1
|
Rinaldi C, Donato L, Alibrandi S, Scimone C, D’Angelo R, Sidoti A. Oxidative Stress and the Neurovascular Unit. Life (Basel) 2021; 11:767. [PMID: 34440511 PMCID: PMC8398978 DOI: 10.3390/life11080767] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 12/15/2022] Open
Abstract
The neurovascular unit (NVU) is a relatively recent concept that clearly describes the relationship between brain cells and their blood vessels. The components of the NVU, comprising different types of cells, are so interrelated and associated with each other that they are considered as a single functioning unit. For this reason, even slight disturbances in the NVU could severely affect brain homeostasis and health. In this review, we aim to describe the current state of knowledge concerning the role of oxidative stress on the neurovascular unit and the role of a single cell type in the NVU crosstalk.
Collapse
Affiliation(s)
- Carmela Rinaldi
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (C.R.); (L.D.); (S.A.); (R.D.); (A.S.)
| | - Luigi Donato
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (C.R.); (L.D.); (S.A.); (R.D.); (A.S.)
- Department of Biomolecular Strategies, Genetics and Avant-Garde Therapies, Istituto Euro-Mediterraneo di Scienza e Tecnologia (I.E.ME.S.T.), Via Michele Miraglia, 90139 Palermo, Italy
| | - Simona Alibrandi
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (C.R.); (L.D.); (S.A.); (R.D.); (A.S.)
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Concetta Scimone
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (C.R.); (L.D.); (S.A.); (R.D.); (A.S.)
- Department of Biomolecular Strategies, Genetics and Avant-Garde Therapies, Istituto Euro-Mediterraneo di Scienza e Tecnologia (I.E.ME.S.T.), Via Michele Miraglia, 90139 Palermo, Italy
| | - Rosalia D’Angelo
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (C.R.); (L.D.); (S.A.); (R.D.); (A.S.)
| | - Antonina Sidoti
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (C.R.); (L.D.); (S.A.); (R.D.); (A.S.)
| |
Collapse
|
2
|
Liu Z, Li X, Chen C, Sun N, Wang Y, Yang C, Xu Y, Xu Y, Zhang K. Identification of antisense lncRNAs targeting GSK3β as a regulator in major depressive disorder. Epigenomics 2020; 12:1725-1738. [PMID: 32896160 DOI: 10.2217/epi-2019-0402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Aim: To identify lncRNAs targeting GSK3β in MDD. Materials & methods: The levels of GSK3β and its three targeting lncRNAs (gsk3β antisense AS1, AS2 and AS3) were detected in 52 patients with major depressive disorder (MDD) before and after 8 weeks of escitalopram treatment. The functional study was evaluated using the silence of lncR-gsk3βAS2/3. The correlation between lncRNA-gsk3β and 89 MDD patients was analyzed. Human neuron progenitor cells were used to investigate the functional role of lncRNA-gsk3β in MDD. Results: All three lncRNAs were downregulated in MDD patients but upregulated after treatment. Inhibition of gsk3βAS2/3 reduced GSK3β expression and its phosphorylation levels in the neuron progenitor cells. Conclusion: Our findings suggest that lncRNA-gsk3βAS3 regulates GSK3β activity in MDD and has potential as a novel therapeutic target.
Collapse
Affiliation(s)
- Zhifen Liu
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan 030001, PR China
| | - Xinrong Li
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan 030001, PR China
| | - Chen Chen
- School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, PR China
| | - Ning Sun
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan 030001, PR China
| | - Yanfang Wang
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan 030001, PR China
| | - Chunxia Yang
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan 030001, PR China
| | - Yong Xu
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan 030001, PR China
| | - Yifan Xu
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan 030001, PR China
| | - Kerang Zhang
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan 030001, PR China
| |
Collapse
|
3
|
Liu B, Cao W, Xue J. LncRNA ANRIL protects against oxygen and glucose deprivation (OGD)-induced injury in PC-12 cells: potential role in ischaemic stroke. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:1384-1395. [PMID: 31174432 DOI: 10.1080/21691401.2019.1596944] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
lncRNA ANRIL was reported to be closely related to ischaemic stroke (IS). In this study, we used oxygen-glucose deprivation (OGD) to stimulate rat adrenal medulla-derived pheochromocytoma cell line PC-12 to construct an in vitro IS cell model and investigated the role of ANRIL and the underlying mechanism. PC-12 cells were stimulated by OGD and/or transfected with pc-ANRIL, si-ANRIL, miR-127 mimic, miR-127 inhibitor, pEX-Mcl-1, sh-Mcl-1 and their negative controls. Cell viability, apoptosis, mRNA and protein expression was detected using CCK-8 assay, flow cytometry assay, qRT-PCR and western blot, respectively. Results showed that OGD-induced PC-12 cell injury and decreased ANRIL expression. ANRIL overexpression significantly reduced OGD-induced PC-12 cell injury evidenced by increasing cell viability and decreasing apoptosis, while ANRIL silence led to the opposite results. Meanwhile, dysregulation of ANRIL altered the expression of apoptotic proteins. Furthermore, ANRIL negatively regulated miR-127 expression. miR-127 overexpression significantly enhanced OGD-induced PC-12 cell injury. In addition, Mcl-1 expression was negatively regulated by miR-127, besides ANRIL up-regulated Mcl-1 expression by down-regulation of miR-127. Mcl-1 overexpression alleviated cell injury and miR-127 silence up-regulated Mcl-1 expression. In conclusion, lncRNA ANRIL alleviated OGD-induced PC-12 cell injury as evidenced. PI3K/AKT pathway might be involved in this regulating progression.
Collapse
Affiliation(s)
- Bin Liu
- a Department of Neurosurgery, Jining No.1 People's Hospital , Jining , China
| | - Wei Cao
- a Department of Neurosurgery, Jining No.1 People's Hospital , Jining , China
| | - Jian Xue
- a Department of Neurosurgery, Jining No.1 People's Hospital , Jining , China
| |
Collapse
|
4
|
Rzuczek SG, Southern MR, Disney MD. Studying a Drug-like, RNA-Focused Small Molecule Library Identifies Compounds That Inhibit RNA Toxicity in Myotonic Dystrophy. ACS Chem Biol 2015; 10:2706-15. [PMID: 26414664 DOI: 10.1021/acschembio.5b00430] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
There are many RNA targets in the transcriptome to which small molecule chemical probes and lead therapeutics are desired. However, identifying compounds that bind and modulate RNA function in cellulo is difficult. Although rational design approaches have been developed, they are still in their infancies and leave many RNAs "undruggable". In an effort to develop a small molecule library that is biased for binding RNA, we computationally identified "drug-like" compounds from screening collections that have favorable properties for binding RNA and for suitability as lead drugs. As proof-of-concept, this collection was screened for binding to and modulating the cellular dysfunction of the expanded repeating RNA (r(CUG)(exp)) that causes myotonic dystrophy type 1. Hit compounds bind the target in cellulo, as determined by the target identification approach Competitive Chemical Cross-Linking and Isolation by Pull-down (C-ChemCLIP), and selectively improve several disease-associated defects. The best compounds identified from our 320-member library are more potent in cellulo than compounds identified by high-throughput screening (HTS) campaigns against this RNA. Furthermore, the compound collection has a higher hit rate (9% compared to 0.01-3%), and the bioactive compounds identified are not charged; thus, RNA can be "drugged" with compounds that have favorable pharmacological properties. Finally, this RNA-focused small molecule library may serve as a useful starting point to identify lead "drug-like" chemical probes that affect the biological (dys)function of other RNA targets by direct target engagement.
Collapse
Affiliation(s)
- Suzanne G. Rzuczek
- Department
of Chemistry and ‡Translational Research Institute, The Scripps Research Institute, Scripps Florida, 130 Scripps Way #3A1, Jupiter, Florida 33458, United States
| | - Mark R. Southern
- Department
of Chemistry and ‡Translational Research Institute, The Scripps Research Institute, Scripps Florida, 130 Scripps Way #3A1, Jupiter, Florida 33458, United States
| | - Matthew D. Disney
- Department
of Chemistry and ‡Translational Research Institute, The Scripps Research Institute, Scripps Florida, 130 Scripps Way #3A1, Jupiter, Florida 33458, United States
| |
Collapse
|
5
|
Ziats MN, Grosvenor LP, Rennert OM. Functional genomics of human brain development and implications for autism spectrum disorders. Transl Psychiatry 2015; 5:e665. [PMID: 26506051 PMCID: PMC4930130 DOI: 10.1038/tp.2015.153] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 09/03/2015] [Accepted: 09/06/2015] [Indexed: 12/13/2022] Open
Abstract
Transcription of the inherited DNA sequence into copies of messenger RNA is the most fundamental process by which the genome functions to guide development. Encoded sequence information, inherited epigenetic marks and environmental influences all converge at the level of mRNA gene expression to allow for cell-type-specific, tissue-specific, spatial and temporal patterns of expression. Thus, the transcriptome represents a complex interplay between inherited genomic structure, dynamic experiential demands and external signals. This property makes transcriptome studies uniquely positioned to provide insight into complex genetic-epigenetic-environmental processes such as human brain development, and disorders with non-Mendelian genetic etiologies such as autism spectrum disorders. In this review, we describe recent studies exploring the unique functional genomics profile of the human brain during neurodevelopment. We then highlight two emerging areas of research with great potential to increase our understanding of functional neurogenomics-non-coding RNA expression and gene interaction networks. Finally, we review previous functional genomics studies of autism spectrum disorder in this context, and discuss how investigations at the level of functional genomics are beginning to identify convergent molecular mechanisms underlying this genetically heterogeneous disorder.
Collapse
Affiliation(s)
- M N Ziats
- Laboratory of Clinical and Developmental Genomics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA,University of Cambridge, Robinson College, Cambridgeshire, UK,Baylor College of Medicine MSTP, One Baylor Plaza, Houston, TX, USA,Laboratory of Clinical and Developmental Genomics, National Institute of Child Health and Human Development, National Institutes of Health, 49 Convent Drive, Building 49, Room 2C08, Bethesda, MD 20814, USA. E-mail:
| | - L P Grosvenor
- Pediatrics and Developmental Neuroscience Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - O M Rennert
- Laboratory of Clinical and Developmental Genomics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
6
|
Goldman AW, Burmeister Y, Cesnulevicius K, Herbert M, Kane M, Lescheid D, McCaffrey T, Schultz M, Seilheimer B, Smit A, St Laurent G, Berman B. Bioregulatory systems medicine: an innovative approach to integrating the science of molecular networks, inflammation, and systems biology with the patient's autoregulatory capacity? Front Physiol 2015; 6:225. [PMID: 26347656 PMCID: PMC4541032 DOI: 10.3389/fphys.2015.00225] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 07/27/2015] [Indexed: 12/25/2022] Open
Abstract
Bioregulatory systems medicine (BrSM) is a paradigm that aims to advance current medical practices. The basic scientific and clinical tenets of this approach embrace an interconnected picture of human health, supported largely by recent advances in systems biology and genomics, and focus on the implications of multi-scale interconnectivity for improving therapeutic approaches to disease. This article introduces the formal incorporation of these scientific and clinical elements into a cohesive theoretical model of the BrSM approach. The authors review this integrated body of knowledge and discuss how the emergent conceptual model offers the medical field a new avenue for extending the armamentarium of current treatment and healthcare, with the ultimate goal of improving population health.
Collapse
Affiliation(s)
- Alyssa W Goldman
- Concept Systems, Inc. Ithaca, NY, USA ; Department of Sociology, Cornell University Ithaca, NY, USA
| | | | | | - Martha Herbert
- Transcend Research Laboratory, Massachusetts General Hospital Boston, MA, USA
| | - Mary Kane
- Concept Systems, Inc. Ithaca, NY, USA
| | - David Lescheid
- International Academy of Bioregulatory Medicine Baden-Baden, Germany
| | - Timothy McCaffrey
- Division of Genomic Medicine, George Washington University Medical Center Washington, DC, USA
| | - Myron Schultz
- Biologische Heilmittel Heel GmbH Baden-Baden, Germany
| | | | - Alta Smit
- Biologische Heilmittel Heel GmbH Baden-Baden, Germany
| | | | - Brian Berman
- Center for Integrative Medicine, University of Maryland School of Medicine Baltimore, MD, USA
| |
Collapse
|
7
|
Qureshi IA, Mehler MF. Long non-coding RNAs: novel targets for nervous system disease diagnosis and therapy. Neurotherapeutics 2013; 10:632-46. [PMID: 23817781 PMCID: PMC3805860 DOI: 10.1007/s13311-013-0199-0] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The human genome encodes tens of thousands of long non-coding RNAs (lncRNAs), a novel and important class of genes. Our knowledge of lncRNAs has grown exponentially since their discovery within the last decade. lncRNAs are expressed in a highly cell- and tissue-specific manner, and are particularly abundant within the nervous system. lncRNAs are subject to post-transcriptional processing and inter- and intra-cellular transport. lncRNAs act via a spectrum of molecular mechanisms leveraging their ability to engage in both sequence-specific and conformational interactions with diverse partners (DNA, RNA, and proteins). Because of their size, lncRNAs act in a modular fashion, bringing different macromolecules together within the three-dimensional context of the cell. lncRNAs thus coordinate the execution of transcriptional, post-transcriptional, and epigenetic processes and critical biological programs (growth and development, establishment of cell identity, and deployment of stress responses). Emerging data reveal that lncRNAs play vital roles in mediating the developmental complexity, cellular diversity, and activity-dependent plasticity that are hallmarks of brain. Corresponding studies implicate these factors in brain aging and the pathophysiology of brain disorders, through evolving paradigms including the following: (i) genetic variation in lncRNA genes causes disease and influences susceptibility; (ii) epigenetic deregulation of lncRNAs genes is associated with disease; (iii) genomic context links lncRNA genes to disease genes and pathways; and (iv) lncRNAs are otherwise interconnected with known pathogenic mechanisms. Hence, lncRNAs represent prime targets that can be exploited for diagnosing and treating nervous system diseases. Such clinical applications are in the early stages of development but are rapidly advancing because of existing expertise and technology platforms that are readily adaptable for these purposes.
Collapse
Affiliation(s)
- Irfan A. Qureshi
- />Roslyn and Leslie Goldstein Laboratory for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, New York USA
- />Institute for Brain Disorders and Neural Regeneration, Albert Einstein College of Medicine, Bronx, New York USA
- />Department of Neurology, Albert Einstein College of Medicine, Bronx, New York USA
- />Rose F. Kennedy Center for Research on Intellectual and Developmental Disabilities, Albert Einstein College of Medicine, 1410 Pelham Parkway South, Room 401, Bronx, New York 10461 USA
| | - Mark F. Mehler
- />Roslyn and Leslie Goldstein Laboratory for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, New York USA
- />Institute for Brain Disorders and Neural Regeneration, Albert Einstein College of Medicine, Bronx, New York USA
- />Department of Neurology, Albert Einstein College of Medicine, Bronx, New York USA
- />Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York USA
- />Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York USA
- />Rose F. Kennedy Center for Research on Intellectual and Developmental Disabilities, Albert Einstein College of Medicine, 1410 Pelham Parkway South, Room 401, Bronx, New York 10461 USA
- />Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, New York USA
- />Ruth L. and David S. Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, New York USA
- />Center for Epigenomics, Albert Einstein College of Medicine, Bronx, New York USA
- />Institute for Aging Research, Albert Einstein College of Medicine, Bronx, New York USA
| |
Collapse
|
8
|
Age-related changes of gene expression in the neocortex: preliminary data on RNA-Seq of the transcriptome in three functionally distinct cortical areas. Dev Psychopathol 2013; 24:1427-42. [PMID: 23062308 DOI: 10.1017/s0954579412000818] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The study of gene expression (i.e., the study of the transcriptome) in different cells and tissues allows us to understand the molecular mechanisms of their differentiation, development and functioning. In this article, we describe some studies of gene-expression profiling for the purposes of understanding developmental (age-related) changes in the brain using different technologies (e.g., DNA-Microarray) and the new and increasingly popular RNA-Seq. We focus on advancements in studies of gene expression in the human brain, which have provided data on the structure and age-related variability of the transcriptome in the brain. We present data on RNA-Seq of the transcriptome in three distinct areas of the neocortex from different ages: mature and elderly individuals. We report that most age-related transcriptional changes affect cellular signaling systems, and, as a result, the transmission of nerve impulses. In general, the results demonstrate the high potential of RNA-Seq for the study of distinctive features of gene expression among cortical areas and the changes in expression through normal and atypical development of the central nervous system.
Collapse
|
9
|
Kraus P, Sivakamasundari V, Lim SL, Xing X, Lipovich L, Lufkin T. Making sense of Dlx1 antisense RNA. Dev Biol 2013; 376:224-35. [PMID: 23415800 DOI: 10.1016/j.ydbio.2013.01.035] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 01/27/2013] [Accepted: 01/29/2013] [Indexed: 12/13/2022]
Abstract
Long non-coding RNAs (lncRNAs) have been recently recognized as a major class of regulators in mammalian systems. LncRNAs function by diverse and heterogeneous mechanisms in gene regulation, and are key contributors to development, neurological disorders, and cancer. This emerging importance of lncRNAs, along with recent reports of a functional lncRNA encoded by the mouse Dlx5-Dlx6 locus, led us to interrogate the biological significance of another distal-less antisense lncRNA, the previously uncharacterized Dlx1 antisense (Dlx1as) transcript. We have functionally ablated this antisense RNA via a highly customized gene targeting approach in vivo. Mice devoid of Dlx1as RNA are viable and fertile, and display a mild skeletal and neurological phenotype reminiscent of a Dlx1 gain-of function phenotype, suggesting a role for this non-coding antisense RNA in modulating Dlx1 transcript levels and stability. The reciprocal relationship between Dlx1as and Dlx1 places this sense-antisense pair into a growing class of mammalian lncRNA-mRNA pairs characterized by inverse regulation.
Collapse
Affiliation(s)
- Petra Kraus
- Stem Cell and Developmental Biology, Genome Institute of Singapore, Singapore 138672, Singapore
| | | | | | | | | | | |
Collapse
|
10
|
Alvarez ML, Distefano JK. The role of non-coding RNAs in diabetic nephropathy: potential applications as biomarkers for disease development and progression. Diabetes Res Clin Pract 2013; 99:1-11. [PMID: 23102915 DOI: 10.1016/j.diabres.2012.10.010] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 09/11/2012] [Accepted: 10/05/2012] [Indexed: 01/10/2023]
Abstract
Diabetic nephropathy, a progressive kidney disease that develops secondary to diabetes, is the major cause of chronic kidney disease in developed countries, and contributes significantly to increased morbidity and mortality among individuals with diabetes. Although the causes of diabetic nephropathy are not fully understood, recent studies demonstrate a role for epigenetic factors in the development of the disease. For example, non-coding RNA (ncRNA) molecules, including microRNAs (miRNAs), have been shown to be functionally important in modulating renal response to hyperglycemia and progression of diabetic nephropathy. Characterization of miRNA expression in diabetic nephropathy from studies of animal models of diabetes, and in vitro investigations using different types of kidney cells also support this role. The goal of this review, therefore, is to summarize the current state of knowledge of specific ncRNAs involved in the development of diabetic nephropathy, with a focus on the potential role of miRNAs to serve as sensitive, non-invasive biomarkers of kidney disease and progression. Non-coding RNAs are currently recognized as potentially important regulators of genes involved in processes related to the development of diabetic nephropathy, and as such, represent viable targets for both clinical diagnostic strategies and therapeutic intervention.
Collapse
Affiliation(s)
- M Lucrecia Alvarez
- Diabetes, Cardiovascular and Metabolic Diseases Division, Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, United States
| | | |
Collapse
|
11
|
Ahmed W, Ali IS, Riaz M, Younas A, Sadeque A, Niazi AK, Niazi SH, Ali SHB, Azam M, Qamar R. Association of ANRIL polymorphism (rs1333049:C>G) with myocardial infarction and its pharmacogenomic role in hypercholesterolemia. Gene 2012; 515:416-20. [PMID: 23266621 DOI: 10.1016/j.gene.2012.12.044] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 12/02/2012] [Indexed: 12/16/2022]
Abstract
Single nucleotide polymorphisms (SNPs) of non-coding RNA in the INK4 locus (ANRIL) have been found to be associated with myocardial infarction (MI). However, the effect of rs1333049:C>G in INK4 locus in familial hypercholesterolemia patients and on lipid profile of the patients has not been studied in Pakistan. We therefore investigated the association of SNP rs1333049:C>G with MI as well as familial hypercholesterolemia patients and also determined the effect of genotype on lipid levels in a northern Pakistani population. A case-control association study was performed in which 611 individuals (294 patients, 290 healthy controls and 27 patients from hypercholesterolemia families) were genotyped for rs1333049:C>G, using an Allele specific polymerase chain reaction. We found a significant association of rs1333049:C>G with MI (χ(2)=22.3, p<0.001). The frequency of risk genotype CC was significantly different from the healthy controls (p<0.001, χ(2)=22.3). The risk allele C was at a higher frequency in the MI patients as compared to the controls (odds ratio [OR]=1.55 (95% confidence interval [CI]=1.22-1.96), p<0.001). The logistic regression analysis for the genotype distribution resulted in strong association of risk allele C with MI under recessive model (OR=3.17 (95% CI=1.85-5.44) p<0.001). When the data were further analyzed along the lines of gender, a significant association with both males and females was observed. The pleiotropic role of rs1333049 was revealed further when CC genotype hypercholesterolemic individuals on statins were found to have a significantly lower TC, LDL-C and Tg levels as compared to the CG and GG individuals (p<0.05). The current study demonstrates a strong association of the ANRIL SNP (rs1333049) with MI as well as familial hypercholesterolemia patients in a northern Pakistani population and could be used as a useful genetic marker for the screening of MI in the general Pakistani population.
Collapse
Affiliation(s)
- Waqas Ahmed
- Department of Biosciences, COMSATS Institute of Information Technology, Park Road, Islamabad 45600, Pakistan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Naumova OY, Lee M, Rychkov SY, Vlasova NV, Grigorenko EL. Gene expression in the human brain: the current state of the study of specificity and spatiotemporal dynamics. Child Dev 2012; 84:76-88. [PMID: 23145569 DOI: 10.1111/cdev.12014] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Gene expression is one of the main molecular processes regulating the differentiation, development, and functioning of cells and tissues. In this review a handful of relevant terms and concepts are introduced and the most common techniques used in studies of gene expression/expression profiling (also referred to as studies of the transcriptome or transcriptomics) are described. The main foci of this review are the advancements in studies of the transcriptome in the human brain, the transcriptome's variability across different brain structures, and the systematic changes that occur through different developmental stages across the life span in general and childhood in particular. Finally, the question of how the accumulating data on the spatial and temporal dynamics of the transcriptome may shed light on the molecular mechanisms of the typical and atypical development of the central nervous system is addressed.
Collapse
|
13
|
Garritano S, Gigoni A, Costa D, Malatesta P, Florio T, Cancedda R, Pagano A. A novel collection of snRNA-like promoters with tissue-specific transcription properties. Int J Mol Sci 2012; 13:11323-11332. [PMID: 23109855 PMCID: PMC3472747 DOI: 10.3390/ijms130911323] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 08/28/2012] [Accepted: 08/30/2012] [Indexed: 12/28/2022] Open
Abstract
We recently identified a novel dataset of snRNA-like trascriptional units in the human genome. The investigation of a subset of these elements showed that they play relevant roles in physiology and/or pathology. In this work we expand our collection of small RNAs taking advantage of a newly developed algorithm able to identify genome sequence stretches with RNA polymerase (pol) III type 3 promoter features thus constituting putative pol III binding sites. The bioinformatic analysis of a subset of these elements that map in introns of protein-coding genes in antisense configuration suggest their association with alternative splicing, similarly to other recently characterized small RNAs. Interestingly, the analysis of the transcriptional activity of these novel promoters shows that they are active in a cell-type specific manner, in accordance with the emerging body of evidence of a tissue/cell-specific activity of pol III.
Collapse
Affiliation(s)
- Sonia Garritano
- Department of Experimental Medicine (DiMES), University of Genoa, 16132 Genoa, Italy; E-Mails: (S.G.); (A.G.); (D.C.); (P.M.); (R.C.)
| | - Arianna Gigoni
- Department of Experimental Medicine (DiMES), University of Genoa, 16132 Genoa, Italy; E-Mails: (S.G.); (A.G.); (D.C.); (P.M.); (R.C.)
| | - Delfina Costa
- Department of Experimental Medicine (DiMES), University of Genoa, 16132 Genoa, Italy; E-Mails: (S.G.); (A.G.); (D.C.); (P.M.); (R.C.)
| | - Paolo Malatesta
- Department of Experimental Medicine (DiMES), University of Genoa, 16132 Genoa, Italy; E-Mails: (S.G.); (A.G.); (D.C.); (P.M.); (R.C.)
- IRCCS-AOU San Martino-IST, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Tullio Florio
- Department of Internal Medicine (DIMI), University of Genoa, 16132 Genoa, Italy; E-Mail:
- Centre of Excellence for Biomedical research (CEBR), University of Genoa, 16132 Genoa, Italy
| | - Ranieri Cancedda
- Department of Experimental Medicine (DiMES), University of Genoa, 16132 Genoa, Italy; E-Mails: (S.G.); (A.G.); (D.C.); (P.M.); (R.C.)
- IRCCS-AOU San Martino-IST, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Aldo Pagano
- Department of Experimental Medicine (DiMES), University of Genoa, 16132 Genoa, Italy; E-Mails: (S.G.); (A.G.); (D.C.); (P.M.); (R.C.)
- IRCCS-AOU San Martino-IST, Largo Rosanna Benzi 10, 16132 Genoa, Italy
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +39-010-5737241; Fax: +39-010-5737257
| |
Collapse
|
14
|
Massone S, Ciarlo E, Vella S, Nizzari M, Florio T, Russo C, Cancedda R, Pagano A. NDM29, a RNA polymerase III-dependent non coding RNA, promotes amyloidogenic processing of APP and amyloid β secretion. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1170-7. [DOI: 10.1016/j.bbamcr.2012.05.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 03/29/2012] [Accepted: 05/02/2012] [Indexed: 10/28/2022]
|
15
|
Childs-Disney JL, Hoskins J, Rzuczek SG, Thornton CA, Disney MD. Rationally designed small molecules targeting the RNA that causes myotonic dystrophy type 1 are potently bioactive. ACS Chem Biol 2012; 7:856-62. [PMID: 22332923 DOI: 10.1021/cb200408a] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
RNA is an important drug target, but it is difficult to design or discover small molecules that modulate RNA function. In the present study, we report that rationally designed, modularly assembled small molecules that bind the RNA that causes myotonic dystrophy type 1 (DM1) are potently bioactive in cell culture models. DM1 is caused when an expansion of r(CUG) repeats, or r(CUG)(exp), is present in the 3' untranslated region (UTR) of the dystrophia myotonica protein kinase (DMPK) mRNA. r(CUG)(exp) folds into a hairpin with regularly repeating 5'CUG/3'GUC motifs and sequesters muscleblind-like 1 protein (MBNL1). A variety of defects are associated with DM1, including (i) formation of nuclear foci, (ii) decreased translation of DMPK mRNA due to its nuclear retention, and (iii) pre-mRNA splicing defects due to inactivation of MBNL1, which controls the alternative splicing of various pre-mRNAs. Previously, modularly assembled ligands targeting r(CUG)(exp) were designed using information in an RNA motif-ligand database. These studies showed that a bis-benzimidazole (H) binds the 5'CUG/3'GUC motif in r(CUG)(exp.) Therefore, we designed multivalent ligands to bind simultaneously multiple copies of this motif in r(CUG)(exp). Herein, we report that the designed compounds improve DM1-associated defects including improvement of translational and pre-mRNA splicing defects and the disruption of nuclear foci. These studies may establish a foundation to exploit other RNA targets in genomic sequence.
Collapse
Affiliation(s)
- Jessica L. Childs-Disney
- The Kellogg
School of Science
and Engineering, Department of Chemistry, The Scripps Research Institute, Scripps Florida, 130 Scripps Way #3A1, Jupiter, Florida
33458, United States
| | - Jason Hoskins
- Department
of Neurology, University of Rochester,
Rochester, New York 14642,
United States
| | - Suzanne G. Rzuczek
- The Kellogg
School of Science
and Engineering, Department of Chemistry, The Scripps Research Institute, Scripps Florida, 130 Scripps Way #3A1, Jupiter, Florida
33458, United States
| | - Charles A. Thornton
- Department
of Neurology, University of Rochester,
Rochester, New York 14642,
United States
| | - Matthew D. Disney
- The Kellogg
School of Science
and Engineering, Department of Chemistry, The Scripps Research Institute, Scripps Florida, 130 Scripps Way #3A1, Jupiter, Florida
33458, United States
| |
Collapse
|
16
|
Abstract
The importance of various classes of regulatory non-protein-coding RNA molecules (ncRNAs) in the normal functioning of the CNS is becoming increasingly evident. ncRNAs are involved in neuronal cell specification and patterning during development, but also in higher cognitive processes, such as structural plasticity and memory formation in the adult brain. We discuss advances in understanding of the function of ncRNAs in the CNS, with a focus on the potential involvement of specific species, such as microRNAs, endogenous small interfering RNAs, long intergenic non-coding RNAs, and natural antisense transcripts, in various neurodegenerative disorders. This emerging field is anticipated to profoundly affect clinical research, diagnosis, and therapy in neurology.
Collapse
|
17
|
Abstract
One of the greatest wonders in biology is the high degree of molecular organization and complexity achieved by multicellular life forms, which are typically composed by hundreds of cell types, each with a unique identity and function and all sharing the same genome. Long-term maintenance of these distinct cell identities requires epigenetic signals, molecular signatures that regulate gene expression and can be inherited during cell division. Some epigenetic signals also appear to have an intimate connection with brain function, with important implications for neuroscience and medicine. To better understand these phenomena, new technologies must be developed and nonconventional model organisms should be studied. For example, the genomes of eusocial insects, such as ants and honeybees, specify drastically different morphologies (polyphenism) and behaviors (polyethism) that yield adult individuals belonging to different castes, which carry out separate functions inside the colony. These sharp epigenetic differences present unique opportunities for the experimental dissection of molecular pathways that may be conserved in other organisms, including humans.
Collapse
Affiliation(s)
- Roberto Bonasio
- Howard Hughes Medical Institute, Department of Biochemistry, New York University School of Medicine, New York, New York, USA.
| |
Collapse
|
18
|
Oliveira KC, Carvalho MLP, Maracaja-Coutinho V, Kitajima JP, Verjovski-Almeida S. Non-coding RNAs in schistosomes: an unexplored world. AN ACAD BRAS CIENC 2011; 83:673-94. [DOI: 10.1590/s0001-37652011000200026] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2011] [Accepted: 04/28/2011] [Indexed: 11/21/2022] Open
Abstract
Non-coding RNAs (ncRNAs) were recently given much higher attention due to technical advances in sequencing which expanded the characterization of transcriptomes in different organisms. ncRNAs have different lengths (22 nt to >1, 000 nt) and mechanisms of action that essentially comprise a sophisticated gene expression regulation network. Recent publication of schistosome genomes and transcriptomes has increased the description and characterization of a large number of parasite genes. Here we review the number of predicted genes and the coverage of genomic bases in face of the public ESTs dataset available, including a critical appraisal of the evidence and characterization of ncRNAs in schistosomes. We show expression data for ncRNAs in Schistosoma mansoni. We analyze three different microarray experiment datasets: (1) adult worms' large-scale expression measurements; (2) differentially expressed S. mansoni genes regulated by a human cytokine (TNF-α) in a parasite culture; and (3) a stage-specific expression of ncRNAs. All these data point to ncRNAs involved in different biological processes and physiological responses that suggest functionality of these new players in the parasite's biology. Exploring this world is a challenge for the scientists under a new molecular perspective of host-parasite interactions and parasite development.
Collapse
|
19
|
Li D, Wang Y, Zhang K, Jiao Z, Zhu X, Skogerboe G, Guo X, Chinnusamy V, Bi L, Huang Y, Dong S, Chen R, Kan Y. Experimental RNomics and genomic comparative analysis reveal a large group of species-specific small non-message RNAs in the silkworm Bombyx mori. Nucleic Acids Res 2011; 39:3792-805. [PMID: 21227919 PMCID: PMC3089462 DOI: 10.1093/nar/gkq1317] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Accumulating evidences show that small non-protein coding RNAs (ncRNAs) play important roles in development, stress response and other cellular processes. The silkworm is an important model for studies on insect genetics and control of lepidopterous pests. Here, we have performed the first systematic identification and analysis of intermediate size ncRNAs (50–500 nt) in the silkworm. We identified 189 novel ncRNAs, including 141 snoRNAs, six snRNAs, three tRNAs, one SRP and 38 unclassified ncRNAs. Forty ncRNAs showed significantly altered expression during silkworm development or across specific stage transitions. Genomic comparisons revealed that 123 of these ncRNAs are potentially silkworm-specific. Analysis of the genomic organization of the ncRNA loci showed that 32.62% of the novel snoRNA loci are intergenic, and that all the intronic snoRNAs follow the pattern of one-snoRNA-per-intron. Target site analysis predicted a total of 95 2′-O-methylation and pseudouridylation modification sites of rRNAs, snRNAs and tRNAs. Together, these findings provide new clues for future functional study of ncRNA during insect development and evolution.
Collapse
Affiliation(s)
- Dandan Li
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing 210095, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Kapranov P, St Laurent G, Raz T, Ozsolak F, Reynolds CP, Sorensen PHB, Reaman G, Milos P, Arceci RJ, Thompson JF, Triche TJ. The majority of total nuclear-encoded non-ribosomal RNA in a human cell is 'dark matter' un-annotated RNA. BMC Biol 2010; 8:149. [PMID: 21176148 PMCID: PMC3022773 DOI: 10.1186/1741-7007-8-149] [Citation(s) in RCA: 207] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 12/21/2010] [Indexed: 01/03/2023] Open
Abstract
Background Discovery that the transcriptional output of the human genome is far more complex than predicted by the current set of protein-coding annotations and that most RNAs produced do not appear to encode proteins has transformed our understanding of genome complexity and suggests new paradigms of genome regulation. However, the fraction of all cellular RNA whose function we do not understand and the fraction of the genome that is utilized to produce that RNA remain controversial. This is not simply a bookkeeping issue because the degree to which this un-annotated transcription is present has important implications with respect to its biologic function and to the general architecture of genome regulation. For example, efforts to elucidate how non-coding RNAs (ncRNAs) regulate genome function will be compromised if that class of RNAs is dismissed as simply 'transcriptional noise'. Results We show that the relative mass of RNA whose function and/or structure we do not understand (the so called 'dark matter' RNAs), as a proportion of all non-ribosomal, non-mitochondrial human RNA (mt-RNA), can be greater than that of protein-encoding transcripts. This observation is obscured in studies that focus only on polyA-selected RNA, a method that enriches for protein coding RNAs and at the same time discards the vast majority of RNA prior to analysis. We further show the presence of a large number of very long, abundantly-transcribed regions (100's of kb) in intergenic space and further show that expression of these regions is associated with neoplastic transformation. These overlap some regions found previously in normal human embryonic tissues and raises an interesting hypothesis as to the function of these ncRNAs in both early development and neoplastic transformation. Conclusions We conclude that 'dark matter' RNA can constitute the majority of non-ribosomal, non-mitochondrial-RNA and a significant fraction arises from numerous very long, intergenic transcribed regions that could be involved in neoplastic transformation.
Collapse
Affiliation(s)
- Philipp Kapranov
- Helicos BioSciences Corporation, One Kendall Square, Building 700, Cambridge, MA 02139, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Deep sequencing of coding and non-coding RNA in the CNS. Brain Res 2010; 1338:146-54. [PMID: 20307502 DOI: 10.1016/j.brainres.2010.03.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Revised: 03/10/2010] [Accepted: 03/15/2010] [Indexed: 01/23/2023]
Abstract
Several methods now exist for identifying and quantifying many biological events in parallel and in a relatively unbiased fashion. For gene expression experiments, cloning approaches have been supplemented with microarray platforms over the past few years. The focus of this review is on deep sequencing, a new set of techniques that can be used to both identify RNA species and quantify them in a massively parallel fashion. Deep sequencing has some advantages over other methods, driven largely by the high depth of coverage for any library of nucleic acids. This allows, for example, estimates of alternative splicing and untranslated region utilization. We will discuss how deep sequencing methods are being applied to characterization of gene expression in the brain and how these technologies might develop over the next few years.
Collapse
|
22
|
Identification of long stress-induced non-coding transcripts that have altered expression in cancer. Genomics 2010; 95:355-62. [PMID: 20214974 DOI: 10.1016/j.ygeno.2010.02.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 01/15/2010] [Accepted: 02/24/2010] [Indexed: 01/13/2023]
Abstract
It has recently become clear that the transcriptional output of the human genome is far more abundant than previously anticipated, with the vast majority of transcripts not coding for protein. Utilizing whole-genome tiling arrays, we analyzed the transcription across the entire genome in both normal human bronchial epithelial cells (NHBE) and NHBE cells exposed to the tobacco carcinogen NNK. Our efforts focused on the characterization of non-coding transcripts that were greater than 300 nucleotides in length and whose expression was increased in response to NNK. We identified 12 Long Stress-Induced Non-coding Transcripts that we term LSINCTs. Northern blot analysis revealed that these transcripts were larger than predicted from the tiling array data. Quantitative real-time RT-PCR performed across a panel of normal cell lines indicates that these transcripts are more abundantly expressed in rapidly growing tissues or in tissues that are more prone to cellular stress. These transcripts that have increased expression after exposure to NNK also had increased expression in a number of lung cancer cell lines and also in many breast cancer cell lines. Collectively, our results identified a new class of long stress responsive non-coding transcripts, LSINCTs, which have increased expression in response to DNA damage induced by NNK. LSINCTs interestingly also have increased expression in a number of cancer-derived cell lines, indicating that the expression is increased in both, correlating cellular stress and cancer.
Collapse
|