2011; 226:529-37. [PMID: 22019363 DOI: 10.1016/j.bbr.2011.10.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 10/07/2011] [Indexed: 01/05/2023]
Abstract
Learning-induced changes of synaptic ultrastructure have long been proposed as a mechanism that may contribute to support memory formation. Although recent studies have demonstrated that the interpositus nuclei (IN) play critical role in acquisition and retention of trace conditioned eyeblink responses (CRs), there is now limited evidence associating trace eyeblink conditioning with changes of synaptic ultrastructure in the IN. Here, we investigated this issue using a transmission electron microscope. Adult guinea pigs were randomly allocated to either a trace-paired, delay-paired, unpaired or exposure-only condition. The IN tissue was taken for morphological analysis 1h after the completion of the tenth training session. Serial section analysis of synaptic ultrastructure revealed that trace eyeblink conditioning induced increases in the thickness of excitatory PSD. Classification of the synapses into shape subtypes indicated that the increased thickness of excitatory PSD was mainly attributable to increase in the concave- and convex-shaped synapses. On the contrary, trace eyeblink conditioning resulted in decreases in the thickness of inhibitory PSD. Specifically, these significant changes of PSD thickness were limited to occur in the animals with good behavioral performance. Further analysis of correlations between the trace CR performance and synaptic ultrastructural modifications showed that the thickness of excitatory PSD within the IN correlated with the peak amplitude of trace CRs, whereas the thickness of inhibitory PSD correlated with the onset latency. The present findings suggest that trace eyeblink conditioning induces structural plasticity in the IN, which may play a crucial role in acquiring and executing adaptive eyeblink movements.
Collapse
|
12
|
A train of electrical pulses applied to the primary auditory cortex evokes a conditioned response in guinea pigs. Neurosci Res 2011; 71:103-6. [DOI: 10.1016/j.neures.2011.05.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 05/19/2011] [Accepted: 05/30/2011] [Indexed: 11/18/2022]
|
13
|
Gao J, Wu Y, Zhu Z, Yang C, Cheng P, Liu L, Sui J. Neuronal firing activity of hippocampal pyramidal cells during an auditory discrimination task in conscious guinea pigs. Behav Brain Res 2010; 212:35-40. [DOI: 10.1016/j.bbr.2010.03.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 03/15/2010] [Accepted: 03/19/2010] [Indexed: 10/19/2022]
|
14
|
Hu B, Chen H, Feng H, Zeng Y, Yang L, Fan ZL, Wu YM, Sui JF. Disrupted topography of the acquired trace-conditioned eyeblink responses in guinea pigs after suppression of cerebellar cortical inhibition to the interpositus nucleus. Brain Res 2010; 1337:41-55. [PMID: 20381463 DOI: 10.1016/j.brainres.2010.03.089] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 02/15/2010] [Accepted: 03/27/2010] [Indexed: 10/19/2022]
Abstract
Trace conditioning of the eyeblink reflex, a form of associative motor learning in which presentations of the conditioned stimulus (CS) and the unconditioned stimulus (US) are separated in time by a silent trace interval, requires intact forebrain structures such as the hippocampus and medial prefrontal cortex. Recently, increased learning-related activities have also been observed in specific cerebellar cortical area such as the lobule of HVI during this conditioning task. To date, however, it remains controversial how the cerebellar cortex contributes to trace eyeblink conditioning. In the present study, we addressed this issue by reversibly suppressing the cerebellar cortical inhibition via microinjections of the GABA(A) receptor antagonist bicuculline methiodide (BICM) into the interpositus nucleus of guinea pigs. We showed that, in the well-trained guinea pigs, the BICM administrations failed to abolish the acquired trace-conditioned eyeblink responses (CRs). Although the acquired trace CRs were mostly retained, their peak latencies were shortened and their peak amplitudes diminished as evidenced by only half of the spared trace CRs preserving the topography of adaptive peak latencies or middle-/high-peak amplitudes. In the same animals, the acquired trace CRs were abolished by microinjections of the GABA(A) receptor agonist muscimol and were unaffected by microinjections of the artificial cerebrospinal fluid. Furthermore, we demonstrated that with concurrent BICM-induced suppression of the cerebellar cortical inhibition and presentations of the tone CSs in the guinea pigs receiving unpaired conditioning training, CR-like eyeblink responses were not generated. Altogether, these results support the hypothesis that GABAergic neurotransmission from cerebellar cortex to the interpositus nucleus may participate in regulating the expression of acquired trace CRs.
Collapse
Affiliation(s)
- Bo Hu
- Department of Physiology, College of Basic Medical Science, Third Military Medical University, Chongqing 400038, PR China
| | | | | | | | | | | | | | | |
Collapse
|