1
|
Wan X, Wang L, Khan MA, Peng L, Zhang K, Sun X, Yi X, Wang Z, Chen K. Shift work promotes adipogenesis via cortisol-dependent downregulation of EGR3-HDAC6 pathway. Cell Death Discov 2024; 10:129. [PMID: 38467615 PMCID: PMC10928160 DOI: 10.1038/s41420-024-01904-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 03/13/2024] Open
Abstract
The disruption of circadian rhythms caused by long-term shift work can cause metabolic diseases such as obesity. Early growth response 3 (EGR3) is a member of early growth response (EGR) family, which is involved in several cellular responses, had been reported as a circadian rhythm gene in suprachiasmatic nucleus. In this research, EGR3 was found to be widely expressed in the different tissue of human and mice, and downregulated in adipose tissue of obese subjects and high-fat diet mice. Moreover, EGR3 was found negatively regulated by cortisol. In addition, EGR3 is a key negative modulator of hADSCs and 3T3-L1 adipogenesis via regulating HDAC6, which is a downstream target gene of EGR3 and a negative regulator of adipogenesis and lipogenesis. These findings may explain how circadian rhythm disorder induced by shift works can cause obesity. Our study revealed a potential therapeutic target to alleviate metabolic disorders in shift workers and may provide better health guidance to shift workers.
Collapse
Affiliation(s)
- Xinxing Wan
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, PR China
| | - Linghao Wang
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, PR China
| | - Md Asaduzzaman Khan
- Department of Biochemistry and Microbiology, North South University, Dhaka, 1229, Bangladesh
- Pulmonary Department, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, 02118, USA
| | - Lin Peng
- Department of Nephrology, The First Hospital of Changsha, Changsha, 410005, Hunan, PR China
| | - Keke Zhang
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, PR China
| | - Xiaoying Sun
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, PR China
| | - Xuan Yi
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, PR China
| | - Zhouqi Wang
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, PR China
| | - Ke Chen
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, PR China.
| |
Collapse
|
2
|
Porcacchia AS, Câmara DAD, Andersen ML, Tufik S. Sleep disorders and prostate cancer prognosis: biology, epidemiology, and association with cancer development risk. Eur J Cancer Prev 2022; 31:178-189. [PMID: 33990093 DOI: 10.1097/cej.0000000000000685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Sleep is crucial for the maintenance of health and well-being. Sleep disorders can result in physiological consequences and are associated with several health issues, including cancer. Cancer is one of the most significant health problems in the world. In Western countries, prostate cancer is the most prevalent noncutaneous cancer among men. Epidemiological studies showed that one in nine men will have this disease during their life. Many factors influence prostate cancer and the tumor niche, including endogenous hormones, family history, diet, and gene mutations. Disruption of the circadian cycle by sleep disorders or other factors has been suggested as a novel and important risk factor for prostate cancer and its tumorigenesis. This review presents information regarding the epidemiological and biological aspects of prostate cancer, and discusses the impact of sleep physiology and sleep disorders on this type of cancer, highlighting possible associations with risk of cancer development.
Collapse
Affiliation(s)
| | | | - Monica Levy Andersen
- Departamento de Psicobiologia, Universidade Federal de São Paulo (UNIFESP)
- Instituto do Sono, São Paulo, SP, Brazil
| | - Sergio Tufik
- Departamento de Psicobiologia, Universidade Federal de São Paulo (UNIFESP)
- Instituto do Sono, São Paulo, SP, Brazil
| |
Collapse
|
3
|
Xu P, Berto S, Kulkarni A, Jeong B, Joseph C, Cox KH, Greenberg ME, Kim TK, Konopka G, Takahashi JS. NPAS4 regulates the transcriptional response of the suprachiasmatic nucleus to light and circadian behavior. Neuron 2021; 109:3268-3282.e6. [PMID: 34416169 DOI: 10.1016/j.neuron.2021.07.026] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/12/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
The suprachiasmatic nucleus (SCN) is the master circadian pacemaker in mammals and is entrained by environmental light. However, the molecular basis of the response of the SCN to light is not fully understood. We used RNA/chromatin immunoprecipitation/single-nucleus sequencing with circadian behavioral assays to identify mouse SCN cell types and explore their responses to light. We identified three peptidergic cell types that responded to light in the SCN: arginine vasopressin (AVP), vasoactive intestinal peptide (VIP), and cholecystokinin (CCK). In each cell type, light-responsive subgroups were enriched for expression of neuronal Per-Arnt-Sim (PAS) domain protein 4 (NPAS4) target genes. Further, mice lacking Npas4 had a longer circadian period under constant conditions, a damped phase response curve to light, and reduced light-induced gene expression in the SCN. Our data indicate that NPAS4 is necessary for normal transcriptional responses to light in the SCN and critical for photic phase-shifting of circadian behavior.
Collapse
Affiliation(s)
- Pin Xu
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Stefano Berto
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ashwinikumar Kulkarni
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Byeongha Jeong
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chryshanthi Joseph
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kimberly H Cox
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Tae-Kyung Kim
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Genevieve Konopka
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joseph S Takahashi
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
4
|
Dannerfjord AA, Brown LA, Foster RG, Peirson SN. Light Input to the Mammalian Circadian Clock. Methods Mol Biol 2021; 2130:233-247. [PMID: 33284449 DOI: 10.1007/978-1-0716-0381-9_18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Circadian rhythms are 24-h cycles in physiology and behavior that occur in virtually all organisms. These processes are not simply driven by changes in the external environment as they persist under constant conditions, providing evidence for an internal biological clock. In mammals, this clock is located in the hypothalamic suprachiasmatic nuclei (SCN) and is based upon an intracellular mechanism composed of a transcriptional-translational feedback loop composed of a number of core clock genes. However, a clock is of no use unless it can be set to the correct time. The primary time cue for the molecular clock in the SCN is light detected by the eye. The photoreceptors involved in this process include the rods and cones that mediate vision, as well as the recently identified melanopsin-expressing photosensitive retinal ganglion cells (pRGCs). Light information is conveyed to the SCN via the retinohypothalamic tract, resulting in an intracellular signaling cascade which converges on cAMP-response elements in the promoters of several key clock genes. Over the last two decades a number of studies have investigated the transcriptional response of the SCN to light stimuli with the aim of further understanding these molecular signaling pathways. Here we provide an overview of these studies and provide protocols for studying the molecular responses to light in the SCN clock.
Collapse
Affiliation(s)
- Adam A Dannerfjord
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,Nuffield Department of Clinical Neurosciences, Sleep and Circadian Neuroscience Institute (SCNi), Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, Oxford, UK
| | - Laurence A Brown
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Russell G Foster
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,Nuffield Department of Clinical Neurosciences, Sleep and Circadian Neuroscience Institute (SCNi), Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, Oxford, UK
| | - Stuart N Peirson
- Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK. .,Nuffield Department of Clinical Neurosciences, Sleep and Circadian Neuroscience Institute (SCNi), Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, Oxford, UK.
| |
Collapse
|
5
|
Yoshiike T, Honma M, Ikeda H, Kuriyama K. Bright light exposure advances consolidation of motor skill accuracy in humans. Neurobiol Learn Mem 2019; 166:107084. [PMID: 31491556 DOI: 10.1016/j.nlm.2019.107084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 08/07/2019] [Accepted: 08/31/2019] [Indexed: 01/06/2023]
Abstract
Light has attracted increasing attention as a critical determinant of memory processing. While sleep selectively consolidates newly encoded memories according to their future relevance, the role of light in human memory consolidation is largely unknown. Here, we report how bright light (BL), provided during encoding, influences online and offline consolidation of motor skill learning. We sought to determine whether relatively slower and faster key-press transitions within individuals were differentially consolidated by BL. Healthy human subjects were briefly exposed to either BL (>8000 lx) or control light (CL; <500 lx) during memory encoding at 13:00 h, when light minimally affects circadian phase-shifting, and were retested 24 h later. The effects of BL on online and offline performance gains were determined by accuracy and speed. BL-exposed subjects showed better overall performance accuracy during training and lower overnight accuracy gains after a subsequent night of sleep than did CL-exposed subjects. BL preferentially improved the initially most difficult individual key-press transitions during practice; these were only improved overnight under CL. By contrast, accuracy during what had been the easiest key-press transitions at the beginning of the experiment was unaffected by light conditions or online/offline learning processes. BL effects were not observed for performance speed, mood, or sleep-wake patterns. Brief BL exposure during training may advance motor memory selection and consolidation that optimally meet individual requirements for potential gains, which would otherwise depend on post-training sleep. This suggests a new way of enhancing brain plasticity to compensate for impaired sleep-dependent memory consolidation in neuropsychiatric conditions.
Collapse
Affiliation(s)
- Takuya Yoshiike
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo 187-8553, Japan; Department of Sleep-Wake Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo 187-8553, Japan; Department of Psychiatry, Shiga University of Medical Science, Seta Tsukinowacho, Otsu, Shiga 520-2192, Japan.
| | - Motoyasu Honma
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo 187-8553, Japan; Department of Physiology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan
| | - Hiroki Ikeda
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo 187-8553, Japan; Research Center for Overwork-Related Disorders, National Institute of Occupational Safety and Health, 6-21-1 Nagao, Tama-Ku, Kawasaki, Kanagawa 214-8585, Japan
| | - Kenichi Kuriyama
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo 187-8553, Japan; Department of Sleep-Wake Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo 187-8553, Japan; Department of Psychiatry, Shiga University of Medical Science, Seta Tsukinowacho, Otsu, Shiga 520-2192, Japan
| |
Collapse
|
6
|
Maple AM, Rowe RK, Lifshitz J, Fernandez F, Gallitano AL. Influence of Schizophrenia-Associated Gene Egr3 on Sleep Behavior and Circadian Rhythms in Mice. J Biol Rhythms 2018; 33:662-670. [PMID: 30318979 DOI: 10.1177/0748730418803802] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Up to 80% of people meeting DSM-IV definitions for schizophrenia will exhibit difficulties with sleep, along with a breakdown in circadian entrainment and rhythmicity. The changes to the sleep and circadian systems in this population are thought to be interdependent, as evidenced by the frequent use of the combined term "sleep and circadian rhythm disruption" or "SCRD" to describe their occurrence. To understand links between sleep and circadian problems in the schizophrenia population, we analyzed the duration and rhythmicity of sleep behavior in mice lacking function of the immediate early gene early growth response 3 ( Egr3). EGR3 has been associated with schizophrenia risk in humans, and Egr3-deficient (-/-) mice display various features of schizophrenia that are responsive to antipsychotic treatment. While Egr3-/- mice slept less than their wildtype (WT) littermates, they showed no evidence of circadian disorganization; in fact, circadian rhythms of activity were more robust in these mice compared with WT, as measured by time series analysis and the relative amplitude index of Van Someren's suite of non-parametric circadian rhythm analyses. Differences in circadian robustness were maintained when the animals were transferred to several weeks of housing under constant darkness or constant light. Together, our results suggest that Egr3-/- mice retain control over the circadian timekeeping of sleep and wake, while showing impaired sleep. The findings are compatible with those from a surprising array of mouse models of schizophrenia and raise the possibility that SCRD may be 2 separate disorders in the schizophrenia population requiring different treatment strategies.
Collapse
Affiliation(s)
- Amanda M Maple
- Department of Basic Medical Sciences, University of Arizona College of Medicine - Phoenix, Phoenix, Arizona
| | - Rachel K Rowe
- Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, Arizona.,Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, Arizona.,Phoenix Veteran Affairs Health Care System, Phoenix, Arizona
| | - Jonathan Lifshitz
- Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, Arizona.,Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, Arizona.,Phoenix Veteran Affairs Health Care System, Phoenix, Arizona.,Interdisciplinary Graduate Program in Neuroscience, Arizona State University, Tempe, Arizona
| | - Fabian Fernandez
- Departments of Psychology and Neurology, BIO5 Institute, and The Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, Arizona
| | - Amelia L Gallitano
- Department of Basic Medical Sciences, University of Arizona College of Medicine - Phoenix, Phoenix, Arizona.,Interdisciplinary Graduate Program in Neuroscience, Arizona State University, Tempe, Arizona
| |
Collapse
|
7
|
Khan AM, Grant AH, Martinez A, Burns GAPC, Thatcher BS, Anekonda VT, Thompson BW, Roberts ZS, Moralejo DH, Blevins JE. Mapping Molecular Datasets Back to the Brain Regions They are Extracted from: Remembering the Native Countries of Hypothalamic Expatriates and Refugees. ADVANCES IN NEUROBIOLOGY 2018; 21:101-193. [PMID: 30334222 PMCID: PMC6310046 DOI: 10.1007/978-3-319-94593-4_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This article focuses on approaches to link transcriptomic, proteomic, and peptidomic datasets mined from brain tissue to the original locations within the brain that they are derived from using digital atlas mapping techniques. We use, as an example, the transcriptomic, proteomic and peptidomic analyses conducted in the mammalian hypothalamus. Following a brief historical overview, we highlight studies that have mined biochemical and molecular information from the hypothalamus and then lay out a strategy for how these data can be linked spatially to the mapped locations in a canonical brain atlas where the data come from, thereby allowing researchers to integrate these data with other datasets across multiple scales. A key methodology that enables atlas-based mapping of extracted datasets-laser-capture microdissection-is discussed in detail, with a view of how this technology is a bridge between systems biology and systems neuroscience.
Collapse
Affiliation(s)
- Arshad M Khan
- UTEP Systems Neuroscience Laboratory, University of Texas at El Paso, El Paso, TX, USA.
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA.
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, USA.
| | - Alice H Grant
- UTEP Systems Neuroscience Laboratory, University of Texas at El Paso, El Paso, TX, USA
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
- Graduate Program in Pathobiology, University of Texas at El Paso, El Paso, TX, USA
| | - Anais Martinez
- UTEP Systems Neuroscience Laboratory, University of Texas at El Paso, El Paso, TX, USA
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
- Graduate Program in Pathobiology, University of Texas at El Paso, El Paso, TX, USA
| | - Gully A P C Burns
- Information Sciences Institute, Viterbi School of Engineering, University of Southern California, Marina del Rey, CA, USA
| | - Brendan S Thatcher
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, USA
| | - Vishwanath T Anekonda
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, USA
| | - Benjamin W Thompson
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, USA
| | - Zachary S Roberts
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, USA
| | - Daniel H Moralejo
- Division of Neonatology, Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | - James E Blevins
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, USA
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
8
|
Withers CN, Brown DM, Byiringiro I, Allen MR, Condon KW, Satin J, Andres DA. Rad GTPase is essential for the regulation of bone density and bone marrow adipose tissue in mice. Bone 2017; 103:270-280. [PMID: 28732776 PMCID: PMC6886723 DOI: 10.1016/j.bone.2017.07.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/12/2017] [Accepted: 07/16/2017] [Indexed: 01/03/2023]
Abstract
The small GTP-binding protein Rad (RRAD, Ras associated with diabetes) is the founding member of the RGK (Rad, Rem, Rem2, and Gem/Kir) family that regulates cardiac voltage-gated Ca2+ channel function. However, its cellular and physiological functions outside of the heart remain to be elucidated. Here we report that Rad GTPase function is required for normal bone homeostasis in mice, as Rad deletion results in significantly lower bone mass and higher bone marrow adipose tissue (BMAT) levels. Dynamic histomorphometry in vivo and primary calvarial osteoblast assays in vitro demonstrate that bone formation and osteoblast mineralization rates are depressed, while in vitro osteoclast differentiation is increased, in the absence of Rad. Microarray analysis revealed that canonical osteogenic gene expression (Runx2, osterix, etc.) is not altered in Rad-/- calvarial osteoblasts; instead robust up-regulation of matrix Gla protein (MGP, +11-fold), an inhibitor of extracellular matrix mineralization and a protein secreted during adipocyte differentiation, was observed. Strikingly, Rad deficiency also resulted in significantly higher marrow adipose tissue levels in vivo and promoted spontaneous in vitro adipogenesis of primary calvarial osteoblasts. Adipogenic differentiation of wildtype calvarial osteoblasts resulted in the loss of endogenous Rad protein, further supporting a role for Rad in the control of BMAT levels. These findings reveal a novel in vivo function for Rad and establish a role for Rad signaling in the complex physiological control of skeletal homeostasis and bone marrow adiposity.
Collapse
Affiliation(s)
- Catherine N Withers
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, BBSRB, 741 S Limestone Street, Lexington, KY 40536-0509, USA.
| | - Drew M Brown
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202-5120, USA.
| | - Innocent Byiringiro
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202-5120, USA.
| | - Matthew R Allen
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202-5120, USA.
| | - Keith W Condon
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202-5120, USA.
| | - Jonathan Satin
- Department of Physiology, University of Kentucky College of Medicine, 800 Rose Street, Lexington, KY 40536-0298, USA.
| | - Douglas A Andres
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, BBSRB, 741 S Limestone Street, Lexington, KY 40536-0509, USA.
| |
Collapse
|
9
|
Tsuji T, Allchorne AJ, Zhang M, Tsuji C, Tobin VA, Pineda R, Raftogianni A, Stern JE, Grinevich V, Leng G, Ludwig M. Vasopressin casts light on the suprachiasmatic nucleus. J Physiol 2017; 595:3497-3514. [PMID: 28402052 DOI: 10.1113/jp274025] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 02/21/2017] [Indexed: 12/31/2022] Open
Abstract
KEY POINTS A subpopulation of retinal ganglion cells expresses the neuropeptide vasopressin. These retinal ganglion cells project predominately to our biological clock, the suprachiasmatic nucleus (SCN). Light-induced vasopressin release enhances the responses of SCN neurons to light. It also enhances expression of genes involved in photo-entrainment of biological rhythms. ABSTRACT In all animals, the transition between night and day engages a host of physiological and behavioural rhythms. These rhythms depend not on the rods and cones of the retina, but on retinal ganglion cells (RGCs) that detect the ambient light level in the environment. These project to the suprachiasmatic nucleus (SCN) of the hypothalamus to entrain circadian rhythms that are generated within the SCN. The neuropeptide vasopressin has an important role in this entrainment. Many SCN neurons express vasopressin, and it has been assumed that the role of vasopressin in the SCN reflects the activity of these cells. Here we show that vasopressin is also expressed in many retinal cells that project to the SCN. Light-evoked vasopressin release contributes to the responses of SCN neurons to light, and enhances expression of the immediate early gene c-fos in the SCN, which is involved in photic entrainment of circadian rhythms.
Collapse
Affiliation(s)
- Takahiro Tsuji
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK
| | - Andrew J Allchorne
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK
| | - Meng Zhang
- Department of Physiology, Augusta University, Augusta, GA, USA
| | - Chiharu Tsuji
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK
| | - Vicky A Tobin
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK
| | - Rafael Pineda
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK
| | - Androniki Raftogianni
- Schaller Research Group on Neuropeptides, German Cancer Research Centre DKFZ, Central Institute of Mental Health, and University of Heidelberg, Heidelberg, Germany
| | - Javier E Stern
- Department of Physiology, Augusta University, Augusta, GA, USA
| | - Valery Grinevich
- Schaller Research Group on Neuropeptides, German Cancer Research Centre DKFZ, Central Institute of Mental Health, and University of Heidelberg, Heidelberg, Germany
| | - Gareth Leng
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK
| | - Mike Ludwig
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
10
|
Cooper JM, Rastogi A, Krizo JA, Mintz EM, Prosser RA. Urokinase-type plasminogen activator modulates mammalian circadian clock phase regulation in tissue-type plasminogen activator knockout mice. Eur J Neurosci 2017; 45:805-815. [PMID: 27992087 DOI: 10.1111/ejn.13511] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 12/12/2016] [Accepted: 12/14/2016] [Indexed: 12/20/2022]
Abstract
Glutamate phase shifts the circadian clock in the mammalian suprachiasmatic nucleus (SCN) by activating NMDA receptors. Tissue-type plasminogen activator (tPA) gates phase shifts by activating plasmin to generate m(ature) BDNF, which binds TrkB receptors allowing clock phase shifts. Here, we investigate phase shifting in tPA knockout (tPA-/- ; B6.129S2-Plattm1Mlg /J) mice, and identify urokinase-type plasminogen activator (uPA) as an additional circadian clock regulator. Behavioral activity rhythms in tPA-/- mice entrain to a light-dark (LD) cycle and phase shift in response to nocturnal light pulses with no apparent loss in sensitivity. When the LD cycle is inverted, tPA-/- mice take significantly longer to entrain than C57BL/6J wild-type (WT) mice. SCN brain slices from tPA-/- mice exhibit entrained neuronal activity rhythms and phase shift in response to nocturnal glutamate with no change in dose-dependency. Pre-treating slices with the tPA/uPA inhibitor, plasminogen activator inhibitor-1 (PAI-1), inhibits glutamate-induced phase delays in tPA-/- slices. Selective inhibition of uPA with UK122 prevents glutamate-induced phase resetting in tPA-/- but not WT SCN slices. tPA expression is higher at night than the day in WT SCN, while uPA expression remains constant in WT and tPA-/- slices. Casein-plasminogen zymography reveals that neither tPA nor uPA total proteolytic activity is under circadian control in WT or tPA-/- SCN. Finally, tPA-/- SCN tissue has lower mBDNF levels than WT tissue, while UK122 does not affect mBDNF levels in either strain. Together, these results suggest that either tPA or uPA can support photic/glutamatergic phase shifts of the SCN circadian clock, possibly acting through distinct mechanisms.
Collapse
Affiliation(s)
- Joanna M Cooper
- Department of Biochemistry and Cellular and Molecular Biology, NeuroNET Research Center, M407 Walters Life Sciences, University of Tennessee, Knoxville, TN, 37996-0001, USA
| | - Ashutosh Rastogi
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - Jessica A Krizo
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - Eric M Mintz
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - Rebecca A Prosser
- Department of Biochemistry and Cellular and Molecular Biology, NeuroNET Research Center, M407 Walters Life Sciences, University of Tennessee, Knoxville, TN, 37996-0001, USA
| |
Collapse
|
11
|
Park J, Zhu H, O'Sullivan S, Ogunnaike BA, Weaver DR, Schwaber JS, Vadigepalli R. Single-Cell Transcriptional Analysis Reveals Novel Neuronal Phenotypes and Interaction Networks Involved in the Central Circadian Clock. Front Neurosci 2016; 10:481. [PMID: 27826225 PMCID: PMC5079116 DOI: 10.3389/fnins.2016.00481] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 10/07/2016] [Indexed: 12/31/2022] Open
Abstract
Single-cell heterogeneity confounds efforts to understand how a population of cells organizes into cellular networks that underlie tissue-level function. This complexity is prominent in the mammalian suprachiasmatic nucleus (SCN). Here, individual neurons exhibit a remarkable amount of asynchronous behavior and transcriptional heterogeneity. However, SCN neurons are able to generate precisely coordinated synaptic and molecular outputs that synchronize the body to a common circadian cycle by organizing into cellular networks. To understand this emergent cellular network property, it is important to reconcile single-neuron heterogeneity with network organization. In light of recent studies suggesting that transcriptionally heterogeneous cells organize into distinct cellular phenotypes, we characterized the transcriptional, spatial, and functional organization of 352 SCN neurons from mice experiencing phase-shifts in their circadian cycle. Using the community structure detection method and multivariate analytical techniques, we identified previously undescribed neuronal phenotypes that are likely to participate in regulatory networks with known SCN cell types. Based on the newly discovered neuronal phenotypes, we developed a data-driven neuronal network structure in which multiple cell types interact through known synaptic and paracrine signaling mechanisms. These results provide a basis from which to interpret the functional variability of SCN neurons and describe methodologies toward understanding how a population of heterogeneous single cells organizes into cellular networks that underlie tissue-level function.
Collapse
Affiliation(s)
- James Park
- Department of Pathology, Anatomy and Cell Biology, Daniel Baugh Institute for Functional Genomics and Computational Biology, Sidney Kimmel Medical College, Thomas Jefferson UniversityPhiladelphia, PA, USA; Department of Chemical and Biomolecular Engineering, University of DelawareNewark, NJ, USA
| | - Haisun Zhu
- Department of Pathology, Anatomy and Cell Biology, Daniel Baugh Institute for Functional Genomics and Computational Biology, Sidney Kimmel Medical College, Thomas Jefferson University Philadelphia, PA, USA
| | - Sean O'Sullivan
- Department of Pathology, Anatomy and Cell Biology, Daniel Baugh Institute for Functional Genomics and Computational Biology, Sidney Kimmel Medical College, Thomas Jefferson University Philadelphia, PA, USA
| | - Babatunde A Ogunnaike
- Department of Chemical and Biomolecular Engineering, University of Delaware Newark, NJ, USA
| | - David R Weaver
- Department of Neurobiology, University of Massachusetts Medical School Worcester, MA, USA
| | - James S Schwaber
- Department of Pathology, Anatomy and Cell Biology, Daniel Baugh Institute for Functional Genomics and Computational Biology, Sidney Kimmel Medical College, Thomas Jefferson UniversityPhiladelphia, PA, USA; Department of Chemical and Biomolecular Engineering, University of DelawareNewark, NJ, USA
| | - Rajanikanth Vadigepalli
- Department of Pathology, Anatomy and Cell Biology, Daniel Baugh Institute for Functional Genomics and Computational Biology, Sidney Kimmel Medical College, Thomas Jefferson UniversityPhiladelphia, PA, USA; Department of Chemical and Biomolecular Engineering, University of DelawareNewark, NJ, USA
| |
Collapse
|
12
|
Baidanoff FM, Plano SA, Doctorovich F, Suárez SA, Golombek DA, Chiesa JJ. N-nitrosomelatonin enhances photic synchronization of mammalian circadian rhythms. J Neurochem 2013; 129:60-71. [PMID: 24261470 DOI: 10.1111/jnc.12613] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 11/12/2013] [Accepted: 11/19/2013] [Indexed: 12/18/2022]
Abstract
Most physiological processes in mammals are synchronized to the daily light:dark cycle by a circadian clock located in the hypothalamic suprachiasmatic nucleus. Signal transduction of light-induced phase advances of the clock is mediated through a neuronal nitric oxide synthase-guanilyl cyclase pathway. We have employed a novel nitric oxide-donor, N-nitrosomelatonin, to enhance the photic synchronization of circadian rhythms in hamsters. The intraperitoneal administration of this drug before a sub-saturating light pulse at circadian time 18 generated a twofold increase of locomotor rhythm phase-advances, having no effect over saturating light pulses. This potentiation was also obtained even when inhibiting suprachiasmatic nitric oxide synthase activity. However, N-nitrosomelatonin had no effect on light-induced phase delays at circadian time 14. The photic-enhancing effects were correlated with an increased suprachiasmatic immunoreactivity of FBJ murine osteosarcoma viral oncogene and period1. Moreover, in vivo nitric oxide release by N-nitrosomelatonin was verified by measuring nitrate and nitrite levels in suprachiasmatic nuclei homogenates. The compound also accelerated resynchronization to an abrupt 6-h advance in the light:dark cycle (but not resynchronization to a 6-h delay). Here, we demonstrate the chronobiotic properties of N-nitrosomelatonin, emphasizing the importance of nitric oxide-mediated transduction for circadian phase advances.
Collapse
Affiliation(s)
- Fernando M Baidanoff
- Laboratorio de Cronobiología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes/CONICET, Bernal, Argentina
| | | | | | | | | | | |
Collapse
|
13
|
Savvidis C, Koutsilieris M. Circadian rhythm disruption in cancer biology. Mol Med 2012; 18:1249-60. [PMID: 22811066 DOI: 10.2119/molmed.2012.00077] [Citation(s) in RCA: 220] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 07/17/2012] [Indexed: 12/18/2022] Open
Abstract
Circadian rhythms show universally a 24-h oscillation pattern in metabolic, physiological and behavioral functions of almost all species. This pattern is due to a fundamental adaptation to the rotation of Earth around its own axis. Molecular mechanisms of generation of circadian rhythms organize a biochemical network in suprachiasmatic nucleus and peripheral tissues, building cell autonomous clock pacemakers. Rhythmicity is observed in transcriptional expression of a wide range of clock-controlled genes that regulate a variety of normal cell functions, such as cell division and proliferation. Desynchrony of this rhythmicity seems to be implicated in several pathologic conditions, including tumorigenesis and progression of cancer. In 2007, the International Agency for Research on Cancer (IARC) categorized "shiftwork that involves circadian disruption [as] probably carcinogenic to humans" (Group 2A in the IARC classification system of carcinogenic potency of an agentagent) (Painting, Firefighting, and Shiftwork; IARC; 2007). This review discusses the potential relation between disruptions of normal circadian rhythms with genetic driving machinery of cancer. Elucidation of the role of clockwork disruption, such as exposure to light at night and sleep disruption, in cancer biology could be important in developing new targeted anticancer therapies, optimizing individualized chronotherapy and modifying lighting environment in workplaces or homes.
Collapse
Affiliation(s)
- Christos Savvidis
- Department of Endocrinology and Metabolism, Hippocration General Hospital, Athens, Greece.
| | | |
Collapse
|
14
|
Zhu H, Vadigepalli R, Rafferty R, Gonye GE, Weaver DR, Schwaber JS. Integrative gene regulatory network analysis reveals light-induced regional gene expression phase shift programs in the mouse suprachiasmatic nucleus. PLoS One 2012; 7:e37833. [PMID: 22662235 PMCID: PMC3360606 DOI: 10.1371/journal.pone.0037833] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 04/27/2012] [Indexed: 01/05/2023] Open
Abstract
We use the multigenic pattern of gene expression across suprachiasmatic nuclei (SCN) regions and time to understand the dynamics within the SCN in response to a circadian phase-resetting light pulse. Global gene expression studies of the SCN indicate that circadian functions like phase resetting are complex multigenic processes. While the molecular dynamics of phase resetting are not well understood, it is clear they involve a “functional gene expression program”, e.g., the coordinated behavior of functionally related genes in space and time. In the present study we selected a set of 89 of these functionally related genes in order to further understand this multigenic program. By use of high-throughput qPCR we studied 52 small samples taken by anatomically precise laser capture from within the core and shell SCN regions, and taken at time points with and without phase resetting light exposure. The results show striking regional differences in light response to be present in the mouse SCN. By using network-based analyses, we are able to establish a highly specific multigenic correlation between genes expressed in response to light at night and genes normally activated during the day. The light pulse triggers a complex and highly coordinated network of gene regulation. The largest differences marking neuroanatomical location are in transmitter receptors, and the largest time-dependent differences occur in clock-related genes. Nighttime phase resetting appears to recruit transcriptional regulatory processes normally active in the day. This program, or mechanism, causes the pattern of core region gene expression to transiently shift to become more like that of the shell region.
Collapse
Affiliation(s)
- Haisun Zhu
- Daniel Baugh Institute, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Rajanikanth Vadigepalli
- Daniel Baugh Institute, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Rachel Rafferty
- Daniel Baugh Institute, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Gregory E. Gonye
- Daniel Baugh Institute, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - David R. Weaver
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - James S. Schwaber
- Daniel Baugh Institute, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
15
|
Alvarez-Saavedra M, Antoun G, Yanagiya A, Oliva-Hernandez R, Cornejo-Palma D, Perez-Iratxeta C, Sonenberg N, Cheng HYM. miRNA-132 orchestrates chromatin remodeling and translational control of the circadian clock. Hum Mol Genet 2010; 20:731-51. [PMID: 21118894 DOI: 10.1093/hmg/ddq519] [Citation(s) in RCA: 159] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mammalian circadian rhythms are synchronized to the external time by daily resetting of the suprachiasmatic nucleus (SCN) in response to light. As the master circadian pacemaker, the SCN coordinates the timing of diverse cellular oscillators in multiple tissues. Aberrant regulation of clock timing is linked to numerous human conditions, including cancer, cardiovascular disease, obesity, various neurological disorders and the hereditary disorder familial advanced sleep phase syndrome. Additionally, mechanisms that underlie clock resetting factor into the sleep and physiological disturbances experienced by night-shift workers and travelers with jet lag. The Ca(2+)/cAMP response element-binding protein-regulated microRNA, miR-132, is induced by light within the SCN and attenuates its capacity to reset, or entrain, the clock. However, the specific targets that are regulated by miR-132 and underlie its effects on clock entrainment remained elusive until now. Here, we show that genes involved in chromatin remodeling (Mecp2, Ep300, Jarid1a) and translational control (Btg2, Paip2a) are direct targets of miR-132 in the mouse SCN. Coordinated regulation of these targets underlies miR-132-dependent modulation of Period gene expression and clock entrainment: the mPer1 and mPer2 promoters are bound to and transcriptionally activated by MeCP2, whereas PAIP2A and BTG2 suppress the translation of the PERIOD proteins by enhancing mRNA decay. We propose that miR-132 is selectively enriched for chromatin- and translation-associated target genes and is an orchestrator of chromatin remodeling and protein translation within the SCN clock, thereby fine-tuning clock entrainment. These findings will further our understanding of mechanisms governing clock entrainment and its involvement in human diseases.
Collapse
Affiliation(s)
- Matías Alvarez-Saavedra
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ont., Canada K1H 8M5
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Suter M, Bocock P, Showalter L, Hu M, Shope C, McKnight R, Grove K, Lane R, Aagaard-Tillery K. Epigenomics: maternal high-fat diet exposure in utero disrupts peripheral circadian gene expression in nonhuman primates. FASEB J 2010; 25:714-26. [PMID: 21097519 DOI: 10.1096/fj.10-172080] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The effect of in utero exposure to a maternal high-fat diet on the peripheral circadian system of the fetus is unknown. Using mRNA copy number analysis, we report that the components of the peripheral circadian machinery are transcribed in the nonhuman primate fetal liver in an intact phase-antiphase fashion and that Npas2, a paralog of the Clock transcription factor, serves as the rate-limiting transcript by virtue of its relative low abundance (10- to 1000-fold lower). We show that exposure to a maternal high-fat diet in utero significantly alters the expression of fetal hepatic Npas2 (up to 7.1-fold, P<0.001) compared with that in control diet-exposed animals and is reversible in fetal offspring from obese dams reversed to a control diet (1.3-fold, P>0.05). Although the Npas2 promoter remains largely unmethylated, differential Npas2 promoter occupancy of acetylation of fetal histone H3 at lysine 14 (H3K14ac) occurs in response to maternal high-fat diet exposure compared with control diet-exposed animals. Furthermore, we find that disruption of Npas2 is consistent with high-fat diet exposure in juvenile animals, regardless of in utero diet exposure. In summary, the data suggest that peripheral Npas2 expression is uniquely vulnerable to diet exposure.
Collapse
Affiliation(s)
- Melissa Suter
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kallingal GJ, Mintz EM. An NMDA antagonist inhibits light but not GRP-induced phase shifts when administered after the phase-shifting stimulus. Brain Res 2010; 1353:106-12. [PMID: 20682305 DOI: 10.1016/j.brainres.2010.07.087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 07/23/2010] [Accepted: 07/26/2010] [Indexed: 10/19/2022]
Abstract
Brief light pulses or microinjection of gastrin-releasing peptide (GRP) into the third ventricle or near the suprachiasmatic nucleus (SCN) induce phase shifts of circadian rhythms during the subjective night. It has previously been reported that these effects are strongly influenced by the activation of N-methyl-d-aspartate (NMDA) receptors and the availability of glutamate. We hypothesized that the photic signaling pathway in the SCN was dependent on glutamate neurotransmission even after the completion of a photic stimulus. Adult male Syrian hamsters equipped with a surgically implanted guide cannula aimed at the SCN region were housed in constant darkness until stable free-running rhythms of wheel-running activity were apparent. Light pulses administered in the early night induced phase delays of circadian rhythms which were attenuated by the co-administration of (+/-)-2-amino-5-phosphonopentanoic acid (AP5), an NMDA antagonist. Microinjection of AP5 also inhibited light-induced shifts, to a lesser extent, immediately after and 15 min after, but not 30 min after the light pulse. A second experiment was designed to test whether AP5 would be able to attenuate GRP-induced shifts 15 min following microinjection of GRP. Phase shifts of animals that received microinjection of AP5 15 min after the administration of GRP were not different from those that received microinjection of GRP and vehicle. These data suggest that glutamate signaling remains necessary for a full photic response in the SCN even after the termination of the photic signal, but that this dependency ends once GRP-dependent signaling is complete.
Collapse
Affiliation(s)
- George J Kallingal
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | | |
Collapse
|