1
|
Leodori G, Ruocco G, Manzo N, Spampinato D, Ferrazzano G, Marchet F, Belvisi D, Konczak J, Fabbrini G, Berardelli A, Conte A. Muscle theta activity in the pathophysiology of cervical dystonia. Neurobiol Dis 2025; 212:106969. [PMID: 40409504 DOI: 10.1016/j.nbd.2025.106969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 05/08/2025] [Accepted: 05/19/2025] [Indexed: 05/25/2025] Open
Abstract
BACKGROUND Increased theta-band intermuscular coherence (IMC) between neck muscles has been reported as pathophysiological features of cervical dystonia (CD). OBJECTIVES investigate whether increased theta power and IMC are specific to the affected muscles, cortically driven, and actively contribute to dystonic contractions by examining the effect of sensory trick (ST) and analyzing correlations with clinical severity. METHODS 29 patients with torticollis (13 with effective ST) and 14 healthy subjects (HS) participated. We recorded EMG from bilateral sternocleidomastoid (SCM) and biceps (BIC) muscles and EEG over sensorimotor cortex. Theta power, IMC, and corticomuscular coherence (CMC) were analyzed across baseline and touch conditions and correlated with Torticollis Severity Scale (TSS) scores. Granger causality was used to assess the directionality of coherence. RESULTS patients exhibited increased theta power in SCMs but not in biceps muscles. Theta IMC was significantly higher only between bilateral SCMs in CD compared to HS. We found no group differences in theta CMC, with Granger causality indicating predominant theta connectivity from muscle to cortex. The ST was associated with increased theta IMC between SCMs, while patients without ST showed a significant reduction in IMC. SCM theta power and IMC were both inversely correlated with TSS. CONCLUSIONS increased theta power and IMC in SCMs are specific to CD and likely reflect a subcortical drive rather than a cortical influence. Our results challenge prior suggestions of a pathogenic role for muscle theta synchronization in CD and suggest a possible compensatory role in balancing head position.
Collapse
Affiliation(s)
- Giorgio Leodori
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università, 30, 00185 Rome, Italy; IRCCS Neuromed, Via Atinense, 18, 86077 Pozzilli, IS, Italy
| | - Giulia Ruocco
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università, 30, 00185 Rome, Italy
| | - Nicoletta Manzo
- IRCCS San Camillo Hospital, Via Alberoni 70, 30126 Venice, Italy; Neurology Unit, San Filippo Neri Hospital ASL Roma 1, Via Giovanni Martinotti, 20, 00135 Rome, Italy
| | - Danny Spampinato
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università, 30, 00185 Rome, Italy; Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Via Ardeatina, 306/354, 00179 Rome, Italy
| | - Gina Ferrazzano
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università, 30, 00185 Rome, Italy
| | - Francesco Marchet
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università, 30, 00185 Rome, Italy
| | - Daniele Belvisi
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università, 30, 00185 Rome, Italy; IRCCS Neuromed, Via Atinense, 18, 86077 Pozzilli, IS, Italy
| | - Jürgen Konczak
- School of Kinesiology, Human Sensorimotor Control Laboratory, University of Minnesota, 400 Cooke Hall 1900 University Ave. SE, Minneapolis 55455, MN, USA
| | - Giovanni Fabbrini
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università, 30, 00185 Rome, Italy; IRCCS Neuromed, Via Atinense, 18, 86077 Pozzilli, IS, Italy
| | - Alfredo Berardelli
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università, 30, 00185 Rome, Italy; IRCCS Neuromed, Via Atinense, 18, 86077 Pozzilli, IS, Italy
| | - Antonella Conte
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università, 30, 00185 Rome, Italy; IRCCS Neuromed, Via Atinense, 18, 86077 Pozzilli, IS, Italy.
| |
Collapse
|
2
|
Eswari B, Balasubramanian S, Varadhan SKM. Comparable neural and behavioural performance in dominant and non-dominant hands during grasping tasks. Sci Rep 2025; 15:14690. [PMID: 40287523 PMCID: PMC12033264 DOI: 10.1038/s41598-025-99941-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 04/23/2025] [Indexed: 04/29/2025] Open
Abstract
Hand dominance has long been associated with differences in neural control and motor performance, with the dominant hand typically exhibiting better coordination in reaching tasks. However, the extent to which this dominance influences performance in finger force control remains unclear. This study aimed to examine the behavioural and neural features of the dominant and non-dominant hands during grasping and lifting tasks in healthy young adults, focusing on the synergy index, EEG band power, and EEG-EMG coherence as key measures. Twenty right-handed adults participated in this study. Participants engaged in an experimental task where they grasped a handle for the initial 5 s, followed by lifting and holding it for an additional 5 s. There were two task conditions: fixed (thumb platform secured) and free (thumb platform movable). It was hypothesized that the dominant hand would exhibit greater finger force coordination and enhanced neural features, including higher EEG band power and increased EEG-EMG coherence, compared to the non-dominant hand. Contrary to the hypothesis, we found statistical equivalence in the synergy index, EEG band power, and EEG-EMG coherence between the dominant and non-dominant hands across both fixed and free task conditions. These findings suggest that both hands can achieve similar levels of performance in tasks emphasizing steady-state force maintenance, despite the typical advantages of the dominant hand in other motor tasks. However, a significant difference was observed between task conditions, with the fixed condition showing higher values than the free condition in both behavioural (synergy index-η2 = 0.81, p < 0.0001,) and neural (EEG band power η2 = 0.37, p < 0.05 and EEG-EMG coherence-η2 = 0.49, p < 0.0001) features. These differences were likely due to changes in friction, yet the adjustments remained consistent between the dominant and non-dominant hands.
Collapse
Affiliation(s)
- Balasubramanian Eswari
- Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India.
| | | | - S K M Varadhan
- Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| |
Collapse
|
3
|
Fló E, Fraiman D, Sitt JD. Assessing brain-muscle networks during motor imagery to detect covert command-following. BMC Med 2025; 23:68. [PMID: 39915775 PMCID: PMC11803995 DOI: 10.1186/s12916-025-03846-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 01/06/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND In this study, we evaluated the potential of a network approach to electromyography and electroencephalography recordings to detect covert command-following in healthy participants. The motivation underlying this study was the development of a diagnostic tool that can be applied in common clinical settings to detect awareness in patients that are unable to convey explicit motor or verbal responses, such as patients that suffer from disorders of consciousness (DoC). METHODS We examined the brain and muscle response during movement and imagined movement of simple motor tasks, as well as during resting state. Brain-muscle networks were obtained using non-negative matrix factorization (NMF) of the coherence spectra for all the channel pairs. For the 15/38 participants who showed motor imagery, as indexed by common spatial filters and linear discriminant analysis, we contrasted the configuration of the networks during imagined movement and resting state at the group level, and subject-level classifiers were implemented using as features the weights of the NMF together with trial-wise power modulations and heart response to classify resting state from motor imagery. RESULTS Kinesthetic motor imagery produced decreases in the mu-beta band compared to resting state, and a small correlation was found between mu-beta power and the kinesthetic imagery scores of the Movement Imagery Questionnaire-Revised Second version. The full-feature classifiers successfully distinguished between motor imagery and resting state for all participants, and brain-muscle functional networks did not contribute to the overall classification. Nevertheless, heart activity and cortical power were crucial to detect when a participant was mentally rehearsing a movement. CONCLUSIONS Our work highlights the importance of combining EEG and peripheral measurements to detect command-following, which could be important for improving the detection of covert responses consistent with volition in unresponsive patients.
Collapse
Affiliation(s)
- Emilia Fló
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS, Paris, France.
| | - Daniel Fraiman
- Departamento de Matemática y Ciencias, Universidad de San Andrés, Buenos Aires, Argentina
- CONICET, Buenos Aires, Argentina
| | - Jacobo Diego Sitt
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS, Paris, France.
| |
Collapse
|
4
|
Omejc N, Stankovski T, Peskar M, Kalc M, Manganotti P, Gramann K, Dzeroski S, Marusic U. Cortico-Muscular Phase Connectivity During an Isometric Knee Extension Task in People with Early Parkinson's Disease. IEEE Trans Neural Syst Rehabil Eng 2025; PP:488-501. [PMID: 40030955 DOI: 10.1109/tnsre.2025.3527578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
INTRODUCTION Parkinson's disease (PD) is characterized by enhanced beta-band activity (13-30 Hz) in the motor control regions. Simultaneously, cortico-muscular (CM) connectivity in the beta-band during iso-metric contractions tends to decline with age, in various diseases, and under dual-task conditions. OBJECTIVE This study aimed to characterize electroencephalograph (EEG) and electromyograph (EMG) power spectra during a motor task, assess CM phase connectivity, and explore how these measures are modulated by an additional cognitive task. Specifically, we focused on the beta-band to explore the relationship between heightened beta amplitude and reduced beta CM connectivity. METHODOLOGY Early-stage people with PD and age-matched controls performed an isometric knee extension task, a cognitive task, and a combined dual task, while EEG (128ch) and EMG (2x32ch) were recorded. CM phase connectivity was assessed through phase coherence and a phase dynamics model. RESULTS The EEG power spectrum revealed no cohort differences in the beta-band. EMG also showed no differences up to 80 Hz. However, the combined EEG-EMG analysis uncovered reduced beta phase coherence in people with early PD during the motor task. CM phase coherence exhibited distinct scalp topography and frequency ranges compared to the EEG power spectrum, suggesting different mechanisms for pathological beta increase and CM connectivity. Additionally, phase dynamics modelling indicated stronger directional coupling from the cortex to the active muscle and less prominent phase coupling across people with PD. Despite high inter-individual variability, these metrics may prove useful for personalized assessments, particularly in people with heightened CM connectivity.
Collapse
|
5
|
Zheng Y, Zheng B, Qiang W, Peng Y, Xu G, Wang G, Li L, Shin H. Corticomuscular coherence existed at the single motor unit level. Neuroimage 2025; 305:120999. [PMID: 39753163 DOI: 10.1016/j.neuroimage.2024.120999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/25/2024] [Accepted: 12/31/2024] [Indexed: 01/07/2025] Open
Abstract
The monosynaptic cortico-motoneuronal connections suggest the possibility of individual motor units (MUs) receiving independent commands from motor cortex. However, previous studies that used corticomuscular coherence (CMC) between electroencephalogram (EEG) signals and electromyogram (EMG) signals have not directly explored the corticospinal functionality at the single motoneuron level. The objective of this study is to find out whether synchronous activities exist between the motor cortex and individual MUs. Corticomuscular coherence was calculated between the EEG signals and the MU firing event trains which were extracted using the EMG decomposition technique. The results showed that some but not all MUs indeed had significant coherent activities with the contralateral motor cortex, which we named the cortico-motoneuronal coherence (CMnC). In contrast to the CMC only occurring in β and γ bands, CMnC occurred across the four common EEG frequency bands (θ, α, β and γ). Further, we identified individual MUs that showed significant interactions with the motor cortex. These coherent MUs (CohMU) could still be found even when the EMG signals were not coupled with the cortical activities. Compared with conventional CMC, our preliminary results indicated that the CMnC could potentially help to investigate the complex coupling between cortical and muscular activities due to its ability to separate different correlated components. This study proves that corticomuscular coherence exists at a single MU level, which provides a new perspective for the research on corticomuscular coupling. Further study on the CMnC could help deepen our understanding of the neural control of movement.
Collapse
Affiliation(s)
- Yang Zheng
- Institute of Engineering and Medicine Interdisciplinary Studies and the State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China.
| | - Bofang Zheng
- Institute of Engineering and Medicine Interdisciplinary Studies and the State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Wei Qiang
- Institute of Engineering and Medicine Interdisciplinary Studies and the State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Yu Peng
- Department of Rehabilitation, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Guanghua Xu
- Institute of Engineering and Medicine Interdisciplinary Studies and the State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Gang Wang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Lili Li
- College of Heath Science and Environment Engineering, Shenzhen Technology University, Shenzhen, Guangdong, China
| | - Henry Shin
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China.
| |
Collapse
|
6
|
Hüche Larsen H, Justiniano MD, Frisk RF, Lundbye-Jensen J, Farmer SF, Nielsen JB. Task difficulty of visually guided gait modifications involves differences in central drive to spinal motor neurons. J Neurophysiol 2024; 132:1126-1141. [PMID: 39196679 DOI: 10.1152/jn.00466.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 08/30/2024] Open
Abstract
Walking in natural environments requires visually guided modifications, which can be more challenging when involving sideways steps rather than longer steps. This exploratory study investigated whether these two types of modifications involve different changes in the central drive to spinal motor neurons of leg muscles. Fifteen adults [age: 36 ± 6 (SD) years] walked on a treadmill (4 km/h) while observing a screen displaying the real-time position of their toes. At the beginning of the swing phase, a visual target appeared in front (forward) or medial-lateral (sideways) of the ground contact in random step cycles (approximately every third step). We measured three-dimensional kinematics and electromyographic activity from leg muscles bilaterally. Intermuscular coherence was calculated in the alpha (5-15 Hz), beta (15-30 Hz), and gamma bands (30-45 Hz) approximately 230 ms before and after ground contact in control and target steps. Results showed that adjustments toward sideways targets were associated with significantly higher error, lower foot lift, and higher cocontraction between antagonist ankle muscles. Movements toward sideways targets were associated with larger beta-band soleus (SOL): medial gastrocnemius (MG) coherence and a more narrow and larger peak of synchronization in the cumulant density before ground contact. In contrast, movements toward forward targets showed no significant differences in coherence or synchronization compared with control steps. Larger SOL:MG beta-band coherence and short-term synchronization were observed during sideways, but not forward, gait modifications. This suggests that visually guided gait modifications may involve differences in the central drive to spinal ankle motor neurons dependent on the level of task difficulty.NEW & NOTEWORTHY This exploratory study suggests a specific and temporally restricted increase of central (likely corticospinal) drive to ankle muscles in relation to visually guided gait modifications. The findings indicate that a high level of visual attention to control the position of the ankle joint precisely before ground contact may involve increased central drive to ankle muscles. These findings are important for understanding the neural mechanisms underlying visually guided gait and may help develop rehabilitation interventions.
Collapse
Affiliation(s)
- Helle Hüche Larsen
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
- Elsass Foundation, Charlottenlund, Denmark
| | | | - Rasmus Feld Frisk
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
- Elsass Foundation, Charlottenlund, Denmark
| | - Jesper Lundbye-Jensen
- Movement and Neuroscience, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Simon Francis Farmer
- Department of Clinical and Movement Neuroscience, Institute of Neurology, University College London, London, United Kingdom
- Department of Clinical Neurology, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Jens Bo Nielsen
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
- Elsass Foundation, Charlottenlund, Denmark
| |
Collapse
|
7
|
Pierrieau E, Charissou C, Vernazza-Martin S, Pageaux B, Lepers R, Amarantini D, Fautrelle L. Intermuscular coherence reveals that affective emotional pictures modulate neural control mechanisms during the initiation of arm pointing movements. Front Hum Neurosci 2024; 17:1273435. [PMID: 38249573 PMCID: PMC10799348 DOI: 10.3389/fnhum.2023.1273435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 12/04/2023] [Indexed: 01/23/2024] Open
Abstract
Introduction Several studies in psychology provided compelling evidence that emotions significantly impact motor control. Yet, these evidences mostly rely on behavioral investigations, whereas the underlying neurophysiological processes remain poorly understood. Methods Using a classical paradigm in motor control, we tested the impact of affective pictures associated with positive, negative or neutral valence on the kinematics and patterns of muscle activations of arm pointing movements performed from a standing position. The hand reaction and movement times were measured and electromyography (EMG) was used to measure the activities from 10 arm, leg and trunk muscles that are involved in the postural maintenance and arm displacement in pointing movements. Intermuscular coherence (IMC) between pairs of muscles was computed to measure changes in patterns of muscle activations related to the emotional stimuli. Results The hand movement time increased when an emotional picture perceived as unpleasant was presented as compared to when the emotional picture was perceived as pleasant. When an unpleasant emotional picture was presented, beta (β, 15-35 Hz) and gamma (γ, 35-60 Hz) IMC decreased in the recorded pairs of postural muscles during the initiation of pointing movements. Moreover, a linear relationship between the magnitude of the intermuscular coherence in the pairs of posturo-focal muscles and the hand movement time was found in the unpleasant scenarios. Discussion These findings reveal that emotional stimuli can significantly affect the content of the motor command sent by the central nervous system to muscles when performing voluntary goal-directed movements.
Collapse
Affiliation(s)
- Emeline Pierrieau
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, Paul Sabatier University, Toulouse, France
- Aquitaine Institute for Cognitive and Integrative Neuroscience (INCIA), Université de Bordeaux, Bordeaux, France
| | - Camille Charissou
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, Paul Sabatier University, Toulouse, France
- Institut National Universitaire Champollion, EIAP, Département STAPS, Rodez, France
| | - Sylvie Vernazza-Martin
- Université Paris Nanterre, UFR-STAPS, Nanterre, France
- Laboratoire des interactions Cognition, Action, Émotion - LICAÉ, UFR STAPS, Université Paris Nanterre, Nanterre, France
| | - Benjamin Pageaux
- Centre de recherche de l'Institut universitaire de gériatrie de Montréal (CRIUGM), Montréal, QC, Canada
- École de kinésiologie et des sciences de l'activité physique (EKSAP), Faculté de médecine, Université de Montréal, Montréal, QC, Canada
- Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Montréal, QC, Canada
| | - Romuald Lepers
- CAPS UMR1093, Institut National de la Santé et de la Recherche Médicale (INSERM), Faculté des Sciences du Sport, Université de Bourgogne-Franche-Comté, Dijon, France
| | - David Amarantini
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, Paul Sabatier University, Toulouse, France
| | - Lilian Fautrelle
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, Paul Sabatier University, Toulouse, France
- Institut National Universitaire Champollion, EIAP, Département STAPS, Rodez, France
| |
Collapse
|
8
|
Ortega-Auriol P, Byblow WD, Besier T, McMorland AJC. Muscle synergies are associated with intermuscular coherence and cortico-synergy coherence in an isometric upper limb task. Exp Brain Res 2023; 241:2627-2643. [PMID: 37737925 PMCID: PMC10635925 DOI: 10.1007/s00221-023-06706-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 09/10/2023] [Indexed: 09/23/2023]
Abstract
To elucidate the underlying physiological mechanisms of muscle synergies, we investigated long-range functional connectivity by cortico-muscular (CMC), intermuscular (IMC) and cortico-synergy (CSC) coherence. Fourteen healthy participants executed an isometric upper limb task in synergy-tuned directions. Cortical activity was recorded using 32-channel electroencephalography (EEG) and muscle activity using 16-channel electromyography (EMG). Using non-negative matrix factorisation (NMF), we calculated muscle synergies from two different tasks. A preliminary multidirectional task was used to identify synergy-preferred directions (PDs). A subsequent coherence task, consisting of generating forces isometrically in the synergy PDs, was used to assess the functional connectivity properties of synergies. Overall, we were able to identify four different synergies from the multidirectional task. A significant alpha band IMC was consistently present in all extracted synergies. Moreover, IMC alpha band was higher between muscles with higher weights within a synergy. Interestingly, CSC alpha band was also significantly higher across muscles with higher weights within a synergy. In contrast, no significant CMC was found between the motor cortex area and synergy muscles. The presence of a shared input onto synergistic muscles within a synergy supports the idea of neurally derived muscle synergies that build human movement. Our findings suggest cortical modulation of some of the synergies and the consequential existence of shared input between muscles within cortically modulated synergies.
Collapse
Affiliation(s)
- Pablo Ortega-Auriol
- Department of Exercise Sciences, University of Auckland, Auckland, New Zealand.
- Centre for Brain Research, University of Auckland, Auckland, New Zealand.
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand.
| | - Winston D Byblow
- Department of Exercise Sciences, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Thor Besier
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Angus J C McMorland
- Department of Exercise Sciences, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
9
|
Rizzo R, Wang JWJL, DePold Hohler A, Holsapple JW, Vaou OE, Ivanov PC. Dynamic networks of cortico-muscular interactions in sleep and neurodegenerative disorders. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3:1168677. [PMID: 37744179 PMCID: PMC10512188 DOI: 10.3389/fnetp.2023.1168677] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 08/09/2023] [Indexed: 09/26/2023]
Abstract
The brain plays central role in regulating physiological systems, including the skeleto-muscular and locomotor system. Studies of cortico-muscular coordination have primarily focused on associations between movement tasks and dynamics of specific brain waves. However, the brain-muscle functional networks of synchronous coordination among brain waves and muscle activity rhythms that underlie locomotor control remain unknown. Here we address the following fundamental questions: what are the structure and dynamics of cortico-muscular networks; whether specific brain waves are main network mediators in locomotor control; how the hierarchical network organization relates to distinct physiological states under autonomic regulation such as wake, sleep, sleep stages; and how network dynamics are altered with neurodegenerative disorders. We study the interactions between all physiologically relevant brain waves across cortical locations with distinct rhythms in leg and chin muscle activity in healthy and Parkinson's disease (PD) subjects. Utilizing Network Physiology framework and time delay stability approach, we find that 1) each physiological state is characterized by a unique network of cortico-muscular interactions with specific hierarchical organization and profile of links strength; 2) particular brain waves play role as main mediators in cortico-muscular interactions during each state; 3) PD leads to muscle-specific breakdown of cortico-muscular networks, altering the sleep-stage stratification pattern in network connectivity and links strength. In healthy subjects cortico-muscular networks exhibit a pronounced stratification with stronger links during wake and light sleep, and weaker links during REM and deep sleep. In contrast, network interactions reorganize in PD with decline in connectivity and links strength during wake and non-REM sleep, and increase during REM, leading to markedly different stratification with gradual decline in network links strength from wake to REM, light and deep sleep. Further, we find that wake and sleep stages are characterized by specific links strength profiles, which are altered with PD, indicating disruption in the synchronous activity and network communication among brain waves and muscle rhythms. Our findings demonstrate the presence of previously unrecognized functional networks and basic principles of brain control of locomotion, with potential clinical implications for novel network-based biomarkers for early detection of Parkinson's and neurodegenerative disorders, movement, and sleep disorders.
Collapse
Affiliation(s)
- Rossella Rizzo
- Keck Laboratory for Network Physiology, Department of Physics, Boston University, Boston, MA, United States
- Department of Engineering, University of Palermo, Palermo, Italy
| | - Jilin W. J. L. Wang
- Keck Laboratory for Network Physiology, Department of Physics, Boston University, Boston, MA, United States
| | - Anna DePold Hohler
- Department of Neurology, Steward St. Elizabeth’s Medical Center, Boston, MA, United States
- Department of Neurology, Boston University School of Medicine, Boston, MA, United States
| | - James W. Holsapple
- Department of Neurosurgery, Boston University School of Medicine, Boston, MA, United States
| | - Okeanis E. Vaou
- Department of Neurology, Steward St. Elizabeth’s Medical Center, Boston, MA, United States
- Department of Neurology, Boston University School of Medicine, Boston, MA, United States
| | - Plamen Ch. Ivanov
- Keck Laboratory for Network Physiology, Department of Physics, Boston University, Boston, MA, United States
- Harvard Medical School and Division of Sleep Medicine, Brigham and Women Hospital, Boston, MA, United States
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
10
|
Delcamp C, Gasq D, Cormier C, Amarantini D. Corticomuscular and intermuscular coherence are correlated after stroke: a simplified motor control? Brain Commun 2023; 5:fcad187. [PMID: 37377979 PMCID: PMC10292907 DOI: 10.1093/braincomms/fcad187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 05/11/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
During movement, corticomuscular coherence is a measure of central-peripheral communication, while intermuscular coherence is a measure of the amount of common central drive to the muscles. Although these two measures are modified in stroke subjects, no author has explored a correlation between them, neither in stroke subjects nor in healthy subjects. Twenty-four chronic stroke subjects and 22 healthy control subjects were included in this cohort study, and they performed 20 active elbow extension movements. The electroencephalographic and electromyographic activity of the elbow flexors and extensors were recorded. Corticomuscular and intermuscular coherence were calculated in the time-frequency domain for each limb of stroke and control subjects. Partial rank correlations were performed to study the link between these two variables. Our results showed a positive correlation between corticomuscular and intermuscular coherence only for stroke subjects, for their paretic and non-paretic limbs (P < 0.022; Rho > 0.50). These results suggest, beyond the cortical and spinal hypotheses to explain them, that stroke subjects present a form of simplification of motor control. When central-peripheral communication increases, it is less modulated and more common to the muscles involved in the active movement. This motor control simplification suggests a new way of understanding the plasticity of the neuromuscular system after stroke.
Collapse
Affiliation(s)
- Célia Delcamp
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, Université Paul Sabatier, 31062 Toulouse, France
| | - David Gasq
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, Université Paul Sabatier, 31062 Toulouse, France
- Department of Functional Physiological Explorations, University Hospital of Toulouse, Hôpital de Rangueil, 31400 Toulouse, France
| | - Camille Cormier
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, Université Paul Sabatier, 31062 Toulouse, France
- Department of Functional Physiological Explorations, University Hospital of Toulouse, Hôpital de Rangueil, 31400 Toulouse, France
| | - David Amarantini
- Correspondence to: David Amarantini Unité ToNIC, UMR 1214, CHU PURPAN – Pavillon BAUDOT Place du Dr Joseph Baylac, 31024 Toulouse Cedex 3, France E-mail:
| |
Collapse
|
11
|
Zipser-Mohammadzada F, Scheffers MF, Conway BA, Halliday DM, Zipser CM, Curt A, Schubert M. Intramuscular coherence enables robust assessment of modulated supra-spinal input in human gait: an inter-dependence study of visual task and walking speed. Exp Brain Res 2023; 241:1675-1689. [PMID: 37199775 DOI: 10.1007/s00221-023-06635-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 05/11/2023] [Indexed: 05/19/2023]
Abstract
Intramuscular high-frequency coherence is increased during visually guided treadmill walking as a consequence of increased supra-spinal input. The influence of walking speed on intramuscular coherence and its inter-trial reproducibility need to be established before adoption as a functional gait assessment tool in clinical settings. Here, fifteen healthy controls performed a normal and a target walking task on a treadmill at various speeds (0.3 m/s, 0.5 m/s, 0.9 m/s, and preferred) during two sessions. Intramuscular coherence was calculated between two surface EMG recordings sites of the Tibialis anterior muscle during the swing phase of walking. The results were averaged across low-frequency (5-14 Hz) and high-frequency (15-55 Hz) bands. The effect of speed, task, and time on mean coherence was assessed using three-way repeated measures ANOVA. Reliability and agreement were calculated with the intra-class correlation coefficient and Bland-Altman method, respectively. Intramuscular coherence during target walking was significantly higher than during normal walking across all walking speeds in the high-frequency band as obtained by the three-way repeated measures ANOVA. Interaction effects between task and speed were found for the low- and high-frequency bands, suggesting that task-dependent differences increase at higher walking speeds. Reliability of intramuscular coherence was moderate to excellent for most normal and target walking tasks in all frequency bands. This study confirms previous reports of increased intramuscular coherence during target walking, while providing first evidence for reproducibility and robustness of this measure as a requirement to investigate supra-spinal input.Trial registration Registry number/ClinicalTrials.gov Identifier: NCT03343132, date of registration 2017/11/17.
Collapse
Affiliation(s)
| | - Marjelle Fredie Scheffers
- Department of Neurophysiology, Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
- Faculty of Medicine, Utrecht University, Utrecht, The Netherlands
| | - Bernard A Conway
- Biomedical Engineering, University of Strathclyde, Glasgow, G4 0NW, UK
| | - David M Halliday
- School of Physics, Engineering and Technology, University of York, York, YO10 5DD, UK
- York Biomedical Research Institute, University of York, York, UK
| | - Carl Moritz Zipser
- Department of Neurophysiology, Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
| | - Armin Curt
- Department of Neurophysiology, Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
| | - Martin Schubert
- Department of Neurophysiology, Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
| |
Collapse
|
12
|
The influence of distal and proximal muscle activation on neural crosstalk. PLoS One 2022; 17:e0275997. [PMID: 36282810 PMCID: PMC9595517 DOI: 10.1371/journal.pone.0275997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/27/2022] [Indexed: 11/07/2022] Open
Abstract
Previous research has indicated that neural crosstalk is asymmetric, with the dominant effector exerting a stronger influence on the non-dominant effector than vice versa. Recently, it has been hypothesized that this influence is more substantial for proximal than distal effectors. The current investigation was designed to determine the effects of distal ((First Dorsal Interosseous (FDI)) and proximal (triceps brachii (TBI)) muscle activation on neural crosstalk. Twelve right-limb dominant participants (mean age = 21.9) were required to rhythmically coordinate a 1:2 pattern of isometric force guided by Lissajous displays. Participants performed 10, 30 s trials with both distal and proximal effectors. Coherence between the two effector groups were calculated using EMG-EMG wavelet coherence. The results indicated that participants could effectively coordinate the goal coordination pattern regardless of the effectors used. However, spatiotemporal performance was more accurate when performing the task with distal than proximal effectors. Force distortion, quantified by harmonicity, indicated that more perturbations occurred in the non-dominant effector than in the dominant effector. The results also indicated significantly lower harmonicity for the non-dominant proximal effector compared to the distal effectors. The current results support the notion that neural crosstalk is asymmetric in nature and is greater for proximal than distal effectors. Additionally, the EMG-EMG coherence results indicated significant neural crosstalk was occurring in the Alpha bands (5-13 Hz), with higher values observed in the proximal condition. Significant coherence in the Alpha bands suggest that the influence of neural crosstalk is occurring at a subcortical level.
Collapse
|
13
|
Vecchiato G, Del Vecchio M, Ambeck-Madsen J, Ascari L, Avanzini P. EEG-EMG coupling as a hybrid method for steering detection in car driving settings. Cogn Neurodyn 2022; 16:987-1002. [PMID: 36237409 PMCID: PMC9508316 DOI: 10.1007/s11571-021-09776-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 12/03/2021] [Accepted: 12/23/2021] [Indexed: 11/28/2022] Open
Abstract
Understanding mental processes in complex human behavior is a key issue in driving, representing a milestone for developing user-centered assistive driving devices. Here, we propose a hybrid method based on electroencephalographic (EEG) and electromyographic (EMG) signatures to distinguish left and right steering in driving scenarios. Twenty-four participants took part in the experiment consisting of recordings of 128-channel EEG and EMG activity from deltoids and forearm extensors in non-ecological and ecological steering tasks. Specifically, we identified the EEG mu rhythm modulation correlates with motor preparation of self-paced steering actions in the non-ecological task, while the concurrent EMG activity of the left (right) deltoids correlates with right (left) steering. Consequently, we exploited the mu rhythm de-synchronization resulting from the non-ecological task to detect the steering side using cross-correlation analysis with the ecological EMG signals. Results returned significant cross-correlation values showing the coupling between the non-ecological EEG feature and the muscular activity collected in ecological driving conditions. Moreover, such cross-correlation patterns discriminate the steering side earlier relative to the single EMG signal. This hybrid system overcomes the limitation of the EEG signals collected in ecological settings such as low reliability, accuracy, and adaptability, thus adding to the EMG the characteristic predictive power of the cerebral data. These results prove how it is possible to complement different physiological signals to control the level of assistance needed by the driver. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-021-09776-w.
Collapse
Affiliation(s)
- Giovanni Vecchiato
- Institute of Neuroscience, National Research Council of Italy, Via Volturno 39/E, 43125 Parma, Italy
| | - Maria Del Vecchio
- Institute of Neuroscience, National Research Council of Italy, Via Volturno 39/E, 43125 Parma, Italy
| | | | - Luca Ascari
- Camlin Italy S.R.L., Parma, Italy
- Henesis s.r.l., 43123 Parma, Italy
| | - Pietro Avanzini
- Institute of Neuroscience, National Research Council of Italy, Via Volturno 39/E, 43125 Parma, Italy
| |
Collapse
|
14
|
Zipser-Mohammadzada F, Conway BA, Halliday DM, Zipser CM, Easthope CA, Curt A, Schubert M. Intramuscular coherence during challenging walking in incomplete spinal cord injury: Reduced high-frequency coherence reflects impaired supra-spinal control. Front Hum Neurosci 2022; 16:927704. [PMID: 35992941 PMCID: PMC9387543 DOI: 10.3389/fnhum.2022.927704] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/15/2022] [Indexed: 11/30/2022] Open
Abstract
Individuals regaining reliable day-to-day walking function after incomplete spinal cord injury (iSCI) report persisting unsteadiness when confronted with walking challenges. However, quantifiable measures of walking capacity lack the sensitivity to reveal underlying impairments of supra-spinal locomotor control. This study investigates the relationship between intramuscular coherence and corticospinal dynamic balance control during a visually guided Target walking treadmill task. In thirteen individuals with iSCI and 24 controls, intramuscular coherence and cumulant densities were estimated from pairs of Tibialis anterior surface EMG recordings during normal treadmill walking and a Target walking task. The approximate center of mass was calculated from pelvis markers. Spearman rank correlations were performed to evaluate the relationship between intramuscular coherence, clinical parameters, and center of mass parameters. In controls, we found that the Target walking task results in increased high-frequency (21–44 Hz) intramuscular coherence, which negatively related to changes in the center of mass movement, whereas this modulation was largely reduced in individuals with iSCI. The impaired modulation of high-frequency intramuscular coherence during the Target walking task correlated with neurophysiological and functional readouts, such as motor-evoked potential amplitude and outdoor mobility score, as well as center of mass trajectory length. The Target walking effect, the difference between Target and Normal walking intramuscular coherence, was significantly higher in controls than in individuals with iSCI [F(1.0,35.0) = 13.042, p < 0.001]. Intramuscular coherence obtained during challenging walking in individuals with iSCI may provide information on corticospinal gait control. The relationships between biomechanics, clinical scores, and neurophysiology suggest that intramuscular coherence assessed during challenging tasks may be meaningful for understanding impaired supra-spinal control in individuals with iSCI.
Collapse
Affiliation(s)
- Freschta Zipser-Mohammadzada
- Spinal Cord Injury Center, Department of Neurophysiology, Balgrist University Hospital, Zurich, Switzerland
- *Correspondence: Freschta Zipser-Mohammadzada,
| | - Bernard A. Conway
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - David M. Halliday
- Department of Electronic Engineering, University of York, York, United Kingdom
- York Biomedical Research Institute, University of York, York, United Kingdom
| | - Carl Moritz Zipser
- Spinal Cord Injury Center, Department of Neurophysiology, Balgrist University Hospital, Zurich, Switzerland
| | - Chris A. Easthope
- Spinal Cord Injury Center, Department of Neurophysiology, Balgrist University Hospital, Zurich, Switzerland
- Cereneo Foundation, Center for Interdisciplinary Research, Vitznau, Switzerland
| | - Armin Curt
- Spinal Cord Injury Center, Department of Neurophysiology, Balgrist University Hospital, Zurich, Switzerland
| | - Martin Schubert
- Spinal Cord Injury Center, Department of Neurophysiology, Balgrist University Hospital, Zurich, Switzerland
| |
Collapse
|
15
|
Lapenta OM, Keller PE, Nozaradan S, Varlet M. Lateralised dynamic modulations of corticomuscular coherence associated with bimanual learning of rhythmic patterns. Sci Rep 2022; 12:6271. [PMID: 35428836 PMCID: PMC9012795 DOI: 10.1038/s41598-022-10342-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 03/28/2022] [Indexed: 11/09/2022] Open
Abstract
Human movements are spontaneously attracted to auditory rhythms, triggering an automatic activation of the motor system, a central phenomenon to music perception and production. Cortico-muscular coherence (CMC) in the theta, alpha, beta and gamma frequencies has been used as an index of the synchronisation between cortical motor regions and the muscles. Here we investigated how learning to produce a bimanual rhythmic pattern composed of low- and high-pitch sounds affects CMC in the beta frequency band. Electroencephalography (EEG) and electromyography (EMG) from the left and right First Dorsal Interosseus and Flexor Digitorum Superficialis muscles were concurrently recorded during constant pressure on a force sensor held between the thumb and index finger while listening to the rhythmic pattern before and after a bimanual training session. During the training, participants learnt to produce the rhythmic pattern guided by visual cues by pressing the force sensors with their left or right hand to produce the low- and high-pitch sounds, respectively. Results revealed no changes after training in overall beta CMC or beta oscillation amplitude, nor in the correlation between the left and right sides for EEG and EMG separately. However, correlation analyses indicated that left- and right-hand beta EEG-EMG coherence were positively correlated over time before training but became uncorrelated after training. This suggests that learning to bimanually produce a rhythmic musical pattern reinforces lateralised and segregated cortico-muscular communication.
Collapse
Affiliation(s)
- Olivia Morgan Lapenta
- The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Penrith, Australia. .,Center for Investigation in Psychology, University of Minho, Braga, Portugal.
| | - Peter E Keller
- The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Penrith, Australia
| | - Sylvie Nozaradan
- The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Penrith, Australia.,Institute of Neuroscience, Catholic University of Louvain, Woluwe-Saint-Lambert, Belgium
| | - Manuel Varlet
- The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Penrith, Australia.,School of Psychology, Western Sydney University, Penrith, Australia
| |
Collapse
|
16
|
Electromyography, Wavelet Analysis and Muscle Co-Activation as Comprehensive Tools of Movement Pattern Assessment for Injury Prevention in Wheelchair Fencing. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aim of the study was to determine the correct movement patterns of fencing techniques in wheelchair fencers. Through a comprehensive analysis, the key muscles in the kinematic chain exposed to potential injuries were identified. The study participants were 16 wheelchair fencers, divided into two groups representing two categories of disability: Group A (N = 7) comprising fencers with mild paraplegia, having freedom of movement of the trunk and arms; and Group B (N = 9) comprising fencers with a spinal cord injury and partial paresis of the arms. EMG and an accelerometer were used as the main research tools. The EMG electrodes were placed on the muscles of the sword arm as well as on the left and right sides of the abdomen and torso. The EMG signal was transformed using wavelet analysis, and the muscle activation time and co-activation index (CI) were determined. In Group A fencers, first the back and abdominal muscles were activated, while in Group B, it was the deltoid muscle. The wavelet coherence analysis revealed intermuscular synchronization at 8–20 Hz for Group A fencers and at 5–15 Hz for Group B fencers. In Group A fencers, the co-activation index was 50.94 for the right-side back and abdominal muscles, 50.75 for the ECR-FCR, and 47.99 for the TRI-BC pairs of upper limb muscles. In contrast, Group B fencers demonstrated higher CI values (50.54) only for the postural left-side muscle pairs. Many overload injuries of the shoulder girdle, elbow, postural muscles, spine, and neck have been found to be preventable through modification of current training programs dominated by specialist exercises. Modern wheelchair fencing training should involve neuromuscular coordination and psychomotor exercises. This will facilitate the individualization of training depending on the fencer’s degree of disability and training experience.
Collapse
|
17
|
Guerrero-Mendez CD, Ruiz-Olaya AF. Coherence-based connectivity analysis of EEG and EMG signals during reach-to-grasp movement involving two weights. BRAIN-COMPUTER INTERFACES 2022. [DOI: 10.1080/2326263x.2022.2029308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Cristian D. Guerrero-Mendez
- Bioengineering Research Group, Faculty of Mechanical, Electronic and Biomedical Engineering, Antonio Nariño University, Bogotá, Colombia
| | - Andres F. Ruiz-Olaya
- Bioengineering Research Group, Faculty of Mechanical, Electronic and Biomedical Engineering, Antonio Nariño University, Bogotá, Colombia
| |
Collapse
|
18
|
Błaszczyszyn M, Borysiuk Z, Piechota K, Kręcisz K, Zmarzły D. Wavelet coherence as a measure of trunk stabilizer muscle activation in wheelchair fencers. BMC Sports Sci Med Rehabil 2021; 13:140. [PMID: 34717749 PMCID: PMC8557511 DOI: 10.1186/s13102-021-00369-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 10/27/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND Intermuscular synchronization constitutes one of the key aspects of effective sport performance and activities of daily living. The aim of the study was to assess the synchronization of trunk stabilizer muscles in wheelchair fencers with the use of wavelet analysis. METHODS Intermuscular synchronization and antagonistic EMG-EMG coherence were evaluated in the pairs of the right and the left latissimus dorsi/external oblique abdominal (LD/EOA) muscles. The study group consisted of 16 wheelchair fencers, members of the Polish Paralympic Team, divided into two categories of disability (A and B). Data analysis was carried out in three stages: (1) muscle activation recording using sEMG; (2) wavelet coherence analysis; and (3) coherence density analysis. RESULTS In the Paralympic wheelchair fencers, regardless of their disability category, the muscles were activated at low frequency levels: 8-20 Hz for category A fencers, and 5-15 Hz for category B fencers. CONCLUSIONS The results demonstrated a clear activity of the trunk muscles in the wheelchair fencers, including those with spinal cord injury, which can be explained as an outcome of their intense training. EMG signal processing application have great potential for performance improvement and diagnosis of wheelchair athletes.
Collapse
Affiliation(s)
- Monika Błaszczyszyn
- Faculty of Physical Education and Physiotherapy, Opole University of Technology, Prószkowska 76, 45-758, Opole, Poland.
| | - Zbigniew Borysiuk
- Faculty of Physical Education and Physiotherapy, Opole University of Technology, Prószkowska 76, 45-758, Opole, Poland
| | - Katarzyna Piechota
- Faculty of Physical Education and Physiotherapy, Opole University of Technology, Prószkowska 76, 45-758, Opole, Poland
| | - Krzysztof Kręcisz
- Faculty of Physical Education and Physiotherapy, Opole University of Technology, Prószkowska 76, 45-758, Opole, Poland
| | - Dariusz Zmarzły
- Faculty of Electrical Engineering, Automatics and Computer Science, Opole University of Technology, Prószkowska 76, 45-758, Opole, Poland
| |
Collapse
|
19
|
Wang Y, Neto OP, Davis MM, Kennedy DM. The effect of inherent and incidental constraints on bimanual and social coordination. Exp Brain Res 2021; 239:2089-2105. [PMID: 33929601 DOI: 10.1007/s00221-021-06114-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 04/13/2021] [Indexed: 10/21/2022]
Abstract
The current investigation was designed to examine the influence of inherent and incidental constraints on the stability characteristics associated with bimanual and social coordination. Individual participants (N = 9) and pairs of participants (N = 18, 9 pairs) were required to rhythmically coordinate patterns of isometric forces in 1:1 in-phase and 1:2 multi-frequency patterns by exerting force with their right and left limbs. Lissajous information was provided to guide performance. Participants performed 13 practice trials and 1 test trial per pattern. On the test trial, muscle activity from the triceps brachii muscles of each arm was recorded. EMG-EMG coherence between the two EMG signals was calculated using wavelet coherence. The behavioral data indicated that individual participants performed the 1:1 in-phase pattern more accurately and with less variability than paired participants. The EMG coherence analysis indicated significantly higher coherence for individual participants than for the paired participants during the 1:1 in-phase pattern, whereas no differences were observed between groups for the 1:2 coordination pattern. The results of the current investigation support the notion that neural crosstalk can stabilize 1:1 in-phase coordination when contralateral and ipsilateral signals are integrated via the neuromuscular linkage between two effectors.
Collapse
Affiliation(s)
- Yiyu Wang
- Department of Health and Kinesiology, Texas A&M University, College Station, TX, 77802, USA
| | - Osmar Pinto Neto
- Anhembi Morumbi University São José dos Campos, São Paulo, SP, Brazil.,Arena235 Research Lab, São José dos Campos, São Paulo, SP, Brazil
| | - Madison M Davis
- Department of Health and Kinesiology, Texas A&M University, College Station, TX, 77802, USA
| | - Deanna M Kennedy
- Department of Health and Kinesiology, Texas A&M University, College Station, TX, 77802, USA.
| |
Collapse
|
20
|
Rizzo R, Zhang X, Wang JWJL, Lombardi F, Ivanov PC. Network Physiology of Cortico-Muscular Interactions. Front Physiol 2020; 11:558070. [PMID: 33324233 PMCID: PMC7726198 DOI: 10.3389/fphys.2020.558070] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 10/06/2020] [Indexed: 01/31/2023] Open
Abstract
Skeletal muscle activity is continuously modulated across physiologic states to provide coordination, flexibility and responsiveness to body tasks and external inputs. Despite the central role the muscular system plays in facilitating vital body functions, the network of brain-muscle interactions required to control hundreds of muscles and synchronize their activation in relation to distinct physiologic states has not been investigated. Recent approaches have focused on general associations between individual brain rhythms and muscle activation during movement tasks. However, the specific forms of coupling, the functional network of cortico-muscular coordination, and how network structure and dynamics are modulated by autonomic regulation across physiologic states remains unknown. To identify and quantify the cortico-muscular interaction network and uncover basic features of neuro-autonomic control of muscle function, we investigate the coupling between synchronous bursts in cortical rhythms and peripheral muscle activation during sleep and wake. Utilizing the concept of time delay stability and a novel network physiology approach, we find that the brain-muscle network exhibits complex dynamic patterns of communication involving multiple brain rhythms across cortical locations and different electromyographic frequency bands. Moreover, our results show that during each physiologic state the cortico-muscular network is characterized by a specific profile of network links strength, where particular brain rhythms play role of main mediators of interaction and control. Further, we discover a hierarchical reorganization in network structure across physiologic states, with high connectivity and network link strength during wake, intermediate during REM and light sleep, and low during deep sleep, a sleep-stage stratification that demonstrates a unique association between physiologic states and cortico-muscular network structure. The reported empirical observations are consistent across individual subjects, indicating universal behavior in network structure and dynamics, and high sensitivity of cortico-muscular control to changes in autonomic regulation, even at low levels of physical activity and muscle tone during sleep. Our findings demonstrate previously unrecognized basic principles of brain-muscle network communication and control, and provide new perspectives on the regulatory mechanisms of brain dynamics and locomotor activation, with potential clinical implications for neurodegenerative, movement and sleep disorders, and for developing efficient treatment strategies.
Collapse
Affiliation(s)
- Rossella Rizzo
- Keck Laboratory for Network Physiology, Department of Physics, Boston University, Boston, MA, United States
- Evolutionary Systems Group Laboratory, Department of Physics, University of Calabria, Rende, Italy
| | - Xiyun Zhang
- Keck Laboratory for Network Physiology, Department of Physics, Boston University, Boston, MA, United States
- Department of Physics, Jinan University, Guangzhou, China
| | - Jilin W. J. L. Wang
- Keck Laboratory for Network Physiology, Department of Physics, Boston University, Boston, MA, United States
| | - Fabrizio Lombardi
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Plamen Ch. Ivanov
- Keck Laboratory for Network Physiology, Department of Physics, Boston University, Boston, MA, United States
- Division of Sleep Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States
- Institute of Solid State Physics, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
21
|
Watanabe T, Nojima I, Mima T, Sugiura H, Kirimoto H. Magnification of visual feedback modulates corticomuscular and intermuscular coherences differently in young and elderly adults. Neuroimage 2020; 220:117089. [DOI: 10.1016/j.neuroimage.2020.117089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/05/2020] [Accepted: 06/21/2020] [Indexed: 10/24/2022] Open
|
22
|
Kerkman JN, Bekius A, Boonstra TW, Daffertshofer A, Dominici N. Muscle Synergies and Coherence Networks Reflect Different Modes of Coordination During Walking. Front Physiol 2020; 11:751. [PMID: 32792967 PMCID: PMC7394052 DOI: 10.3389/fphys.2020.00751] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/10/2020] [Indexed: 11/13/2022] Open
Abstract
When walking speed is increased, the frequency ratio between the arm and leg swing switches spontaneously from 2:1 to 1:1. We examined whether these switches are accompanied by changes in functional connectivity between multiple muscles. Subjects walked on a treadmill with their arms swinging along their body while kinematics and surface electromyography (EMG) of 26 bilateral muscles across the body were recorded. Walking speed was varied from very slow to normal. We decomposed EMG envelopes and intermuscular coherence spectra using non-negative matrix factorization (NMF), and the resulting modes were combined into multiplex networks and analyzed for their community structure. We found five relevant muscle synergies that significantly differed in activation patterns between 1:1 and 2:1 arm-leg coordination and the transition period between them. The corresponding multiplex network contained a single module indicating pronounced muscle co-activation patterns across the whole body during a gait cycle. NMF of the coherence spectra distinguished three EMG frequency bands: 4-8, 8-22, and 22-60 Hz. The community structure of the multiplex network revealed four modules, which clustered functional and anatomical linked muscles across modes of coordination. Intermuscular coherence at 4-22 Hz between upper and lower body and within the legs was particularly pronounced for 1:1 arm-leg coordination and was diminished when switching between modes of coordination. These findings suggest that the stability of arm-leg coordination is associated with modulations in long-distant neuromuscular connectivity.
Collapse
Affiliation(s)
- Jennifer N. Kerkman
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences & Institute for Brain and Behavior Amsterdam, Vrije Universiteit, Amsterdam, Netherlands
| | - Annike Bekius
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences & Institute for Brain and Behavior Amsterdam, Vrije Universiteit, Amsterdam, Netherlands
| | - Tjeerd W. Boonstra
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
- Neuroscience Research Australia, Randwick, NSW, Australia
| | - Andreas Daffertshofer
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences & Institute for Brain and Behavior Amsterdam, Vrije Universiteit, Amsterdam, Netherlands
| | - Nadia Dominici
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences & Institute for Brain and Behavior Amsterdam, Vrije Universiteit, Amsterdam, Netherlands
| |
Collapse
|
23
|
Laine CM, Valero-Cuevas FJ. Parkinson's Disease Exhibits Amplified Intermuscular Coherence During Dynamic Voluntary Action. Front Neurol 2020; 11:204. [PMID: 32308641 PMCID: PMC7145888 DOI: 10.3389/fneur.2020.00204] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 03/09/2020] [Indexed: 12/29/2022] Open
Abstract
Parkinson's disease (PD) is typically diagnosed and evaluated on the basis of overt motor dysfunction, however, subtle changes in the frequency spectrum of neural drive to muscles have been reported as well. During dynamic actions, coactive muscles of healthy adults often share a common source of 6-15 Hz (alpha-band) neural drive, creating synchronous alpha-band activity in their EMG signals. Individuals with PD commonly exhibit kinetic action tremor at similar frequencies, but the potential relationship between the intermuscular alpha-band neural drive seen in healthy adults and the action tremor associated with PD is not well-understood. A close relationship is most tenable during voluntary dynamic tasks where alpha-band neural drive is strongest in healthy adults, and where neural circuits affected by PD are most engaged. In this study, we characterized the frequency spectrum of EMG synchronization (intermuscular coherence) in 16 participants with PD and 15 age-matched controls during two dynamic motor tasks: (1) rotation of a dial between the thumb and index finger, and (2) dynamic scaling of isometric precision pinch force. These tasks produce different profiles of coherence between the first dorsal interosseous and abductor pollicis brevis muscles. We sought to determine if alpha-band intermuscular coherence would be amplified in participants with PD relative to controls, if such differences would be task-specific, and if they would correlate with symptom severity. We found that relative to controls, the PD group displayed amplified, but similarly task-dependent, coherence in the alpha-band. The magnitude of coherence during the rotation task correlated with overall symptom severity as per the UPDRS rating scale. Finally, we explored the potential for our coherence measures, with no additional information, to discriminate individuals with PD from controls. The area under the Receiver Operating Characteristic curve (AUC) indicated a clear separation between groups (AUC = 0.96), even though participants with PD were on their typical medication and displayed only mild-moderate symptoms. We conclude that a task-dependent, intermuscular neural drive within the alpha-band is amplified in PD. Its quantification via intermuscular coherence analysis may provide a useful tool for detecting the presence of PD, or assessing its progression.
Collapse
Affiliation(s)
- Christopher M Laine
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, United States
| | - Francisco J Valero-Cuevas
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, United States.,Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
24
|
Coupling between human brain activity and body movements: Insights from non-invasive electromagnetic recordings. Neuroimage 2019; 203:116177. [DOI: 10.1016/j.neuroimage.2019.116177] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 08/28/2019] [Accepted: 09/06/2019] [Indexed: 01/11/2023] Open
|
25
|
Zandvoort CS, van Dieën JH, Dominici N, Daffertshofer A. The human sensorimotor cortex fosters muscle synergies through cortico-synergy coherence. Neuroimage 2019; 199:30-37. [PMID: 31121297 DOI: 10.1016/j.neuroimage.2019.05.041] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/27/2019] [Accepted: 05/16/2019] [Indexed: 11/17/2022] Open
Abstract
In neuromotor control, the dimensionality of complex muscular activation patterns is effectively reduced through the emergence of muscle synergies. Muscle synergies are tailored to task-specific biomechanical needs. Traditionally, they are considered as low-dimensional neural output of the spinal cord and as such their coherent cortico-muscular pathways have remained underexplored in humans. We investigated whether muscle synergies have a higher-order origin, especially, whether they are manifest in the cortical motor network. We focused on cortical muscle synergy representations involved in balance control and examined changes in cortico-synergy coherence accompanying short-term balance training. We acquired electromyography and electro-encephalography and reconstructed cortical source activity using adaptive spatial filters. The latter were based on three muscle synergies decomposed from the activity of nine unilateral leg muscles using non-negative matrix factorization. The corresponding cortico-synergy coherence displayed phase-locked activity at the Piper rhythm, i.e., cortico-spinal synchronization around 40 Hz. Our study revealed the presence of muscle synergies in the motor cortex, in particular, in the paracentral lobule, known for the representation of lower extremities. We conclude that neural oscillations synchronize between the motor cortex and spinal motor neuron pools signifying muscle synergies. The corresponding cortico-synergy coherence around the Piper rhythm decreases with training-induced balance improvement.
Collapse
Affiliation(s)
- Coen S Zandvoort
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Institute for Brain and Behavior Amsterdam & Amsterdam Movement Sciences, the Netherlands
| | - Jaap H van Dieën
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Institute for Brain and Behavior Amsterdam & Amsterdam Movement Sciences, the Netherlands
| | - Nadia Dominici
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Institute for Brain and Behavior Amsterdam & Amsterdam Movement Sciences, the Netherlands
| | - Andreas Daffertshofer
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Institute for Brain and Behavior Amsterdam & Amsterdam Movement Sciences, the Netherlands.
| |
Collapse
|
26
|
Hwang IS, Hu CL, Yang ZR, Lin YT, Chen YC. Improving Precision Force Control With Low-Frequency Error Amplification Feedback: Behavioral and Neurophysiological Mechanisms. Front Physiol 2019; 10:131. [PMID: 30842742 PMCID: PMC6391708 DOI: 10.3389/fphys.2019.00131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 02/01/2019] [Indexed: 11/13/2022] Open
Abstract
Although error amplification (EA) feedback has been shown to improve performance on visuomotor tasks, the challenge of EA is that it concurrently magnifies task-irrelevant information that may impair visuomotor control. The purpose of this study was to improve the force control in a static task by preclusion of high-oscillatory components in EA feedback that cannot be timely used for error correction by the visuomotor system. Along with motor unit behaviors and corticomuscular coherence, force fluctuations (Fc) were modeled with non-linear SDA to contrast the reliance of the feedback process and underlying neurophysiological mechanisms by using real feedback, EA, and low-frequency error amplification (LF-EA). During the static force task in the experiment, the EA feedback virtually potentiated the size of visual error, whereas the LF-EA did not channel high-frequency errors above 0.8 Hz into the amplification process. The results showed that task accuracy was greater with the LF-EA than with the real and EA feedback modes, and that LF-EA led to smaller and more complex Fc. LF-EA generally led to smaller SDA variables of Fc (critical time points, critical point of Fc, the short-term effective diffusion coefficient, and short-term exponent scaling) than did real feedback and EA. The use of LF-EA feedback increased the irregularity of the ISIs of MUs but decreased the RMS of the mean discharge rate, estimated with pooled MU spike trains. Beta-range EEG–EMG coherence spectra (13–35 Hz) in the LF-EA condition were the greatest among the three feedback conditions. In summary, amplification of low-frequency errors improves force control by shifting the relative significances of the feedforward and feedback processes. The functional benefit arises from the increase in the common descending drive to promote a stable state of MU discharges.
Collapse
Affiliation(s)
- Ing-Shiou Hwang
- Institute of Allied Health Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Ling Hu
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Zong-Ru Yang
- Institute of Allied Health Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yen-Ting Lin
- Physical Education Office, Asian University, Taichung, Taiwan
| | - Yi-Ching Chen
- Department of Physical Therapy, College of Medical Science and Technology, Chung Shan Medical University, Taichung, Taiwan.,Physical Therapy Room, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
27
|
Kerkman JN, Daffertshofer A, Gollo LL, Breakspear M, Boonstra TW. Functional connectivity analysis of multiplex muscle network across frequencies. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2017:1567-1570. [PMID: 29060180 DOI: 10.1109/embc.2017.8037136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Physiological networks reveal information about the interaction between subsystems of the human body. Here we investigated the interaction between the central nervous system and the musculoskeletal system by mapping functional muscle networks. Muscle networks were extracted using coherence analysis of muscle activity assessed using surface electromyography (EMG). Surface EMG was acquired from 36 muscles distributed throughout the body while participants were standing upright and performing a bimanual pointing task. Non-negative matrix factorization revealed functional connectivity in four frequency bands. The spatial arrangement differed considerably across frequencies supporting a multiplex network organisation. Graph-theory analysis of layer-specific network revealed a consistent fat-tail distribution of the edges weights, distinct efficiency values, and core-periphery properties. These frequency bands may be spectral fingerprints of different neural pathways that innervate the spinal motor neurons to control the musculoskeletal system.
Collapse
|
28
|
Aguiar SA, Baker SN, Gant K, Bohorquez J, Thomas CK. Spasms after spinal cord injury show low-frequency intermuscular coherence. J Neurophysiol 2018; 120:1765-1771. [PMID: 30067124 PMCID: PMC6230810 DOI: 10.1152/jn.00112.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Intermuscular coherence allows the investigation of common input to muscle groups. Although beta-band (15–30 Hz) intermuscular coherence is well understood as originating from the cortex, the source of intermuscular coherence at lower frequencies is still unclear. We used a wearable device that recorded electromyographic (EMG) signals during a 24-h period in four lower limb muscles of seven spinal cord injury patients (American Spinal Cord Injury Association impairment scale: A, 6 subjects; B, 1 subject) while they went about their normal daily life activities. We detected natural spasms occurring during these long-lasting recordings and calculated intermuscular coherence between all six possible combinations of muscle pairs. There was significant intermuscular coherence at low frequencies, between 2 and 13 Hz. The most likely source for this was the spinal cord and its peripheral feedback loops, because the spinal lesions in these patients had interrupted connections to supraspinal structures. This is the first report to demonstrate that the spinal cord is capable of producing low-frequency intermuscular coherence with severely reduced or abolished descending drive. NEW & NOTEWORTHY This is the first report to demonstrate that intermuscular coherence between lower limb muscles at low frequencies can be produced by the spinal cord with severely reduced or abolished descending drive.
Collapse
Affiliation(s)
- Stefane A Aguiar
- Institute of Neuroscience, Newcastle University , Newcastle Upon Tyne , United Kingdom
| | - Stuart N Baker
- Institute of Neuroscience, Newcastle University , Newcastle Upon Tyne , United Kingdom
| | - Katie Gant
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine , Miami, Florida
| | - Jorge Bohorquez
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine , Miami, Florida.,Department of Biomedical Engineering, University of Miami Miller School of Medicine , Miami, Florida
| | - Christine K Thomas
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine , Miami, Florida.,Department of Neurological Surgery, University of Miami Miller School of Medicine , Miami, Florida.,Department of Physiology and Biophysics, University of Miami Miller School of Medicine , Miami, Florida
| |
Collapse
|
29
|
Effect of Task Failure on Intermuscular Coherence Measures in Synergistic Muscles. Appl Bionics Biomech 2018; 2018:4759232. [PMID: 29967654 PMCID: PMC6008706 DOI: 10.1155/2018/4759232] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 02/21/2018] [Indexed: 12/01/2022] Open
Abstract
The term “task failure” describes the point when a person is not able to maintain the level of force required by a task. As task failure approaches, the corticospinal command to the muscles increases to maintain the required level of force in the face of a decreased mechanical efficacy. Nevertheless, most motor tasks require the synergistic recruitment of several muscles. How this recruitment is affected by approaching task failure is still not clear. The increase in the corticospinal drive could be due to an increase in synergistic recruitment or to overlapping commands sent to the muscles individually. Herein, we investigated these possibilities by combining intermuscular coherence and synergy analysis on signals recorded from three muscles of the quadriceps during dynamic leg extension tasks. We employed muscle synergy analysis to investigate changes in the coactivation of the muscles. Three different measures of coherence were used. Pooled coherence was used to estimate the command synchronous to all three muscles, pairwise coherence the command shared across muscle pairs and residual coherence the command peculiar to each couple of muscles. Our analysis highlights an overall decrease in synergistic command at task failure and an intensification of the contribution of the nonsynergistic shared command.
Collapse
|
30
|
Proudfoot M, van Ede F, Quinn A, Colclough GL, Wuu J, Talbot K, Benatar M, Woolrich MW, Nobre AC, Turner MR. Impaired corticomuscular and interhemispheric cortical beta oscillation coupling in amyotrophic lateral sclerosis. Clin Neurophysiol 2018; 129:1479-1489. [DOI: 10.1016/j.clinph.2018.03.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 03/02/2018] [Accepted: 03/13/2018] [Indexed: 01/01/2023]
|
31
|
Zheng Y, Peng Y, Xu G, Li L, Wang J. Using Corticomuscular Coherence to Reflect Function Recovery of Paretic Upper Limb after Stroke: A Case Study. Front Neurol 2018; 8:728. [PMID: 29375467 PMCID: PMC5767581 DOI: 10.3389/fneur.2017.00728] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/18/2017] [Indexed: 11/13/2022] Open
Abstract
Purpose Motor deficits after stroke are supposed to arise from the reduced neural drive from the brain to muscles. This study aimed to demonstrate the feasibility of reflecting the motor function improvement after stroke with the measurement of corticomuscular coherence (CMC) in an individual subject. Method A stroke patient was recruited to participate in an experiment before and after the function recovery of his paretic upper limb, respectively. An elbow flexion task with a constant muscle contraction level was involved in the experiment. Electromyography and electroencephalography signals were recorded simultaneously to estimate the CMC. The non-parameter statistical analysis was used to test the significance of CMC differences between the first and second times of experiments. Result The strongest corticomuscular coupling emerged at the motor cortex contralateral to the contracting muscles for both the affected and unaffected limbs. The strength of the corticomuscular coupling between activities from the paretic limb muscles and the contralateral motor cortex for the second time of experiment increased significantly compared with that for the first time. However, the CMC of the unaffected limb had no significant changes between two times of experiments. Conclusion The results demonstrated that the increased corticomuscular coupling strength resulted from the motor function restoration of the paretic limb. The measure of CMC can reflect the recovery of motor function after stroke by quantifying interactions between activities from the motor cortex and controlled muscles.
Collapse
Affiliation(s)
- Yang Zheng
- State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Yu Peng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Biomedical Engineering, Xi'an Jiaotong University, Xi'an, China.,The Department of Rehabilitation Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Guanghua Xu
- State Key Laboratory for Manufacturing Systems Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Long Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Biomedical Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Jue Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Biomedical Engineering, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
32
|
Hasegawa K, Kasuga S, Takasaki K, Mizuno K, Liu M, Ushiba J. Ipsilateral EEG mu rhythm reflects the excitability of uncrossed pathways projecting to shoulder muscles. J Neuroeng Rehabil 2017; 14:85. [PMID: 28841920 PMCID: PMC5574148 DOI: 10.1186/s12984-017-0294-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 08/04/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Motor planning, imagery or execution is associated with event-related desynchronization (ERD) of mu rhythm oscillations (8-13 Hz) recordable over sensorimotor areas using electroencephalography (EEG). It was shown that motor imagery involving distal muscles, e.g. finger movements, results in contralateral ERD correlating with increased excitability of the contralateral corticospinal tract (c-CST). Following the rationale that purposefully increasing c-CST excitability might facilitate motor recovery after stroke, ERD recently became an attractive target for brain-computer interface (BCI)-based neurorehabilitation training. It was unclear, however, whether ERD would also reflect excitability of the ipsilateral corticospinal tract (i-CST) that mainly innervates proximal muscles involved in e.g. shoulder movements. Such knowledge would be important to optimize and extend ERD-based BCI neurorehabilitation protocols, e.g. to restore shoulder movements after stroke. Here we used single-pulse transcranial magnetic stimulation (TMS) targeting the ipsilateral primary motor cortex to elicit motor evoked potentials (MEPs) of the trapezius muscle. To assess whether ERD reflects excitability of the i-CST, a correlation analysis between between MEP amplitudes and ipsilateral ERD was performed. METHODS Experiment 1 consisted of a motor execution task during which 10 healthy volunteers performed elevations of the shoulder girdle or finger pinching while a 128-channel EEG was recorded. Experiment 2 consisted of a motor imagery task during which 16 healthy volunteers imagined shoulder girdle elevations or finger pinching while an EEG was recorded; the participants simultaneously received randomly timed, single-pulse TMS to the ipsilateral primary motor cortex. The spatial pattern and amplitude of ERD and the amplitude of the agonist muscle's TMS-induced MEPs were analyzed. RESULTS ERDs occurred bilaterally during both execution and imagery of shoulder girdle elevations, but were lateralized to the contralateral hemisphere during finger pinching. We found that trapezius MEPs increased during motor imagery of shoulder elevations and correlated with ipsilateral ERD amplitudes. CONCLUSIONS Ipsilateral ERD during execution and imagery of shoulder girdle elevations appears to reflect the excitability of uncrossed pathways projecting to the shoulder muscles. As such, ipsilateral ERD could be used for neurofeedback training of shoulder movement, aiming at reanimation of the i-CST.
Collapse
Affiliation(s)
- Keita Hasegawa
- Graduate School of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
| | - Shoko Kasuga
- Graduate School of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan.,Keio Institute of Pure and Applied Sciences (KiPAS), 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, Japan
| | - Kenichi Takasaki
- Graduate School of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
| | - Katsuhiro Mizuno
- Department of Rehabilitation Medicine, Keio University School of Medicine, 35, Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Meigen Liu
- Department of Rehabilitation Medicine, Keio University School of Medicine, 35, Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Junichi Ushiba
- Keio Institute of Pure and Applied Sciences (KiPAS), 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, Japan. .,Department of Rehabilitation Medicine, Keio University School of Medicine, 35, Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan. .,Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan.
| |
Collapse
|
33
|
Reyes A, Laine CM, Kutch JJ, Valero-Cuevas FJ. Beta Band Corticomuscular Drive Reflects Muscle Coordination Strategies. Front Comput Neurosci 2017; 11:17. [PMID: 28420975 PMCID: PMC5378725 DOI: 10.3389/fncom.2017.00017] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 03/10/2017] [Indexed: 12/11/2022] Open
Abstract
During force production, hand muscle activity is known to be coherent with activity in primary motor cortex, specifically in the beta-band (15–30 Hz) frequency range. It is not clear, however, if this coherence reflects the control strategy selected by the nervous system for a given task, or if it instead reflects an intrinsic property of cortico-spinal communication. Here, we measured corticomuscular and intermuscular coherence between muscles of index finger and thumb while a two-finger pinch grip of identical net force was applied to objects which were either stable (allowing synergistic activation of finger muscles) or unstable (requiring individuated finger control). We found that beta-band corticomuscular coherence with the first dorsal interosseous (FDI) and abductor pollicis brevis (APB) muscles, as well as their beta-band coherence with each other, was significantly reduced when individuated control of the thumb and index finger was required. We interpret these findings to show that beta-band coherence is reflective of a synergistic control strategy in which the cortex binds task-related motor neurons into functional units.
Collapse
Affiliation(s)
- Alexander Reyes
- Brain-Body Dynamics Lab, Department of Biomedical Engineering, University of Southern CaliforniaLos Angeles, CA, USA
| | - Christopher M Laine
- Brain-Body Dynamics Lab, Department of Biomedical Engineering, University of Southern CaliforniaLos Angeles, CA, USA
| | - Jason J Kutch
- Applied Mathematical Physiology Lab, Division of Biokinesiology and Physical Therapy, University of Southern CaliforniaLos Angeles, CA, USA
| | - Francisco J Valero-Cuevas
- Brain-Body Dynamics Lab, Department of Biomedical Engineering, University of Southern CaliforniaLos Angeles, CA, USA
| |
Collapse
|
34
|
de Vries IEJ, Daffertshofer A, Stegeman DF, Boonstra TW. Functional connectivity in the neuromuscular system underlying bimanual coordination. J Neurophysiol 2016; 116:2576-2585. [PMID: 27628205 DOI: 10.1152/jn.00460.2016] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/09/2016] [Indexed: 11/22/2022] Open
Abstract
Neural synchrony has been suggested as a mechanism for integrating distributed sensorimotor systems involved in coordinated movement. To test the role of corticomuscular and intermuscular coherence in bimanual coordination, we experimentally manipulated the degree of coordination between hand muscles by varying the sensitivity of the visual feedback to differences in bilateral force. In 16 healthy participants, cortical activity was measured using EEG and muscle activity of the flexor pollicis brevis of both hands using high-density electromyography (HDsEMG). Using the uncontrolled manifold framework, coordination between bilateral forces was quantified by the synergy index RV in the time and frequency domain. Functional connectivity was assessed using corticomuscular coherence between muscle activity and cortical source activity and intermuscular coherence between bilateral EMG activity. The synergy index increased in the high coordination condition. RV was higher in the high coordination condition in frequencies between 0 and 0.5 Hz; for the 0.5- to 2-Hz frequency band, this pattern was inverted. Corticomuscular coherence in the beta band (16-30 Hz) was maximal in the contralateral motor cortex and was reduced in the high coordination condition. In contrast, intermuscular coherence was observed at 5-12 Hz and increased with bimanual coordination. Within-subject comparisons revealed a negative correlation between RV and corticomuscular coherence and a positive correlation between RV and intermuscular coherence. Our findings suggest two distinct neural pathways: 1) corticomuscular coherence reflects direct corticospinal projections involved in controlling individual muscles; and 2) intermuscular coherence reflects diverging pathways involved in the coordination of multiple muscles.
Collapse
Affiliation(s)
- Ingmar E J de Vries
- Faculty of Behavioural and Movement Sciences, VU University, Amsterdam, The Netherlands
| | - Andreas Daffertshofer
- Faculty of Behavioural and Movement Sciences, VU University, Amsterdam, The Netherlands
| | - Dick F Stegeman
- Faculty of Behavioural and Movement Sciences, VU University, Amsterdam, The Netherlands.,Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, The Netherlands
| | - Tjeerd W Boonstra
- Faculty of Behavioural and Movement Sciences, VU University, Amsterdam, The Netherlands; .,Black Dog Institute, University of New South Wales, Sydney, Australia; and.,Systems Neuroscience Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| |
Collapse
|
35
|
Charissou C, Vigouroux L, Berton E, Amarantini D. Fatigue- and training-related changes in ‘beta’ intermuscular interactions between agonist muscles. J Electromyogr Kinesiol 2016; 27:52-9. [DOI: 10.1016/j.jelekin.2016.02.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 01/14/2016] [Accepted: 02/01/2016] [Indexed: 11/29/2022] Open
|
36
|
The influence of unilateral contraction of hand muscles on the contralateral corticomuscular coherence during bimanual motor tasks. Neuropsychologia 2016; 85:199-207. [PMID: 27018484 DOI: 10.1016/j.neuropsychologia.2016.03.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 02/20/2016] [Accepted: 03/23/2016] [Indexed: 11/23/2022]
Abstract
The mechanisms behind how muscle contractions in one hand influence corticomuscular coherence in the opposite hand are still undetermined. Twenty-two subjects were recruited to finish bimanual and unimanual motor tasks. In the unimanual tasks, subjects performed precision grip using their right hand with visual feedback of exerted forces. The bimanual tasks involved simultaneous finger abduction of their left hand with visual feedback and precision grip of their right hand. They were divided into four conditions according to the two contraction levels of the left-hand muscles and whether visual feedback existed for the right hand. Measures of coherence and power spectrum were calculated from EEG and EMG data and statistically analyzed to identify changes in corticomuscular coupling and oscillatory activity. Results showed that compared with the unimanual task, a significant increase in the mean corticomuscular coherence of the right hand was found when left-hand muscles contracted at 5% of the maximal isometric voluntary contraction (MVC). No significant changes were found when the contraction level was 50% of the MVC. Furthermore, both the increase of muscle contraction levels and the elimination of visual feedback for right hand can significantly decrease the corticomuscular coupling in right hand during bimanual tasks. In summary, the involvement of moderate left-hand muscle contractions resulted in an increase tendency of corticomuscular coherence in right hand while strong left-hand muscle contractions eliminated it. We speculated that the perturbation of activities in one corticospinal tract resulted from the movement of the opposite hand can enhance the corticomuscular coupling when attention distraction is limited.
Collapse
|
37
|
Danna-Dos-Santos A, Degani AM, Boonstra TW, Mochizuki L, Harney AM, Schmeckpeper MM, Tabor LC, Leonard CT. The influence of visual information on multi-muscle control during quiet stance: a spectral analysis approach. Exp Brain Res 2014; 233:657-69. [DOI: 10.1007/s00221-014-4145-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 11/07/2014] [Indexed: 10/24/2022]
|
38
|
Schmied A, Forget R, Vedel JP. Motor unit firing pattern, synchrony and coherence in a deafferented patient. Front Hum Neurosci 2014; 8:746. [PMID: 25346671 PMCID: PMC4191205 DOI: 10.3389/fnhum.2014.00746] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 09/05/2014] [Indexed: 12/11/2022] Open
Abstract
The firing of spinal motoneurons (MNs) is controlled continuously by inputs from muscle, joint and skin receptors. Besides altering MN synaptic drive, the removal of these inputs is liable to alter the synaptic noise and, thus, the variability of their tonic activity. Sensory afferents, which are a major source of common and/or synchronized inputs shared by several MNs, may also contribute to the coupling in the time and frequency domains (synchrony and coherence, respectively) observed when cross-correlation and coherence analyses are applied to the discharges of MN pairs. Surprisingly, no consistent changes in firing frequency, nor in synchrony and coherence were reported to affect the activity of 3 pairs of motor units (MUs) tested in a case of sensory polyradiculoneuropathy (SPRNP), leading to an irreversible loss of large diameter sensory afferents (Farmer et al., 1993). Such a limited sample, however, precludes a definite conclusion about the actual impact that a chronic loss of muscle and cutaneous afferents may have on the firing properties of human MUs. To address this issue, the firing pattern of 92 MU pairs was analyzed at low contraction force in a case of SPRNP leading similarly to a permanent loss of proprioceptive inputs. Compared with 8 control subjects, MNs in this patient tended to discharge with slightly shorter inter-spike intervals but with greater variability. Synchronous firing tended to occur more frequently with a tighter coupling in the patient. There was no consistent change in coherence in the 15–30 Hz frequency range attributed to the MN corticospinal drive, but a greater coherence was observed below 5 Hz and between 30 and 60 Hz in the patient. The possible origins of the greater irregularity in MN tonic discharges, the tighter coupling of the synchronous firing and the changes in coherence observed in the absence of proprioceptive inputs are discussed.
Collapse
Affiliation(s)
- Annie Schmied
- National Center for Scientific Research (Centre National de la Recherche Scientifique), Plasticité et Pathophysiologie du Mouvement, Institut de Neuroscience de la Timone, University Aix Marseilles Marseille, France
| | - Robert Forget
- Faculté de Médecine, Ecole de Réadaptation, Centre de Recherche Interdisciplinaire en Réadaptation du Montréal Métropolitain, Institut de Réadaptation Gingras-Lindsay de Montréal, Université de Montréal Montréal, QC, Canada
| | - Jean-Pierre Vedel
- National Center for Scientific Research (Centre National de la Recherche Scientifique), Plasticité et Pathophysiologie du Mouvement, Institut de Neuroscience de la Timone, University Aix Marseilles Marseille, France
| |
Collapse
|
39
|
Altered corticomuscular coherence elicited by paced isotonic contractions in individuals with cerebral palsy: a case-control study. J Electromyogr Kinesiol 2014; 24:928-33. [PMID: 25127492 DOI: 10.1016/j.jelekin.2014.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 05/29/2014] [Accepted: 07/01/2014] [Indexed: 11/20/2022] Open
Abstract
The purpose of the study was to analyze corticomuscular coherence during planning and execution of simple hand movements in individuals with cerebral palsy (CP) and healthy controls (HC). Fourteen individuals with CP and 15 HC performed voluntary paced movements (opening and closing the fist) in response to a warning signal. Simultaneous scalp EEG and surface EMG of extensor carpi radialis brevis were recorded during 15 isotonic contractions. Time-frequency corticomuscular coherence (EMG-C3/C4) before and during muscular contraction, as well as EMG intensity, onset latency and duration were analyzed. Although EMG intensity was similar in both groups, individuals with CP exhibited longer onset latency and increased duration of the muscular contraction than HC. CP also showed higher corticomuscular coherence in beta EEG band during both planning and execution of muscular contraction, as well as lower corticomuscular coherence in gamma EEG band at the beginning of the contraction as compared with HC. In conclusion, our results suggest that individuals with CP are characterized by an altered functional coupling between primary motor cortex and effector muscles during planning and execution of isotonic contractions. In addition, the usefulness of corticomuscular coherence as a research tool for exploring deficits in motor central processing in persons with early brain damage is discussed.
Collapse
|
40
|
Boonstra TW. The potential of corticomuscular and intermuscular coherence for research on human motor control. Front Hum Neurosci 2013; 7:855. [PMID: 24339813 PMCID: PMC3857603 DOI: 10.3389/fnhum.2013.00855] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 11/22/2013] [Indexed: 11/27/2022] Open
Affiliation(s)
- Tjeerd W Boonstra
- School of Psychiatry, University of New South Wales Sydney, NSW, Australia ; Black Dog Institute Sydney, NSW, Australia ; MOVE Research Institute, VU University Amsterdam, Netherlands
| |
Collapse
|
41
|
Obata H, Abe MO, Masani K, Nakazawa K. Modulation between bilateral legs and within unilateral muscle synergists of postural muscle activity changes with development and aging. Exp Brain Res 2013; 232:1-11. [PMID: 24240388 DOI: 10.1007/s00221-013-3702-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 09/03/2013] [Indexed: 11/27/2022]
Abstract
The effect of development and aging on common modulation between bilateral plantarflexors (i.e., the right and left soleus, and the right and left medial gastrocnemius) (bilateral comodulation) and within plantarflexors in one leg (i.e., the right soleus and the right medial gastrocnemius) (unilateral comodulation) was investigated during bipedal quiet standing by comparing electromyography-electromyography (EMG) coherence among three age groups: adult (23-35 years), child (6-8 years), and elderly (60-80 years). The results demonstrate that there was significant coherence between bilateral plantarflexors and within plantarflexors in one leg in the 0- to 4-Hz frequency region in all three age groups. Coherence in this frequency region was stronger in the elderly group than in the adult group, while no difference was found between the adult and child groups. Of particular interest was the finding of significant coherence in bilateral and unilateral EMG recordings in the 8- to 12-Hz frequency region in some subjects in the elderly group, whereas it was not observed in the adult and child groups. These results suggest that aging affects the organization of bilateral and unilateral postural muscle activities (i.e., bilateral and unilateral comodulation) in the plantarflexors during quiet standing.
Collapse
Affiliation(s)
- Hiroki Obata
- Sports Science Laboratory, Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-0041, Japan,
| | | | | | | |
Collapse
|
42
|
Kamp D, Krause V, Butz M, Schnitzler A, Pollok B. Changes of cortico-muscular coherence: an early marker of healthy aging? AGE (DORDRECHT, NETHERLANDS) 2013; 35:49-58. [PMID: 22037920 PMCID: PMC3543740 DOI: 10.1007/s11357-011-9329-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 10/15/2011] [Indexed: 05/31/2023]
Abstract
Cortico-muscular coherence (CMC) at beta frequency (13-30 Hz) occurs particularly during weak to moderate isometric contraction. It is a well-established measure of communication between the primary motor cortex (M1) and corresponding muscles revealing information about the integrity of the pyramidal system. Although the slowing of brain and muscle dynamics during healthy aging has been evidenced, functional communication as determined by CMC has not been investigated so far. Since decline of motor functions at higher age is likely to be associated with CMC changes, the present study aims at shedding light on the functionality of the motor system from a functional interaction perspective. To this end, CMC was investigated in 27 healthy subjects aging between 22 and 77 years during isometric contraction of their right forearm. Neuromagnetic activity was measured using whole-head magnetoencephalography (MEG). Muscle activity was measured by means of surface electromyography (EMG) of the right extensor digitorum communis (EDC) muscle. Additionally, MEG-EMG phase lags were calculated in order to estimate conducting time. The analysis revealed CMC and M1 power amplitudes to be increased with age accompanied by slowing of M1, EMG, and CMC. Frequency changes were particularly found in subjects aged above 40 years suggesting that at this middle age, neurophysiological changes occur, possibly reflecting an early neurophysiological marker of seniority. Since MEG-EMG phase lags did not vary with age, changes cannot be explained by alterations of nerve conduction. We argue that the M1 power amplitude increase and the shift towards lower frequencies might represent a neurophysiological marker of healthy aging which is possibly compensated by increased CMC amplitude.
Collapse
Affiliation(s)
- Daniel Kamp
- />Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, University Düsseldorf, 40225 Düsseldorf, Germany
- />Department of Neurology, Medical Faculty, University Düsseldorf, 40225 Düsseldorf, Germany
| | - Vanessa Krause
- />Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, University Düsseldorf, 40225 Düsseldorf, Germany
- />Department of Neurology, Medical Faculty, University Düsseldorf, 40225 Düsseldorf, Germany
| | - Markus Butz
- />Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, University Düsseldorf, 40225 Düsseldorf, Germany
- />Department of Neurology, Medical Faculty, University Düsseldorf, 40225 Düsseldorf, Germany
| | - Alfons Schnitzler
- />Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, University Düsseldorf, 40225 Düsseldorf, Germany
- />Department of Neurology, Medical Faculty, University Düsseldorf, 40225 Düsseldorf, Germany
| | - Bettina Pollok
- />Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, University Düsseldorf, 40225 Düsseldorf, Germany
- />Department of Neurology, Medical Faculty, University Düsseldorf, 40225 Düsseldorf, Germany
- />Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| |
Collapse
|
43
|
van Wijk BCM, Beek PJ, Daffertshofer A. Neural synchrony within the motor system: what have we learned so far? Front Hum Neurosci 2012; 6:252. [PMID: 22969718 PMCID: PMC3432872 DOI: 10.3389/fnhum.2012.00252] [Citation(s) in RCA: 170] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 08/17/2012] [Indexed: 11/26/2022] Open
Abstract
Synchronization of neural activity is considered essential for information processing in the nervous system. Both local and inter-regional synchronization are omnipresent in different frequency regimes and relate to a variety of behavioral and cognitive functions. Over the years, many studies have sought to elucidate the question how alpha/mu, beta, and gamma synchronization contribute to motor control. Here, we review these studies with the purpose to delineate what they have added to our understanding of the neural control of movement. We highlight important findings regarding oscillations in primary motor cortex, synchronization between cortex and spinal cord, synchronization between cortical regions, as well as abnormal synchronization patterns in a selection of motor dysfunctions. The interpretation of synchronization patterns benefits from combining results of invasive and non-invasive recordings, different data analysis tools, and modeling work. Importantly, although synchronization is deemed to play a vital role, it is not the only mechanism for neural communication. Spike timing and rate coding act together during motor control and should therefore both be accounted for when interpreting movement-related activity.
Collapse
Affiliation(s)
- Bernadette C. M. van Wijk
- MOVE Research Institute, Faculty of Human Movement Sciences, VU University AmsterdamAmsterdam, Netherlands
| | | | | |
Collapse
|
44
|
Boonstra TW, Breakspear M. Neural mechanisms of intermuscular coherence: implications for the rectification of surface electromyography. J Neurophysiol 2012; 107:796-807. [PMID: 22072508 DOI: 10.1152/jn.00066.2011] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Oscillatory activity plays a crucial role in corticospinal control of muscle synergies and is widely investigated using corticospinal and intermuscular synchronization. However, the neurophysiological mechanisms that translate these rhythmic patterns into surface electromyography (EMG) are not well understood. This is underscored by the ongoing debate on the rectification of surface EMG before spectral analysis. Whereas empirical studies commonly rectify surface EMG, computational approaches have argued against it. In the present study, we employ a computational model to investigate the role of the motor unit action potential (MAUP) on the translation of oscillatory activity. That is, diverse MUAP shapes may distort the transfer of common input into surface EMG. We test this in a computational model consisting of two motor unit pools receiving common input and compare it to empirical results of intermuscular coherence between bilateral leg muscles. The shape of the MUAP was parametrically varied, and power and coherence spectra were investigated with and without rectification. The model shows that the effect of EMG rectification depends on the uniformity of MUAP shapes. When output spikes of different motor units are convolved with identical MUAPs, oscillatory input is evident in both rectified and nonrectified EMG. In contrast, a heterogeneous MAUP distribution distorts common input and oscillatory components are only manifest as periodic amplitude modulations, i.e., in rectified EMG. The experimental data showed that intermuscular coherence was mainly discernable in rectified EMG, hence providing empirical support for a heterogeneous distribution of MUAPs. These findings implicate that the shape of MUAPs is an essential parameter to reconcile experimental and computational approaches.
Collapse
Affiliation(s)
- Tjeerd W. Boonstra
- School of Psychiatry, University of New South Wales
- Black Dog Institute, Sydney, Australia
- Research Institute MOVE, VU University Amsterdam, The Netherlands
| | - Michael Breakspear
- School of Psychiatry, University of New South Wales
- Black Dog Institute, Sydney, Australia
- Queensland Institute of Medical Research; and
- Royal Brisbane and Women's Hospital, Brisbane, Australia
| |
Collapse
|
45
|
Global effect on multi-segment physiological tremors due to localized fatiguing contraction. Eur J Appl Physiol 2011; 112:899-910. [DOI: 10.1007/s00421-011-2044-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 06/07/2011] [Indexed: 10/18/2022]
|
46
|
Attenuation of corticomuscular coherence with additional motor or non-motor task. Clin Neurophysiol 2011; 122:356-63. [DOI: 10.1016/j.clinph.2010.06.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 06/18/2010] [Accepted: 06/22/2010] [Indexed: 11/19/2022]
|