1
|
Pasqualette L, Kulke L. Differences between overt, covert and natural attention shifts to emotional faces. Neuroscience 2024; 559:283-292. [PMID: 39265801 DOI: 10.1016/j.neuroscience.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 09/14/2024]
Abstract
In daily life, individuals pay attention to emotional facial expressions and dynamically choose how to shift their attention, i.e. either overtly (with eye-movements) or covertly (without eye-movements). However, research on attention to emotional faces has mostly been conducted in controlled laboratory settings, in which people were instructed where to look. The current preregistered study co-registered EEG and eye-tracking to investigate differences in emotion-driven attention between instructed and uninstructed natural attention shifts in 48 adults. While a central stimulus was presented to the participant, a face appeared in the periphery, showing either a happy, neutral or an angry expression. In three counterbalanced blocks participants were instructed to either move their eyes overtly to the peripheral face, keep fixating the center and therefore covertly shift their attention, or freely look wherever they would like to look. We found that emotional content had stronger effects on the amplitude of the Early Posterior Negativity when participants shifted attention naturally, and that natural shifts of attention differed from instructed shifts in both saccade behavior and neural mechanisms. In summary, our results emphasize the importance of investigating modulation of attention using paradigms that allow participants to allocate their attention naturally.
Collapse
Affiliation(s)
- Laura Pasqualette
- Developmental Psychology with Educational Psychology, Bremen University, Bremen, Germany; Neurocognitive Developmental Psychology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Louisa Kulke
- Neurocognitive Developmental Psychology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
2
|
Pan WN, Zhao YW, Luo ZX, Chen Y, Cai YC. Attention modulates early visual processing: An association between subjective contrast perception and early C1 ERP component. Psychophysiology 2024; 61:e14507. [PMID: 38146152 DOI: 10.1111/psyp.14507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 12/27/2023]
Abstract
The question of whether spatial attention can modulate initial afferent activity in area V1, as measured by the earliest visual event-related potential (ERP) component "C1", is still the subject of debate. Because attention always enhances behavioral performance, previous research has focused on finding evidence of attention-related enhancements in visual neural responses. However, recent psychophysical studies revealed a complex picture of attention's influence on visual perception: attention amplifies the perceived contrast of low-contrast stimuli while dampening the perceived contrast of high-contrast stimuli. This evidence suggests that attention may not invariably augment visual neural responses but could instead exert inhibitory effects under certain circumstances. Whether this bi-directional modulation of attention also manifests in C1 and whether the modulation of C1 underpins the attentional influence on contrast perception remain unknown. To address these questions, we conducted two experiments (N = 67 in total) by employing a combination of behavioral and ERP methodologies. Our results did not unveil a uniform attentional enhancement or attenuation effect of C1 across all subjects. However, an intriguing correlation between the attentional effects of C1 and contrast appearance for high-contrast stimuli did emerge, revealing an association between attentional modulation of C1 and the attentional modulation of contrast appearance. This finding offers new insights into the relationship between attention, perceptual experience, and early visual neural processing, suggesting that the attentional effect on subjective visual perception could be mediated by the attentional modulation of the earliest visual cortical response.
Collapse
Affiliation(s)
- Wang-Nan Pan
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China
| | - Yu-Wan Zhao
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China
| | - Zi-Xi Luo
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China
| | - Yue Chen
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China
| | - Yong-Chun Cai
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Chen Z, Qin Y, Peng M, Zhao W, Shi X, Lai D, Yin E, Yan Y, Yao D, Liu T. Event-related potential patterns of selective attention modulated by perceptual load. Brain Behav 2023; 13:e2907. [PMID: 36786695 PMCID: PMC10013938 DOI: 10.1002/brb3.2907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/13/2022] [Accepted: 01/15/2023] [Indexed: 02/15/2023] Open
Abstract
INTRODUCTION A high perceptual load can effectively prevent attention from being drawn to irrelevant stimuli; however, the neural pattern underlying this process remains unclear. METHODS This study adopted a perceptual load paradigm to examine the temporal processes of attentional modulation by incorporating conditions of perceptual load, distractor-target compatibility, and eccentricity. RESULTS The behavioral results showed that a high perceptual load significantly reduced attentional distraction caused by peripheral distractors. The event-related potential results further revealed that shorter P2 latencies were observed for peripheral distractors than for central distractors under a high perceptual load and that a suppressed compatibility effect with increasing load was reflected by the P3 component. CONCLUSION These findings suggested that (1) P2 and P3 components effectively captured different sides of attentional processing modulated by load (i.e., the filter processing of the object and the overall attentional resource allocation) and (2) response patterns of selective attention modulated by perceptual load were influenced by eccentricity. Our electrophysiological evidence confirmed the behavioral findings, indicating the neural mechanisms of attentional modulation.
Collapse
Affiliation(s)
- Zhuo Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Yun Qin
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China.,Sichuan Institute for Brain Science and Brain-Inspired Intelligence, Chengdu, China
| | - Maoqin Peng
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Wei Zhao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Xuqian Shi
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Danwei Lai
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Erwei Yin
- The Defense Innovation Institute, Academy of Military Sciences, Beijing, China
| | - Ye Yan
- The Defense Innovation Institute, Academy of Military Sciences, Beijing, China
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China.,Sichuan Institute for Brain Science and Brain-Inspired Intelligence, Chengdu, China
| | - Tiejun Liu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China.,Sichuan Institute for Brain Science and Brain-Inspired Intelligence, Chengdu, China
| |
Collapse
|
4
|
Meng ZL, Liu ML, Bi HY. Spatial and temporal processing difficulties in Chinese children with developmental dyslexia: An ERP study. DYSLEXIA (CHICHESTER, ENGLAND) 2022; 28:416-430. [PMID: 35918880 DOI: 10.1002/dys.1723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 06/25/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Magnocellular (M) deficit theory indicates that individuals with developmental dyslexia (DD) have low sensitivity to stimuli with high temporal frequencies (HTF) and low spatial frequencies (LSF). However, some studies found that temporal processing and spatial processing were correlated with different reading-related skills. Chinese is a logographic language, and visual skills are particularly important for reading in Chinese. It is necessary to investigate the temporal and spatial processing abilities in the M pathway of Chinese children with DD. Using electrophysiological recordings, the present study examined the mean amplitude and latency of P1 during a grating direction judgment task in 13 children with DD and 13 age-matched normal children. Dyslexic children showed a low amplitude and long latency of P1 in the HTF condition and LSF condition compared with age-matched children. In the HTF condition, the amplitude of P1 correlated with phonological awareness, and the latency of P1 correlated with reading fluency and rapid naming of digits. The amplitude of P1 in the LSF condition correlated with reading accuracy. This result suggested that Chinese children with DD had difficulties in both temporal and spatial processing in the M pathway. However, temporal processing and spatial processing played different roles in Chinese reading.
Collapse
Affiliation(s)
- Ze-Long Meng
- CAS Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
- Department of Psychology, School of Humanities and Social Sciences, Beijing Forestry University, Beijing, China
| | - Meng-Lian Liu
- CAS Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Hong-Yan Bi
- CAS Key Laboratory of Behavioral Science, Center for Brain Science and Learning Difficulties, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Qin N, Wiens S, Rauss K, Pourtois G. Effects of selective attention on the C1 ERP component: A systematic review and meta-analysis. Psychophysiology 2022; 59:e14123. [PMID: 35751845 DOI: 10.1111/psyp.14123] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/14/2022] [Accepted: 05/09/2022] [Indexed: 11/27/2022]
Abstract
The C1 event-related potential (ERP) captures the earliest stage of feedforward processing in the primary visual cortex (V1). An ongoing debate is whether top-down selective attention can modulate the C1. One side of the debate pointed out that null findings appear to outnumber positive findings; thus, selective attention does not seem to influence the C1. However, this suggestion is not based on a valid approach to summarizing evidence across studies. Therefore, we conducted a systematic review and meta-analysis investigating the effects of selective attention on the C1, involving 47 experiments and 794 subjects in total. Despite heterogeneity across studies, results suggested that attention has a moderate effect on the C1 (Cohen's d z $$ {d}_z $$ = 0.33, p < .0001); that is, C1 amplitude is larger for visual stimuli that are attended than unattended. These results suggest that C1 is affected by top-down selective attention.
Collapse
Affiliation(s)
- Nan Qin
- CAPLAB, Department of Experimental Clinical & Health Psychology, Ghent University, Ghent, Belgium
| | - Stefan Wiens
- Department of Psychology, Stockholm University, Stockholm, Sweden
| | - Karsten Rauss
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Gilles Pourtois
- CAPLAB, Department of Experimental Clinical & Health Psychology, Ghent University, Ghent, Belgium
| |
Collapse
|
6
|
Perceptual Judgments for Table Tennis Serve Recognition: An Event-Related Potentials Study. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In the present study, visual attention processes in complex, sport-related decision-making tasks were examined. Psychophysiological and performance data recorded from 15 advanced table tennis athletes and 15 intermediate level undergraduates were compared. A total of 240 three-dimensional pictures of stimuli composed of a white ball and hitting location (black shade point) were presented via a screen, in which 25% represented side-backspin serves, and the other 75% represented non-side-topspin serves. Participants were instructed to report the types of serves. The results indicated that table tennis athletes responded more quickly and accurately. C1 and P1components were induced in the occipital region, N1 in the central region, and P3 in all regions. For table tennis athletes, in the phase of early sensory processing for stimuli features (such as hitting location), the cerebral cortex was activated at a higher level in comparison with undergraduates. This may be caused by the long-term exercise training. Athletes have to be very sensitive to the physical features of relevant movement stimuli. In the phase of recognizing stimuli structures or patterns, advanced athletes’ cerebral cortexes were activated higher and faster. This may help them more effectively match visual information about serves to patterns stored in long-term memory.
Collapse
|
7
|
Wolf MI, Bruchmann M, Pourtois G, Schindler S, Straube T. Top-Down Modulation of Early Visual Processing in V1: Dissociable Neurophysiological Effects of Spatial Attention, Attentional Load and Task-Relevance. Cereb Cortex 2021; 32:2112-2128. [PMID: 34607356 DOI: 10.1093/cercor/bhab342] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 11/13/2022] Open
Abstract
Until today, there is an ongoing discussion if attention processes interact with the information processing stream already at the level of the C1, the earliest visual electrophysiological response of the cortex. We used two highly powered experiments (each N = 52) and examined the effects of task relevance, spatial attention, and attentional load on individual C1 amplitudes for the upper or lower visual hemifield. Bayesian models revealed evidence for the absence of load effects but substantial modulations by task-relevance and spatial attention. When the C1-eliciting stimulus was a task-irrelevant, interfering distracter, we observed increased C1 amplitudes for spatially unattended stimuli. For spatially attended stimuli, different effects of task-relevance for the two experiments were found. Follow-up exploratory single-trial analyses revealed that subtle but systematic deviations from the eye-gaze position at stimulus onset between conditions substantially influenced the effects of attention and task relevance on C1 amplitudes, especially for the upper visual field. For the subsequent P1 component, attentional modulations were clearly expressed and remained unaffected by these deviations. Collectively, these results suggest that spatial attention, unlike load or task relevance, can exert dissociable top-down modulatory effects at the C1 and P1 levels.
Collapse
Affiliation(s)
- Maren-Isabel Wolf
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, Münster, Germany.,Department of Experimental-Clinical and Health Psychology, Ghent University Ghent, Belgium.,Department of Systems Neuroscience, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Maximilian Bruchmann
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, Münster, Germany.,Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Gilles Pourtois
- Department of Experimental-Clinical and Health Psychology, Ghent University Ghent, Belgium
| | - Sebastian Schindler
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, Münster, Germany.,Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Thomas Straube
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, Münster, Germany.,Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| |
Collapse
|
8
|
Mohr KS, Carr N, Georgel R, Kelly SP. Modulation of the Earliest Component of the Human VEP by Spatial Attention: An Investigation of Task Demands. Cereb Cortex Commun 2021; 1:tgaa045. [PMID: 34296113 PMCID: PMC8152881 DOI: 10.1093/texcom/tgaa045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 11/17/2022] Open
Abstract
Spatial attention modulations of initial afferent activity in area V1, indexed by the first component “C1” of the human visual evoked potential, are rarely found. It has thus been suggested that early modulation is induced only by special task conditions, but what these conditions are remains unknown. Recent failed replications—findings of no C1 modulation using a certain task that had previously produced robust modulations—present a strong basis for examining this question. We ran 3 experiments, the first to more exactly replicate the stimulus and behavioral conditions of the original task, and the second and third to manipulate 2 key factors that differed in the failed replication studies: the provision of informative performance feedback, and the degree to which the probed stimulus features matched those facilitating target perception. Although there was an overall significant C1 modulation of 11%, individually, only experiments 1 and 2 showed reliable effects, underlining that the modulations do occur but not consistently. Better feedback induced greater P1, but not C1, modulations. Target-probe feature matching had an inconsistent influence on modulation patterns, with behavioral performance differences and signal-overlap analyses suggesting interference from extrastriate modulations as a potential cause.
Collapse
Affiliation(s)
- Kieran S Mohr
- Cognitive Neural Systems Lab, School of Electrical and Electronic Engineering and UCD Centre for Biomedical Engineering, University College Dublin, Dublin 4, Ireland
| | - Niamh Carr
- Cognitive Neural Systems Lab, School of Electrical and Electronic Engineering and UCD Centre for Biomedical Engineering, University College Dublin, Dublin 4, Ireland
| | - Rachel Georgel
- Cognitive Neural Systems Lab, School of Electrical and Electronic Engineering and UCD Centre for Biomedical Engineering, University College Dublin, Dublin 4, Ireland
| | - Simon P Kelly
- Cognitive Neural Systems Lab, School of Electrical and Electronic Engineering and UCD Centre for Biomedical Engineering, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
9
|
Spatial attention affects the early processing of neutral versus fearful faces when they are task-irrelevant: a classifier study of the EEG C1 component. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2020; 19:123-137. [PMID: 30341623 DOI: 10.3758/s13415-018-00650-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
EEG studies suggest that the emotional content of visual stimuli is processed rapidly. In particular, the C1 component, which occurs up to 100 ms after stimulus onset and likely reflects activity in primary visual cortex V1, has been reported to be sensitive to emotional faces. However, difficulties replicating these results have been reported. We hypothesized that the nature of the task and attentional condition are key to reconcile the conflicting findings. We report three experiments of EEG activity during the C1 time range elicited by peripherally presented neutral and fearful faces under various attentional conditions: the faces were spatially attended or unattended and were either task-relevant or not. Using traditional event-related potential analysis, we found that the early activity changed depending on facial expression, attentional condition, and task. In addition, we trained classifiers to discriminate the different conditions from the EEG signals. Although the classifiers were not able to discriminate between facial expressions in any condition, they uncovered differences between spatially attended and unattended faces but solely when these were task-irrelevant. In addition, this effect was only present for neutral faces. Our study provides further indication that attention and task are key parameters when measuring early differences between emotional and neutral visual stimuli.
Collapse
|
10
|
Sarasso P, Ronga I, Kobau P, Bosso T, Artusio I, Ricci R, Neppi-Modona M. Beauty in mind: Aesthetic appreciation correlates with perceptual facilitation and attentional amplification. Neuropsychologia 2019; 136:107282. [PMID: 31770549 DOI: 10.1016/j.neuropsychologia.2019.107282] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 12/11/2022]
Abstract
Neuroaesthetic research suggests that aesthetic appreciation results from the interaction between the object perceptual features and the perceiver's sensory processing dynamics. In the present study, we investigated the relationship between aesthetic appreciation and attentional modulation at a behavioural and psychophysiological level. In a first experiment, fifty-eight healthy participants performed a visual search task with abstract stimuli containing more or less natural spatial frequencies and subsequently were asked to give an aesthetic evaluation of the images. The results evidenced that response times were faster for more appreciated stimuli. In a second experiment, we recorded visual evoked potentials (VEPs) during exposure to the same stimuli. The results showed, only for more appreciated images, an enhancement in C1 and N1, P3 and N4 VEP components. Moreover, we found increased attention-related occipital alpha desynchronization for more appreciated images. We interpret these data as indicative of the existence of a correlation between aesthetic appreciation and perceptual processing enhancement, both at a behavioural and at a neurophysiological level.
Collapse
Affiliation(s)
- P Sarasso
- SAMBA (SpAtial Motor & Bodily Awareness) Research Group, Department of Psychology, University of Turin, Italy; Imaging and Cerebral Plasticity Research Group, Department of Psychology, University of Turin, Italy.
| | - I Ronga
- Imaging and Cerebral Plasticity Research Group, Department of Psychology, University of Turin, Italy.
| | - P Kobau
- Department of Philosophy and Education Sciences, University of Turin, Italy
| | - T Bosso
- SAMBA (SpAtial Motor & Bodily Awareness) Research Group, Department of Psychology, University of Turin, Italy
| | - I Artusio
- SAMBA (SpAtial Motor & Bodily Awareness) Research Group, Department of Psychology, University of Turin, Italy
| | - R Ricci
- SAMBA (SpAtial Motor & Bodily Awareness) Research Group, Department of Psychology, University of Turin, Italy
| | - M Neppi-Modona
- SAMBA (SpAtial Motor & Bodily Awareness) Research Group, Department of Psychology, University of Turin, Italy
| |
Collapse
|
11
|
Cecchi AS. Cognitive penetration of early vision in face perception. Conscious Cogn 2018; 63:254-266. [PMID: 29909046 DOI: 10.1016/j.concog.2018.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 05/01/2018] [Accepted: 06/05/2018] [Indexed: 11/16/2022]
Abstract
Cognitive and affective penetration of perception refers to the influence that higher mental states such as beliefs and emotions have on perceptual systems. Psychological and neuroscientific studies appear to show that these states modulate the visual system at the visuomotor, attentional, and late levels of processing. However, empirical evidence showing that similar consequences occur in early stages of visual processing seems to be scarce. In this paper, I argue that psychological evidence does not seem to be either sufficient or necessary to argue in favour of or against the cognitive penetration of perception in either late or early vision. In order to do that we need to have recourse to brain imaging techniques. Thus, I introduce a neuroscientific study and argue that it seems to provide well-grounded evidence for the cognitive penetration of early vision in face perception. I also examine and reject alternative explanations to my conclusion.
Collapse
Affiliation(s)
- Ariel S Cecchi
- Department of Experimental Psychology, University College London, United Kingdom; Centre for Philosophy of Natural and Social Science, London School of Economics and Political Science, United Kingdom.
| |
Collapse
|
12
|
Abstract
In a discussion paper (Slotnick, this issue), I conducted a selective review of spatial attention studies to compare experimental parameters and determine whether particular stimulus, task, or analysis conditions were more likely to produce significant attentional modulation of the event-related potential (ERP) C1 component. It was concluded that to maximize C1 attention effects, stimuli should be in the upper visual field, there should be distractors, conditions should be high perceptual or attentional load, there should be exogenous cuing, and effects should be measured at midline parietal-occipital electrodes POz, Pz, and CPz. Commentaries were received by Fu (this issue), Qu and Ding (this issue), Zani and Proverbio (this issue), Pitts and Hillyard (this issue), Di Russo (this issue), and Mohr and Kelly (this issue). Comments included additional ideas to amplify C1 attention effects, support for some conclusions, and challenges to some conclusions. The challenges led to a more in depth analysis of many issues pertaining to C1 attention effects including optimal electrode and stimulus locations, null V1 source localization attention effects, whether all significant C1 attention effects can be discounted, and the number of studies with null versus significant C1 attention effects. Analysis of the studies that survived critical analysis, which included several that observed significant C1 attention effects, led to the same conclusions as Slotnick (this issue). Lines of future research include replicating studies that have observed C1 attention effects using identical experimental parameters and systematically manipulating parameters to determine the impact of each parameter on C1 spatial attention effects.
Collapse
Affiliation(s)
- Scott D Slotnick
- a Department of Psychology , Boston College , Chestnut Hill , MA , USA
| |
Collapse
|
13
|
Baumgartner HM, Graulty CJ, Hillyard SA, Pitts MA. Does spatial attention modulate the C1 component? The jury continues to deliberate. Cogn Neurosci 2017; 9:34-37. [PMID: 28956499 DOI: 10.1080/17588928.2017.1386169] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The thoughful comments on our study (Baumgartner et al., this issue) that failed to replicate the C1 attention effect reported by a previous study roughly fall into three broad categories. First, the commentators identified specific differences between the two studies that may have contributed to the discrepant results. Second, they highlighted some of the theoretical and methodological problems that are encountered when trying to demonstrate attention effects on the initial evoked response in primary visual cortex. Third, they offered a number of proposals for optimizing experimental designs and analysis methods that may increase the likelihood of observing attention-related modulations of the C1. We consider each of these topics in turn.
Collapse
Affiliation(s)
| | | | - Steven A Hillyard
- c Department of Neurosciences , University of California San Diego , La Jolla , CA , USA
| | - Michael A Pitts
- b Department of Psychology , Reed College , Portland , OR , USA
| |
Collapse
|
14
|
Mohr KS, Kelly SP. The spatiotemporal characteristics of the C1 component and its modulation by attention. Cogn Neurosci 2017; 9:71-74. [PMID: 28971714 DOI: 10.1080/17588928.2017.1386642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Slotnick (this issue) provided a selective review of studies on the attentional modulation of the C1 component of the visual evoked potential, and offers a number of guidelines to maximize the likelihood of observing such modulation in terms of electrode choice, stimulus placement, and types of attentional cue and target stimulus. However, the broader literature pertaining to attentional modulation of the C1 does not support many of these guidelines, and the question of why exactly C1 modulations are so rare remains very much open. Here, we provide clarifications that are critical to an accurate appraisal of the current state of this literature.
Collapse
Affiliation(s)
- Kieran S Mohr
- a School of Electrical and Electronic Engineering , University College Dublin , Dublin , Ireland
| | - Simon P Kelly
- a School of Electrical and Electronic Engineering , University College Dublin , Dublin , Ireland
| |
Collapse
|
15
|
Pitts MA, Hillyard SA. Still wanted: a reproducible demonstration of a genuine C1 attention effect. Cogn Neurosci 2017; 9:68-70. [PMID: 28975858 DOI: 10.1080/17588928.2017.1388226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Slotnick (this issue) has specified a number of experimental parameters that appear critical for enabling an attention-related modulation of the C1 component. These include stimulus presentation in the upper visual field, the presence of distractors, a high perceptual or attentional load, and measurements at midline occipito-parietal sites. While we agree with many of these recommendations, we would modify others and even dispute a few. Despite the employment of these parameters in a few existing studies, there has not yet been a convincing, reproducible demonstration of a modulation of the C1 component by spatial attention that can be localized to primary visual cortex.
Collapse
Affiliation(s)
- Michael A Pitts
- a Department of Psychology , Reed College , Portland , OR , USA
| | - Steven A Hillyard
- b Department of Neurosciences , University of California , La Jolla , CA , USA
| |
Collapse
|
16
|
Fu S. 'Tricks' for revealing potential attentional modulations on the C1 component. Cogn Neurosci 2017; 9:63-64. [PMID: 28944720 DOI: 10.1080/17588928.2017.1384376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The t-test formula for a within-subject design suggests that the C1 attentional effect is more likely to be significant if the C1 attentional difference, as the numerator, is large and the standard deviation of the C1 difference that affects the denominator is small. Experimental manipulations for exploring potential C1 attentional effects can be evaluated by their contributions to the numerator and/or the denominator of the t-test formula. 'Tricks' that may enhance the C1 attentional difference and minimize the standard deviation of the sampled C1 are discussed.
Collapse
Affiliation(s)
- Shimin Fu
- a Department of Psychology and Center for Brain and Cognitive Sciences, School of Education , Guangzhou University , Guangzhou , China
| |
Collapse
|
17
|
Fu S. Open and cautious towards the "minority view". Cogn Neurosci 2017; 9:28-30. [PMID: 28874090 DOI: 10.1080/17588928.2017.1375472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
According to the 'minority view', the initial afferent processing on C1 can be modulated by attention under certain experimental conditions. However, evidence supporting this 'minority view' is relatively rare and needs more replication, and the optimal conditions for eliciting attentional modulations on C1 have not yet been clearly defined. V1-tuned stimuli with distractors, peripheral cuing paradigms, and high perceptual loads seem to be important factors in favor of the 'minority view'. The signal-noise issue for C1, especially between attended and unattended conditions, needs to be considered.
Collapse
Affiliation(s)
- Shimin Fu
- a Department of Psychology and Center for Brain and Cognitive Sciences, School of Education , Guangzhou University , Guangzhou , China
| |
Collapse
|
18
|
Slotnick SD. The experimental parameters that affect attentional modulation of the ERP C1 component. Cogn Neurosci 2017; 9:53-62. [DOI: 10.1080/17588928.2017.1369021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
19
|
Murphy S, Spence C, Dalton P. Auditory perceptual load: A review. Hear Res 2017; 352:40-48. [DOI: 10.1016/j.heares.2017.02.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 12/21/2016] [Accepted: 02/05/2017] [Indexed: 11/26/2022]
|
20
|
Dassanayake TL, Michie PT, Fulham R. Effect of temporal predictability on exogenous attentional modulation of feedforward processing in the striate cortex. Int J Psychophysiol 2016; 105:9-16. [DOI: 10.1016/j.ijpsycho.2016.04.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 04/11/2016] [Accepted: 04/21/2016] [Indexed: 11/28/2022]
|
21
|
|
22
|
Ding Y, Martinez A, Qu Z, Hillyard SA. Earliest stages of visual cortical processing are not modified by attentional load. Hum Brain Mapp 2014; 35:3008-24. [PMID: 25050422 PMCID: PMC6868971 DOI: 10.1002/hbm.22381] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 06/18/2013] [Accepted: 07/19/2013] [Indexed: 11/09/2022] Open
Abstract
This study investigated the effects of attentional load on neural responses to attended and irrelevant visual stimuli by recording high-density event-related potentials (ERPs) from the scalp in normal adult subjects. Peripheral (upper and lower visual field) and central stimuli were presented in random order at a rapid rate while subjects responded to targets among the central stimuli. Color detection and color-orientation conjunction search tasks were used as the low- and high-load tasks, respectively. Behavioral results showed significant load effects on both accuracy and reaction time for target detections. ERP results revealed no significant load effect on the initial C1 component (60-100 ms) evoked by either central-relevant or peripheral-irrelevant stimuli. Source analysis with dipole modeling confirmed previous reports that the C1 includes the initial evoked response in primary visual cortex. Source analyses indicated that high attentional load enhanced the early (70-140 ms) neural response to central-relevant stimuli in ventral-lateral extrastriate cortex, whereas load effects on peripheral-irrelevant stimulus processing started at 110 ms and were localized to more dorsal and anterior extrastriate cortical areas. These results provide evidence that the earliest stages of visual cortical processing are not modified by attentional load and show that attentional load affects the processing of task relevant and irrelevant stimuli in different ways.
Collapse
Affiliation(s)
- Yulong Ding
- Department of PsychologySun Yat‐Sen UniversityGuangzhouChina
- Department of NeurosciencesUniversity of CaliforniaSan Diego, La JollaCalifornia
- State Key laboratory of Brain and Cognition Science, Institute of Biophysics, Chinese Academy of SciencesChina
| | - Antigona Martinez
- Department of NeurosciencesUniversity of CaliforniaSan Diego, La JollaCalifornia
- Nathan S. Kline Institute for Psychiatric ResearchOrangeburgNew York
| | - Zhe Qu
- Department of PsychologySun Yat‐Sen UniversityGuangzhouChina
| | - Steven A. Hillyard
- Department of NeurosciencesUniversity of CaliforniaSan Diego, La JollaCalifornia
| |
Collapse
|
23
|
Roberts DM, Fedota JR, Buzzell GA, Parasuraman R, McDonald CG. Prestimulus oscillations in the alpha band of the EEG are modulated by the difficulty of feature discrimination and predict activation of a sensory discrimination process. J Cogn Neurosci 2014; 26:1615-28. [PMID: 24405187 DOI: 10.1162/jocn_a_00569] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Recent work has demonstrated that the occipital-temporal N1 component of the ERP is sensitive to the difficulty of visual discrimination, in a manner that cannot be explained by simple differences in low-level visual features, arousal, or time on task. These observations provide evidence that the occipital-temporal N1 component is modulated by the application of top-down control. However, the timing of this control process remains unclear. Previous work has demonstrated proactive, top-down modulation of cortical excitability for cued spatial attention or feature selection tasks. Here, the possibility that a similar top-down process facilitates performance of a difficult stimulus discrimination task is explored. Participants performed an oddball task at two levels of discrimination difficulty, with difficulty manipulated by modulating the similarity between target and nontarget stimuli. Discrimination processes and cortical excitability were assessed via the amplitude of the occipital-temporal N1 component and prestimulus alpha oscillation of the EEG, respectively. For correct discriminations, prestimulus alpha power was reduced, and the occipital-temporal N1 was enhanced in the hard relative to the easy condition. Furthermore, within the hard condition, prestimulus alpha power was reduced, and the occipital-temporal N1 was enhanced for correct relative to incorrect discriminations. The generation of ERPs contingent on relative prestimulus alpha power additionally suggests that diminished alpha power preceding stimulus onset is related to enhancement of the occipital-temporal N1. As in spatial attention, proactive control appears to enhance cortical excitability and facilitate discrimination performance in tasks requiring nonspatial, feature-based attention, even in the absence of competing stimulus features.
Collapse
|
24
|
Rauss K, Pourtois G, Vuilleumier P, Schwartz S. Voluntary attention reliably influences visual processing at the level of the C1 component: A commentary on Fu, Fedota, Greenwood, and Parasuram (2010). Biol Psychol 2012; 91:325-7; author reply 321-4. [DOI: 10.1016/j.biopsycho.2012.03.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Fu S, Fedota JR, Greenwood PM, Parasuraman R. Attentional load is not a critical factor for eliciting C1 attentional effect – A reply to Rauss, Pourtois, Vuilleumier, and Schwartz. Biol Psychol 2012. [DOI: 10.1016/j.biopsycho.2012.03.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Hansen BC, Johnson AP, Ellemberg D. Different spatial frequency bands selectively signal for natural image statistics in the early visual system. J Neurophysiol 2012; 108:2160-72. [PMID: 22832562 DOI: 10.1152/jn.00288.2012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Early visual evoked potentials (VEPs) measured in humans have recently been observed to be modulated by the image statistics of natural scene imagery. Specifically, the early VEP is dominated by a strong positivity when participants view minimally complex natural scene imagery, with the magnitude of that component being modulated by luminance contrast differences across spatial frequency (i.e., the slope of the amplitude spectrum). For scenes high in structural complexity, the early VEP is dominated by a prominent negativity that exhibits little dependency on luminance contrast. However, since natural scene imagery is broad band in terms of spatial frequency, it is not known whether the above-mentioned modulation results from a complex interaction within or between the early neural processes tuned to different bands of spatial frequency. Here, we sought to address this question by measuring early VEPs (specifically, the C1, P1, and N1 components) while human participants viewed natural scene imagery that was filtered to contain specific bands of spatial frequency information. The results show that the C1 component is largely unmodulated by the luminance statistics of natural scene imagery (being only measurable when such stimuli were made to contain high spatial frequencies). The P1 and N1, on the other hand, were observed to exhibit strong spatial frequency-dependent modulation to the luminance statistics of natural scene imagery. The results therefore suggest that the dependency of early VEPs on natural image statistics results from an interaction between the early neural processes tuned to different bands of spatial frequency.
Collapse
Affiliation(s)
- Bruce C Hansen
- Dept. of Psychology, Neuroscience Program, Colgate Univ., Hamilton, NY 13346, USA.
| | | | | |
Collapse
|
27
|
Acunzo DJ, Mackenzie G, van Rossum MCW. Systematic biases in early ERP and ERF components as a result of high-pass filtering. J Neurosci Methods 2012; 209:212-8. [PMID: 22743800 DOI: 10.1016/j.jneumeth.2012.06.011] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 06/11/2012] [Accepted: 06/12/2012] [Indexed: 10/28/2022]
Abstract
The event-related potential (ERP) and event-related field (ERF) techniques provide valuable insights into the time course of processes in the brain. Because neural signals are typically weak, researchers commonly filter the data to increase the signal-to-noise ratio. However, filtering may distort the data, leading to false results. Using our own EEG data, we show that acausal high-pass filtering can generate a systematic bias easily leading to misinterpretations of neural activity. In particular, we show that the early ERP component C1 is very sensitive to such effects. Moreover, we found that about half of the papers reporting modulations in the C1 range used a high-pass digital filter cut-off above the recommended maximum of 0.1 Hz. More generally, among 185 relevant ERP/ERF publications, 80 used cutoffs above 0.1 Hz. As a consequence, part of the ERP/ERF literature may need to be re-analyzed. We provide guidelines on how to minimize filtering artifacts.
Collapse
Affiliation(s)
- David J Acunzo
- Neuroinformatics Doctoral Training Centre, Institute for Adaptive and Neural Computation, School of Informatics, University of Edinburgh, UK.
| | | | | |
Collapse
|
28
|
State-dependent attention modulation of human primary visual cortex: A high density ERP study. Neuroimage 2012; 60:2365-78. [DOI: 10.1016/j.neuroimage.2012.02.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 01/27/2012] [Accepted: 02/04/2012] [Indexed: 11/18/2022] Open
|
29
|
Rauss K, Pourtois G, Vuilleumier P, Schwartz S. Effects of attentional load on early visual processing depend on stimulus timing. Hum Brain Mapp 2011; 33:63-74. [PMID: 21438076 DOI: 10.1002/hbm.21193] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 08/31/2010] [Accepted: 09/27/2010] [Indexed: 11/11/2022] Open
Abstract
A growing number of studies suggest that early visual processing is not only affected by low-level perceptual attributes but also by higher order cognitive factors such as attention or emotion. Using high-density electroencephalography, we recently demonstrated that attentional load of a task at fixation reduces the response of primary visual cortex to irrelevant peripheral stimuli, as indexed by the C1 component. In the latter study, peripheral stimuli were always presented during intervals without task-relevant stimuli. Here, we use a similar paradigm but present central task stimuli and irrelevant peripheral stimuli simultaneously while keeping all other stimulus characteristics constant. Results show that rather than to suppress responses to peripheral stimulation, high attentional load elicits higher C1 amplitudes under these conditions. These findings suggest that stimulus timing can profoundly alter the effects of attentional load on the earliest stages of processing in human visual cortex.
Collapse
Affiliation(s)
- Karsten Rauss
- Department of Neuroscience, University of Geneva, Geneva, Switzerland.
| | | | | | | |
Collapse
|
30
|
Top-down effects on early visual processing in humans: a predictive coding framework. Neurosci Biobehav Rev 2010; 35:1237-53. [PMID: 21185860 DOI: 10.1016/j.neubiorev.2010.12.011] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 12/15/2010] [Accepted: 12/16/2010] [Indexed: 11/23/2022]
Abstract
An increasing number of human electroencephalography (EEG) studies examining the earliest component of the visual evoked potential, the so-called C1, have cast doubts on the previously prevalent notion that this component is impermeable to top-down effects. This article reviews the original studies that (i) described the C1, (ii) linked it to primary visual cortex (V1) activity, and (iii) suggested that its electrophysiological characteristics are exclusively determined by low-level stimulus attributes, particularly the spatial position of the stimulus within the visual field. We then describe conflicting evidence from animal studies and human neuroimaging experiments and provide an overview of recent EEG and magnetoencephalography (MEG) work showing that initial V1 activity in humans may be strongly modulated by higher-level cognitive factors. Finally, we formulate a theoretical framework for understanding top-down effects on early visual processing in terms of predictive coding.
Collapse
|
31
|
Fu S, Fedota JR, Greenwood PM, Parasuraman R. Dissociation of visual C1 and P1 components as a function of attentional load: an event-related potential study. Biol Psychol 2010; 85:171-8. [PMID: 20599467 PMCID: PMC2921581 DOI: 10.1016/j.biopsycho.2010.06.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 06/14/2010] [Accepted: 06/25/2010] [Indexed: 11/26/2022]
Abstract
The earliest cortical location at which attention influences visual processing is controversial. To address this issue, the C1 and P1 components of cue-elicited ERPs were examined in a spatially-cued task under high and low levels of attentional load (active vs. passive viewing). Cues were presented either to the left or to the right visual field in separate trials (unilateral presentation), or to both visual fields simultaneously (bilateral presentation). For the unilateral presentation, C1 (peak latency approximately 80 ms) was not modulated by attentional load, whereas P1 (peak latency approximately 120-140 ms) was larger for high-relative to low-load condition. Bilateral presentation of the stimuli enhanced the amplitude of the C1 component relative to unilateral presentation; however, the increase of signal/noise ratio of C1 revealed no attentional load effect on C1. Results show that attentional load modulates visual processing in the P1, but not in the C1 time range, regardless of the increased signal/noise ratio by bilateral presentation. While it remains unclear about the conditions under which a C1 attentional effect is reliably elicited, the present results suggest that the direct manipulation of attentional load under a voluntary attention task seems not crucial for eliciting C1 attentional effect.
Collapse
Affiliation(s)
- Shimin Fu
- Department of Psychology, Tsinghua University, Haidan, Beijing, China.
| | | | | | | |
Collapse
|